Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 381(18): 1707-1717, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31618560

RESUMO

BACKGROUND: Closed-loop systems that automate insulin delivery may improve glycemic outcomes in patients with type 1 diabetes. METHODS: In this 6-month randomized, multicenter trial, patients with type 1 diabetes were assigned in a 2:1 ratio to receive treatment with a closed-loop system (closed-loop group) or a sensor-augmented pump (control group). The primary outcome was the percentage of time that the blood glucose level was within the target range of 70 to 180 mg per deciliter (3.9 to 10.0 mmol per liter), as measured by continuous glucose monitoring. RESULTS: A total of 168 patients underwent randomization; 112 were assigned to the closed-loop group, and 56 were assigned to the control group. The age range of the patients was 14 to 71 years, and the glycated hemoglobin level ranged from 5.4 to 10.6%. All 168 patients completed the trial. The mean (±SD) percentage of time that the glucose level was within the target range increased in the closed-loop group from 61±17% at baseline to 71±12% during the 6 months and remained unchanged at 59±14% in the control group (mean adjusted difference, 11 percentage points; 95% confidence interval [CI], 9 to 14; P<0.001). The results with regard to the main secondary outcomes (percentage of time that the glucose level was >180 mg per deciliter, mean glucose level, glycated hemoglobin level, and percentage of time that the glucose level was <70 mg per deciliter or <54 mg per deciliter [3.0 mmol per liter]) all met the prespecified hierarchical criterion for significance, favoring the closed-loop system. The mean difference (closed loop minus control) in the percentage of time that the blood glucose level was lower than 70 mg per deciliter was -0.88 percentage points (95% CI, -1.19 to -0.57; P<0.001). The mean adjusted difference in glycated hemoglobin level after 6 months was -0.33 percentage points (95% CI, -0.53 to -0.13; P = 0.001). In the closed-loop group, the median percentage of time that the system was in closed-loop mode was 90% over 6 months. No serious hypoglycemic events occurred in either group; one episode of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this 6-month trial involving patients with type 1 diabetes, the use of a closed-loop system was associated with a greater percentage of time spent in a target glycemic range than the use of a sensor-augmented insulin pump. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; iDCL ClinicalTrials.gov number, NCT03563313.).


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Adolescente , Adulto , Idoso , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Desenho de Equipamento , Feminino , Hemoglobina A Glicada/análise , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos , Adulto Jovem
2.
Expert Rev Med Devices ; 16(10): 845-853, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31540557

RESUMO

Introduction: Automated insulin delivery for people with type 1 diabetes has been a major goal in the diabetes technology field for many years. While a fully automated system has not yet been accomplished, the MiniMed™ 670G artificial pancreas (AP) system is the first commercially available insulin pump that automates basal insulin delivery, while still requiring user input for insulin boluses. Determining the safety and efficacy of this system is essential to the development of future devices striving for more automation. Areas Covered: This review will provide an overview of how the MiniMed 670G system works including its safety and efficacy, how it compares to similar devices, and anticipated future advances in diabetes technology currently under development. Expert Opinion: The ultimate goal of advanced diabetes technologies is to reduce the burden and amount of management required of patients with diabetes. In addition to reducing patient workload, achieving better glucose control and improving hemoglobin A1c (HbA1c) values are essential for reducing the threat of diabetes-related complications further down the road. Current devices come close to reaching these goals, but understanding the unmet needs of patients with diabetes will allow future technologies to achieve these goals more quickly.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Pâncreas Artificial/efeitos adversos , Humanos , Sistemas de Infusão de Insulina , Vigilância de Produtos Comercializados , Resultado do Tratamento
3.
Metabolism ; 90: 20-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321535

RESUMO

OBJECTIVE: Artificial pancreas is a technology that minimizes user input by bridging continuous glucose monitoring and insulin pump treatment, and has proven safety in the adult population. The purpose of this systematic review and meta-analysis is to evaluate the efficacy of closed-loop (CL) systems in the glycemic control of non-adult type 1 diabetes patients in both a pairwise and network meta-analysis (NMA) context and investigate various parameters potentially affecting the outcome. METHODS: Literature was systematically searched using the MEDLINE (1966-2018), Scopus (2004-2018), Cochrane Central Register of Controlled Trials (CENTRAL) (1999-2018), Clinicaltrials.gov (2008-2018) and Google Scholar (2004-2018) databases. Studies comparing the glycemic control in CL (either single- or dual-hormone) with continuous subcutaneous insulin infusion (CSII) in people with diabetes (PWD) aged <18 years old were deemed eligible. The primary outcome analysis was conducted with regard to time spent in the target glycemic range. All outcomes were evaluated in NMA in order to investigate potential between-algorithm differences. Pairwise meta-analysis and meta-regression were performed using the RevMan 5.3 and Open Meta-Analyst software. For NMA, the package pcnetmetain R 3.5.1 was used. RESULTS: The meta-analysis was based on 25 studies with a total of 504 PWD. The CL group was associated with significantly higher percentage of time spent in the target glycemic range (Mean (SD): 67.59% (SD: 8.07%) in the target range and OL PWD spending 55.77% (SD: 11.73%), MD: -11.97%, 95% CI [-18.40, -5.54%]) and with lower percentages of time in hyperglycemia (MD: 3.01%, 95% CI [1.68, 4.34%]) and hypoglycemia (MD: 0.67%, 95% CI [0.21, 1.13%]. Mean glucose was also decreased in the CL group (MD: 0.75 mmol/L, 95% CI [0.18-1.33]). The NMA arm of the study showed that the bihormonal modality was superior to other algorithms and standard treatment in lowering mean glucose and increasing time spent in the target range. The DiAs platform was superior to PID in controlling hypoglycemia and mean glucose. Time in target range and mean glucose were unaffected by the confounding factors tested. CONCLUSIONS: The findings of this meta-analysis suggest that artificial pancreas systems are superior to the standard sensor-augmented pump treatment of type 1 diabetes mellitus in non-adult PWD. Between-algorithm differences are also addressed, implying a superiority of the bihormonal treatment modality. Future large-scale studies are needed in the field to verify these outcomes and to determine the optimal algorithm to be used in the clinical setting.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Pâncreas Artificial , Adolescente , Glicemia/análise , Glicemia/metabolismo , Automonitorização da Glicemia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Humanos , Lactente , Recém-Nascido , Insulina/administração & dosagem , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Metanálise em Rede , Pâncreas Artificial/efeitos adversos , Resultado do Tratamento
4.
Diabet Med ; 36(3): 279-286, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30183096

RESUMO

The artificial pancreas is now a viable treatment option for people with Type 1 diabetes and has demonstrated improved glycaemic outcomes while also reducing the onus of self-management of Type 1 diabetes. Closed-loop glucose-responsive insulin delivery guided by real-time sensor glucose readings can accommodate highly variable day-to-day insulin requirements and reduce the hypoglycaemia risk observed with tight glycaemic control in Type 1 diabetes. In 2011, the James Lind Alliance research priorities for Type 1 diabetes were produced and priority 3 was to establish whether an artificial pancreas (closed-loop system) for Type 1 diabetes is effective. This review focuses on the progress that has been made in the evolution of closed-loop systems as an effective treatment option for Type 1 diabetes. Development of closed-loop systems has advanced from feasibility evaluations in highly supervised settings over short periods, to clinical studies in free-living, unsupervised conditions lasting several months. The approval in the USA of the first hybrid closed-loop system (MiniMed® 670G pump, Medtronic, Northridge, CA, USA) in 2016 for use in Type 1 diabetes reflects these advancements. We discuss the evidence from clinical studies that closed-loop systems are effective with improved glycaemic outcomes, reduced hypoglycaemia and had positive end-user acceptance in children, adolescents, adults and pregnant women with Type 1 diabetes. We also present the outlook for future closed-loop systems in the treatment of Type 1 diabetes and identify the challenges facing the wide-spread clinical adoption of this technology.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Adolescente , Adulto , Glicemia/análise , Glicemia/efeitos dos fármacos , Automonitorização da Glicemia/efeitos adversos , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Criança , Feminino , Humanos , Sistemas de Infusão de Insulina/efeitos adversos , Sistemas de Infusão de Insulina/normas , Pâncreas Artificial/efeitos adversos , Pâncreas Artificial/normas , Gravidez , Gravidez em Diabéticas/sangue , Gravidez em Diabéticas/tratamento farmacológico , Resultado do Tratamento
5.
N Engl J Med ; 379(6): 547-556, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940126

RESUMO

BACKGROUND: In patients with diabetes, hospitalization can complicate the achievement of recommended glycemic targets. There is increasing evidence that a closed-loop delivery system (artificial pancreas) can improve glucose control in patients with type 1 diabetes. We wanted to investigate whether a closed-loop system could also improve glycemic control in patients with type 2 diabetes who were receiving noncritical care. METHODS: In this randomized, open-label trial conducted on general wards in two tertiary hospitals located in the United Kingdom and Switzerland, we assigned 136 adults with type 2 diabetes who required subcutaneous insulin therapy to receive either closed-loop insulin delivery (70 patients) or conventional subcutaneous insulin therapy, according to local clinical practice (66 patients). The primary end point was the percentage of time that the sensor glucose measurement was within the target range of 100 to 180 mg per deciliter (5.6 to 10.0 mmol per liter) for up to 15 days or until hospital discharge. RESULTS: The mean (±SD) percentage of time that the sensor glucose measurement was in the target range was 65.8±16.8% in the closed-loop group and 41.5±16.9% in the control group, a difference of 24.3±2.9 percentage points (95% confidence interval [CI], 18.6 to 30.0; P<0.001); values above the target range were found in 23.6±16.6% and 49.5±22.8% of the patients, respectively, a difference of 25.9±3.4 percentage points (95% CI, 19.2 to 32.7; P<0.001). The mean glucose level was 154 mg per deciliter (8.5 mmol per liter) in the closed-loop group and 188 mg per deciliter (10.4 mmol per liter) in the control group (P<0.001). There was no significant between-group difference in the duration of hypoglycemia (as defined by a sensor glucose measurement of <54 mg per deciliter; P=0.80) or in the amount of insulin that was delivered (median dose, 44.4 U and 40.2 U, respectively; P=0.50). No episode of severe hypoglycemia or clinically significant hyperglycemia with ketonemia occurred in either trial group. CONCLUSIONS: Among inpatients with type 2 diabetes receiving noncritical care, the use of an automated, closed-loop insulin-delivery system resulted in significantly better glycemic control than conventional subcutaneous insulin therapy, without a higher risk of hypoglycemia. (Funded by Diabetes UK and others; ClinicalTrials.gov number, NCT01774565 .).


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Idoso , Diabetes Mellitus Tipo 2/sangue , Feminino , Hospitalização , Humanos , Infusões Subcutâneas , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos
6.
Diabetes Care ; 41(8): 1572-1578, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29936422

RESUMO

As hybrid closed-loop (HCL) insulin delivery systems permeate clinical practice, it is critical to ensure all with diabetes are afforded the opportunity to benefit from this technology. Indeed, due to the suboptimal control achieved by the vast majority of youth with type 1 diabetes (T1D), pediatric patients are positioned to see the greatest benefit from automated insulin delivery systems. To ensure these systems are well poised to deliver the promise of more targeted control, it is essential to understand the unique characteristics and factors of childhood. Herein, the developmental and physiological needs of youth with T1D are reviewed and consideration is given to how HCL could address these issues. Studies of HCL technologies in youth are briefly reviewed. As future-generation closed-loop systems are being devised, features that could make this technology more attractive to youth and to their families are discussed. Integration of HCL has the potential to minimize the burden of this chronic medical condition while improving glycemic control and ultimately allowing our pediatric patients to fulfill the primary goal of childhood, to be a kid.


Assuntos
Desenvolvimento Infantil/fisiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Adolescente , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Criança , Diabetes Mellitus Tipo 1/psicologia , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Pâncreas Artificial/efeitos adversos , Qualidade de Vida/psicologia
7.
J Transl Med ; 16(1): 176, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954380

RESUMO

BACKGROUND: Type 1 diabetes (DM1) is one of the most common chronic diseases in childhood and requires life-long insulin therapy and continuous health care support. An artificial pancreas (AP) or closed-loop system (CLS) have been developed with the aim of improving metabolic control without increasing the risk of hypoglycaemia in patients with DM1. As the impact of APs have been studied mainly in adults, the aim of this review is to evaluate the efficacy and safety of the AP in the paediatric population with DM1. MAIN BODY: The real advantage of a CLS compared to last-generation sensor-augmented pumps is the gradual modulation of basal insulin infusion in response to glycaemic variations (towards both hyperglycaemia and hypoglycaemia), which has the aim of improving the proportion of time spent in the target glucose range and reducing the mean glucose level without increasing the risk of hypoglycaemia. Some recent studies demonstrated that also in children and adolescents an AP is able to reduce the frequency of hypoglycaemic events, an important limiting factor in reaching good metabolic control, particularly overnight. However, the advantages of the AP in reducing hyperglycaemia, increasing the time spent in the target glycaemic range and thus reducing glycated haemoglobin are less clear and require more clinical trials in the paediatric population, in particular in younger children. CONCLUSIONS: Although the first results from bi-hormonal CLS are promising, long-term, head-to-head studies will have to prove their superiority over insulin-only approaches. More technological progress, the availability of more fast-acting insulin, further developments of algorithms that could improve glycaemic control after meals and physical activity are the most important challenges in reaching an optimal metabolic control with the use of the AP in children and adolescents.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Pâncreas Artificial/efeitos adversos , Criança , Ensaios Clínicos como Assunto , Humanos , Resultado do Tratamento
8.
Diabetes Obes Metab ; 20(8): 2004-2008, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29577536

RESUMO

Glucose excursion was assessed prior to and post hypoglycaemia to increase understanding of hypoglycaemia incidence and recovery during hybrid closed-loop insulin delivery. We retrospectively analysed data from 60 adults with type 1 diabetes who received, in a crossover randomized design, day-and-night hybrid closed-loop insulin delivery and insulin pump therapy, the latter with or without real-time continuous glucose monitoring. Over 4-week study periods, we identified hypoglycaemic episodes, defined as sensor glucose <3.0 mmol/L, and analysed sensor glucose relative to the onset of hypoglycaemia. We identified 377 hypoglycaemic episodes during hybrid closed-loop intervention vs 662 during control intervention (P < .001), with a predominant reduction of nocturnal hypoglycaemia. The slope of sensor glucose prior to hypoglycaemia was steeper during closed-loop intervention than during control intervention (P < .01), while insulin delivery was reduced (P < .01). During both day and night, participants recovered from hypoglycaemia faster when treated by closed-loop intervention. At 120 minutes post hypoglycaemia, sensor glucose levels were higher during closed-loop intervention compared to the control period (P < .05). In conclusion, closed-loop intervention reduces the risk of hypoglycaemia, particularly overnight, with swift recovery from hypoglycaemia leading to higher 2-hour post-hypoglycaemia glucose levels.


Assuntos
Atividades Cotidianas , Diabetes Mellitus Tipo 1/terapia , Hipoglicemia/prevenção & controle , Pâncreas Artificial/efeitos adversos , Autogestão , Adulto , Glicemia/análise , Automonitorização da Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Hiperglicemia/prevenção & controle , Hipoglicemia/epidemiologia , Hipoglicemia/etiologia , Hipoglicemia/terapia , Incidência , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Monitorização Ambulatorial , Estudos Retrospectivos , Risco , Fatores de Tempo
9.
J Diabetes Sci Technol ; 12(3): 599-607, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29390915

RESUMO

BACKGROUND: As evidence emerges that artificial pancreas systems improve clinical outcomes for patients with type 1 diabetes, the burden of this disease will hopefully begin to be alleviated for many patients and caregivers. However, reliance on automated insulin delivery potentially means patients will be slower to act when devices stop functioning appropriately. One such scenario involves an insulin infusion site failure, where the insulin that is recorded as delivered fails to affect the patient's glucose as expected. Alerting patients to these events in real time would potentially reduce hyperglycemia and ketosis associated with infusion site failures. METHODS: An infusion site failure detection algorithm was deployed in a randomized crossover study with artificial pancreas and sensor-augmented pump arms in an outpatient setting. Each arm lasted two weeks. Nineteen participants wore infusion sets for up to 7 days. Clinicians contacted patients to confirm infusion site failures detected by the algorithm and instructed on set replacement if failure was confirmed. RESULTS: In real time and under zone model predictive control, the infusion site failure detection algorithm achieved a sensitivity of 88.0% (n = 25) while issuing only 0.22 false positives per day, compared with a sensitivity of 73.3% (n = 15) and 0.27 false positives per day in the SAP arm (as indicated by retrospective analysis). No association between intervention strategy and duration of infusion sets was observed ( P = .58). CONCLUSIONS: As patient burden is reduced by each generation of advanced diabetes technology, fault detection algorithms will help ensure that patients are alerted when they need to manually intervene. Clinical Trial Identifier: www.clinicaltrials.gov,NCT02773875.


Assuntos
Algoritmos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Pâncreas Artificial/efeitos adversos , Adulto , Estudos Cross-Over , Cetoacidose Diabética/etiologia , Cetoacidose Diabética/prevenção & controle , Falha de Equipamento , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade
10.
Diabetes Obes Metab ; 20(2): 245-256, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28675686

RESUMO

For patients with type 1 diabetes, closed-loop delivery systems (CLS) combining an insulin pump, a glucose sensor and a dosing algorithm allowing a dynamic hormonal infusion have been shown to improve glucose control when compared with conventional therapy. Yet, reducing glucose excursion and simplification of prandial insulin doses remain a challenge. The objective of this literature review is to examine current meal-time strategies in the context of automated delivery systems in adults and children with type 1 diabetes. Current challenges and considerations for post-meal glucose control will also be discussed. Despite promising results with meal detection, the fully automated CLS has yet failed to provide comparable glucose control to CLS with carbohydrate-matched bolus in the post-meal period. The latter strategy has been efficient in controlling post-meal glucose using different algorithms and in various settings, but at the cost of a meal carbohydrate counting burden for patients. Further improvements in meal detection algorithms or simplified meal-priming boluses may represent interesting avenues. The greatest challenges remain in regards to the pharmacokinetic and dynamic profiles of available rapid insulins as well as sensor accuracy and lag-time. New and upcoming faster acting insulins could provide important benefits. Multi-hormone CLS (eg, dual-hormone combining insulin with glucagon or pramlintide) and adjunctive therapy (eg, GLP-1 and SGLT2 inhibitors) also represent promising options. Meal glucose control with the artificial pancreas remains an important challenge for which the optimal strategy is still to be determined.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/terapia , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Refeições , Pâncreas Artificial , Adulto , Algoritmos , Criança , Terapia Combinada/efeitos adversos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/dietoterapia , Dieta para Diabéticos , Humanos , Hipoglicemia/etiologia , Pâncreas Artificial/efeitos adversos , Pâncreas Artificial/tendências , Período Pós-Prandial
11.
J Diabetes Sci Technol ; 11(6): 1096-1100, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28992720

RESUMO

BACKGROUND: Glucose values of continuous glucose monitoring (CGM) have time delays compared with plasma glucose (PG) values. The artificial pancreas (STG-55, Nikkiso, Japan) (AP), which measures venous blood glucose directly, also has a time delay because of the long tubing lines from sampling vessel to the glucose sensor. We investigate accuracy and time delay of CGM and AP in comparison with PG values during 2-step glucose clamp study. METHODS: Seven patients with type 2 diabetes and 2 healthy volunteers were included in this study. CGM (Enlite sensor, Medtronic, Northridge, CA, USA) was attached on the day before the experiment. Hyperglycemic (200 mg/dL) clamp was performed for 90 minutes, followed by euglycemic (100 mg/dL) hyperinsulinemic (100 µU/mL) clamp for 90-120 minutes using AP. CGM sensor glucose was calibrated just before and after the clamp study. AP and CGM values were compared with PG values. RESULTS: AP values were significantly lower than PG values at 5, 30 minute during hyperglycemic clamp. In comparison, CGM value at 0 minute was significantly higher, and its following values were almost significantly lower than PG values. The time delay of AP and CGM values to reach maximum glucose levels were 5.0 ± 22.3 (NS) and 28.6 ± 32.5 ( P < .05) min, respectively. Mean absolute rate difference of CGM was significantly higher than AP (24.0 ± 7.6 vs 15.3 ± 4.6, P < .05) during glucose rising period (0-45 min); however, there were no significant differences during other periods. CONCLUSIONS: Both CGM and AP failed to follow plasma glucose values during nonphysiologically rapid glucose rising, but indicated accurate values during physiological glucose change.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Técnica Clamp de Glucose , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Monitorização Ambulatorial/métodos , Pâncreas Artificial , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
12.
IEEE Rev Biomed Eng ; 10: 44-62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880188

RESUMO

The artificial pancreas (AP) is a closed-loop device with the potential to reduce the complications associated with type 1 diabetes mellitus by maintaining euglycemia in patients. The AP encompasses an algorithm that determines the amount of insulin (and other hormones) to be administered to the patient via a continuous subcutaneous insulin infusion pump using information provided by a continuous glucose monitor and other sensors. As the AP approaches commercialization, special attention must be given to safety within all the individual components, including physiological changes in the patient, as well as safety issues that can arise when these components are combined into a single system. Therefore, we analyzed the specific hazards applicable to the AP with the aim of exposing areas of safety that are yet to be addressed.


Assuntos
Pâncreas Artificial/efeitos adversos , Automonitorização da Glicemia , Glucagon/administração & dosagem , Guias como Assunto , Humanos , Injeções Subcutâneas , Sistemas de Infusão de Insulina
13.
Diabetes Technol Ther ; 19(11): 660-674, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28854339

RESUMO

BACKGROUND: Artificial pancreas (AP) systems have initially been designed for and tested in teens and adults, but there is evidence that an AP system with additional support and safety systems could greatly benefit younger children with type 1 diabetes (T1D). SUBJECTS AND METHODS: Five pediatric endocrinologists and 15 parents of children aged 5-8 years with T1D participated in a total of four focus groups. Focus groups investigated current diabetes technology use and acceptance, as well as possible modifications to the current adult AP system, which would allow for safe and successful use in younger children. Modifications discussed include child-specific functionality for input tasks, safety features, and monitoring capabilities. RESULTS: Participant suggestions included the following: passcodes for differential access to AP features by parents, ancillary caregivers, and the child; preset early, intermediate, and advanced child access categories; maximal customization for general and alarm settings; simplified meal screens utilizing the AP' corrective blood glucose (BG) ability; automated exercise mode; spoken and dictated messaging capabilities; emergency contacts; treatment instructions for the child and caregiver; remote monitoring website and application; animated continuous glucose monitor BG trace; gamification, such as rewarding diabetes-friendly behaviors; and comprehensive training of all individuals involved in the child's diabetes care. CONCLUSION: Parents and physicians were eager for AP applications to be available for younger children, but stressed that a modified system could better serve this group's needs for safety and improved diabetes-related communication. The diverse and emerging needs of 5-8-year olds require flexible and customizable systems for T1D management.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Pâncreas Artificial/efeitos adversos , Criança , Pré-Escolar , Feminino , Grupos Focais , Humanos , Sistemas de Infusão de Insulina , Masculino , Melhoria de Qualidade
14.
Diabetes Technol Ther ; 19(9): 527-532, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28767276

RESUMO

OBJECTIVE: A fully closed-loop insulin-only system was developed to provide glucose control in patients with type 1 diabetes without requiring announcement of meals or activity. Our goal was to assess initial safety and efficacy of this system. RESEARCH DESIGN AND METHODS: The multiple model probabilistic controller (MMPPC) anticipates meals when the patient is awake. The controller used the subject's basal rates and total daily insulin dose for initialization. The system was tested at two sites on 10 patients in a 30-h inpatient study, followed by 15 subjects at three sites in a 54-h supervised hotel study, where the controller was challenged by exercise and unannounced meals. The system was implemented on the UVA DiAs system using a Roche Spirit Combo Insulin Pump and a Dexcom G4 Continuous Glucose Monitor. RESULTS: The mean overall (24-h basis) and nighttime (11 PM-7 AM) continuous glucose monitoring (CGM) values were 142 and 125 mg/dL during the inpatient study. The hotel study used a different daytime tuning and manual announcement, instead of automatic detection, of sleep and wake periods. This resulted in mean overall (24-h basis) and nighttime CGM values of 152 and 139 mg/dL for the hotel study and there was also a reduction in hypoglycemia events from 1.6 to 0.91 events/patient/day. CONCLUSIONS: The MMPPC system achieved a mean glucose that would be particularly helpful for people with an elevated A1c as a result of frequent missed meal boluses. Current full closed loop has a higher risk for hypoglycemia when compared with algorithms using meal announcement.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Refeições , Pâncreas Artificial/efeitos adversos , Acelerometria , Atividades Cotidianas , Adulto , Algoritmos , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Exercício Físico , Estudos de Viabilidade , Feminino , Seguimentos , Hospitalização , Humanos , Hipoglicemia/epidemiologia , Hipoglicemia/etiologia , Masculino , Teste de Materiais , Risco , Lanches , Estados Unidos/epidemiologia , Adulto Jovem
15.
J Diabetes Sci Technol ; 11(6): 1112-1123, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28728434

RESUMO

BACKGROUND: Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. METHODS: The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. RESULTS: The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. CONCLUSIONS: The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/economia , Custos de Medicamentos , Glucagon/administração & dosagem , Glucagon/economia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/economia , Sistemas de Infusão de Insulina/economia , Insulina/administração & dosagem , Insulina/economia , Pâncreas Artificial/economia , Algoritmos , Biomarcadores/sangue , Glicemia/metabolismo , Automonitorização da Glicemia/economia , Simulação por Computador , Redução de Custos , Análise Custo-Benefício , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Glucagon/efeitos adversos , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Modelos Biológicos , Modelos Econômicos , Pâncreas Artificial/efeitos adversos , Período Pós-Prandial , Valor Preditivo dos Testes , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Resultado do Tratamento
16.
Diabetes Technol Ther ; 19(6): 340-348, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28574723

RESUMO

BACKGROUND: We aimed to compare closed-loop glucose control for people with type 1 diabetes undertaking high-intensity interval exercise (HIIE) versus moderate-intensity exercise (MIE). METHODS: Adults with type 1 diabetes established on insulin pumps undertook HIIE and MIE stages in random order during automated insulin delivery via a closed-loop system (Medtronic). Frequent venous sampling for glucose, lactate, ketones, insulin, catecholamines, cortisol, growth hormone, and glucagon levels was performed. The primary outcome was plasma glucose <4.0 mmol/L for ≥15 min, from exercise commencement to 120 min postexercise. Secondary outcomes included continuous glucose monitoring and biochemical parameters. RESULTS: Twelve adults (age mean ± standard deviation 40 ± 13 years) were recruited; all completed the study. Plasma glucose of one participant fell to 3.4 mmol/L following MIE completion; no glucose levels were <4.0 mmol/L for HIIE (primary outcome). There were no glucose excursions >15.0 mmol/L for either stage. Mean (±standard error) plasma glucose did not differ between stages pre-exercise; was higher during exercise in HIIE than MIE (11.3 ± 0.5 mmol/L vs. 9.7 ± 0.6 mmol/L, respectively; P < 0.001); and remained higher until 60 min postexercise. There were no differences in circulating free insulin before, during, or postexercise. During HIIE compared with MIE, there were greater increases in lactate (P < 0.001), catecholamines (all P < 0.05), and cortisol (P < 0.001). Ketones increased more with HIIE than MIE postexercise (P = 0.031). CONCLUSIONS: Preliminary findings suggest that closed-loop glucose control is safe for people undertaking HIIE and MIE. However, the management of the postexercise rise in ketones secondary to counter-regulatory hormone-induced insulin resistance observed with HIIE may represent a challenge for closed-loop systems.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Exercício Físico , Treinamento Intervalado de Alta Intensidade , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Pâncreas Artificial , Adulto , Biomarcadores/sangue , Glicemia , Terapia Combinada/efeitos adversos , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Hemoglobina A Glicada/análise , Treinamento Intervalado de Alta Intensidade/efeitos adversos , Humanos , Resistência à Insulina , Corpos Cetônicos/sangue , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos , Vitória
17.
Diabetes Obes Metab ; 19(12): 1698-1705, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28474383

RESUMO

AIMS: To compare intraperitoneal (IP) to subcutaneous (SC) insulin delivery in an artificial pancreas (AP). RESEARCH DESIGN AND METHODS: Ten adults with type 1 diabetes participated in a non-randomized, non-blinded sequential AP study using the same SC glucose sensing and Zone Model Predictive Control (ZMPC) algorithm adjusted for insulin clearance. On first admission, subjects underwent closed-loop control with SC delivery of a fast-acting insulin analogue for 24 hours. Following implantation of a DiaPort IP insulin delivery system, the identical 24-hour trial was performed with IP regular insulin delivery. The clinical protocol included 3 unannounced meals with 70, 40 and 70 g carbohydrate, respectively. Primary endpoint was time spent with blood glucose (BG) in the range of 80 to 140 mg/dL (4.4-7.7 mmol/L). RESULTS: Percent of time spent within the 80 to 140 mg/dL range was significantly higher for IP delivery than for SC delivery: 39.8 ± 7.6 vs 25.6 ± 13.1 ( P = .03). Mean BG (mg/dL) and percent of time spent within the broader 70 to 180 mg/dL range were also significantly better for IP insulin: 151.0 ± 11.0 vs 190.0 ± 31.0 ( P = .004) and 65.7 ± 9.2 vs 43.9 ± 14.7 ( P = .001), respectively. Superiority of glucose control with IP insulin came from the reduced time spent in hyperglycaemia (>180 mg/dL: 32.4 ± 8.9 vs 53.5 ± 17.4, P = .014; >250 mg/dL: 5.9 ± 5.6 vs 23.0 ± 11.3, P = .0004). Higher daily doses of insulin (IU) were delivered with the IP route (43.7 ± 0.1 vs 32.3 ± 0.1, P < .001) with no increased percent time spent <70 mg/dL (IP: 2.5 ± 2.9 vs SC: 4.1 ± 5.3, P = .42). CONCLUSIONS: Glycaemic regulation with fully-automated AP delivering IP insulin was superior to that with SC insulin delivery. This pilot study provides proof-of-concept for an AP system combining a ZMPC algorithm with IP insulin delivery.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina Lispro/administração & dosagem , Pâncreas Artificial , Adulto , Algoritmos , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Feminino , França , Hemoglobina A Glicada/análise , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Infusões Parenterais , Infusões Subcutâneas , Sistemas de Infusão de Insulina/efeitos adversos , Insulina Lispro/efeitos adversos , Insulina Lispro/uso terapêutico , Insulina Regular Humana/administração & dosagem , Insulina Regular Humana/efeitos adversos , Insulina Regular Humana/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos , Projetos Piloto , Estudo de Prova de Conceito
18.
Diabetes Technol Ther ; 19(6): 355-362, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459603

RESUMO

BACKGROUND: Postprandial (PP) control remains a challenge for closed-loop (CL) systems. Few studies with inconsistent results have systematically investigated the PP period. OBJECTIVE: To compare a new CL algorithm with current pump therapy (open loop [OL]) in the PP glucose control in type 1 diabetes (T1D) subjects. METHODS: A crossover randomized study was performed in two centers. Twenty T1D subjects (F/M 13/7, age 40.7 ± 10.4 years, disease duration 22.6 ± 9.9 years, and A1c 7.8% ± 0.7%) underwent an 8-h mixed meal test on four occasions. In two (CL1/CL2), after meal announcement, a bolus was given followed by an algorithm-driven basal infusion based on continuous glucose monitoring (CGM). Alternatively, in OL1/OL2 conventional pump therapy was used. Main outcome measures were as follows: glucose variability, estimated with the coefficient of variation (CV) of the area under the curve (AUC) of plasma glucose (PG) and CGM values, and from the analysis of the glucose time series; mean, maximum (Cmax), and time to Cmax glucose concentrations and time in range (<70, 70-180, >180 mg/dL). RESULTS: CVs of the glucose AUCs were low and similar in all studies (around 10%). However, CL achieved greater reproducibility and better PG control in the PP period: CL1 = CL2 0.05) nor the need for oral glucose was significantly different (CL 40.0% vs. OL 22.5% of meals; P = 0.054). CONCLUSIONS: This novel CL algorithm effectively and consistently controls PP glucose excursions without increasing hypoglycemia. Study registered at ClinicalTrials.gov : study number NCT02100488.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/terapia , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Pâncreas Artificial , Adulto , Algoritmos , Área Sob a Curva , Automonitorização da Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Estudos de Viabilidade , Feminino , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/etiologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/efeitos adversos , Insulina/uso terapêutico , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos , Período Pós-Prandial , Espanha
19.
Diabetes Technol Ther ; 19(6): 331-339, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459617

RESUMO

BACKGROUND: The artificial pancreas (AP) has the potential to improve glycemic control in adolescents. This article presents the first evaluation in adolescents of the Zone Model Predictive Control and Health Monitoring System (ZMPC+HMS) AP algorithms, and their first evaluation in a supervised outpatient setting with frequent exercise. MATERIALS AND METHODS: Adolescents with type 1 diabetes underwent 3 days of closed-loop control (CLC) in a hotel setting with the ZMPC+HMS algorithms on the Diabetes Assistant platform. Subjects engaged in twice-daily exercise, including soccer, tennis, and bicycling. Meal size (unrestricted) was estimated and entered into the system by subjects to trigger a bolus, but exercise was not announced. RESULTS: Ten adolescents (11.9-17.7 years) completed 72 h of CLC, with data on 95 ± 14 h of sensor-augmented pump (SAP) therapy before CLC as a comparison to usual therapy. The percentage of time with continuous glucose monitor (CGM) 70-180 mg/dL was 71% ± 10% during CLC, compared to 57% ± 16% during SAP (P = 0.012). Nocturnal control during CLC was safe, with 0% (0%, 0.6%) of time with CGM <70 mg/dL compared to 1.1% (0.0%, 14%) during SAP. Despite large meals (estimated up to 120 g carbohydrate), only 8.0% ± 6.9% of time during CLC was spent with CGM >250 mg/dL (16% ± 14% during SAP). The system remained connected in CLC for 97% ± 2% of the total study time. No adverse events or severe hypoglycemia occurred. CONCLUSIONS: The use of the ZMPC+HMS algorithms is feasible in the adolescent outpatient environment and achieved significantly more time in the desired glycemic range than SAP in the face of unannounced exercise and large announced meal challenges.


Assuntos
Comportamento do Adolescente , Fenômenos Fisiológicos da Nutrição do Adolescente , Diabetes Mellitus Tipo 1/terapia , Exercício Físico , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Pâncreas Artificial , Atividades Cotidianas , Adolescente , Algoritmos , Criança , Comportamento Infantil , Fenômenos Fisiológicos da Nutrição Infantil , Estudos de Coortes , Terapia Combinada , Diabetes Mellitus Tipo 1/sangue , Estudos de Viabilidade , Feminino , Preferências Alimentares , Humanos , Masculino , Pâncreas Artificial/efeitos adversos , Esportes , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA