Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.631
Filtrar
1.
Chem Biol Interact ; 311: 108794, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31421115

RESUMO

Acanthoic acid (AA) is a pimaradiene diterpene isolated from Acanthopanax koreanum Nakai (Araliaceae), with anti-inflammatory and hepatic-protective effects. The present study intended to reveal the effect and mechanism of AA on nonalcoholic fatty liver disease (NAFLD) associated with lipid accumulation by activating Farnesoid X receptor (FXR) and liver X receptors (LXRs) signaling. C57BL/6 mice were received a modified Lieber-DeCarli diet with 71% high-fat (L-D) and treated with AA (20 and 40 mg/kg) or equal volume of saline for 12 weeks. The regulation of AA on lipid accumulation was also detected in pro-steatotic stimulated AML12 cells with palmitic acid (PA). When L-D diet-fed mice were treated with AA, loss in body weight, liver index, and liver lipid droplet were observed along with reduced triglyceride (TG) and serum transaminase. Furthermore, AA decreased sterol regulatory element binding protein 1 (SREBP-1) and target genes expression, regulated PPARα and PPARγ expressions, ameliorated hepatic fibrosis markers, enhanced hepatic FXR and LXR, and regulated AMPK-LKB1 and SIRT1 signaling pathway. Moreover, AA attenuated lipid accumulation via FXR and LXR activation in steatotic AML-12 cells, which was confirmed by guggulsterones (FXR antagonist) or GW3965 (LXR agonist). Activation of FXR and LXR signaling caused by AA might increase AMPK-SIRT1 signaling and then contribute to modulating lipid accumulation and fatty acid synthesis, which suggested that activated FXR-LXR axis by AA represented an effective strategy for relieving NAFLD.


Assuntos
Diterpenos/farmacologia , Lipogênese/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Dieta Hiperlipídica , Diterpenos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores X do Fígado/agonistas , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/genética , PPAR alfa/metabolismo , Ácido Palmítico/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue
2.
Cancer Sci ; 110(10): 3328-3339, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31429167

RESUMO

Apatinib, an antiangiogenic agent, shows efficient antitumor activity in a broad range of malignancies. Considering tumor is a type of metabolic disease, we investigated the metabolomics changes in serum and tumor after apatinib treatment and the molecular mechanism of characteristic changes associated with its antitumor efficacy. Molecules in serum and tumor tissue were extracted and analyzed by a gas chromatography-mass spectrometry metabolic platform. Apatinib significantly inhibited e tumor growth and alleviated metabolic rearrangement in both serum and tumor of A549 xenograft mice. Among these endogenous metabolites, 3-hydroxybutyric acid (3-HB) was significantly increased in serum, tumor and liver after apatinib treatment. Interestingly, giving exogenous 3-HB also inhibited tumor growth. Gene expression, dual luciferase reporter gene assay and molecular docking analysis all indicated that apatinib could induce 3-HB production through the dependent activation of peroxisome proliferator-activated receptor α (PPARα) and promotion of fatty acid utilization in the liver. Therefore, increased content of 3-HB induced by PPARα activation in the liver partially contributed to the antitumor effect of apatinib. It may provide clues to another potential mechanism underlying the antitumor effect of apatinib besides its antiangiogenic effect through inhibiting vascular endothelial growth factor receptor 2.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , PPAR alfa/genética , Piridinas/administração & dosagem , Células A549 , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Metabolômica/métodos , Camundongos , Piridinas/farmacologia , Ativação Transcricional , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Agric Food Chem ; 67(31): 8485-8492, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31304752

RESUMO

How short-chain fatty acids (FAs) affect cell membrane morphology and milk fat biosynthesis in mammary epithelial cells (MECs) is yet unclear. This study investigated the primary bovine MEC response to different FAs. We observed that the cell surface ultrastructures were influenced by chain length and degree of saturability of FAs. The CD36, FATP1, and FABP3 gene expression was affected independent of the type of FA. FASN, LPIN1, PPARα, and PPARγ transcripts were more sensitive to the short-chain FAs (acetic and ß-hydroxybutyric acids). Furthermore, short-chain FAs inclined to regulate FA degradation-, elongation-, and metabolism-associated pathways, while long-chain FAs (stearic and trans-10,cis-12 conjugated linolenic acids) modulated extracellular matrix-receptor interaction-, transcriptional misregulation-, microRNA-, and ribosome biogenesis-related pathways. However, triacylglycerol accumulation in the cytoplasm was not changed by all of the FAs. Overall, FAs with different chain lengths and degrees of saturability could differentially alter primary bovine MEC cell morphology and influence protein profiles involved in milk fat synthesis pathways.


Assuntos
Bovinos/metabolismo , Células Epiteliais/metabolismo , Gorduras/metabolismo , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Bovinos/genética , Gorduras/química , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Feminino , Glândulas Mamárias Animais/citologia , Leite/química , PPAR alfa/genética , PPAR alfa/metabolismo , Triglicerídeos/metabolismo
4.
Environ Health Prev Med ; 24(1): 47, 2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31279339

RESUMO

The plasticizer di(2-ethylhexyl) phthalate (DEHP) has been widely used in the manufacture of polyvinyl chloride-containing products such as medical and consumer goods. Humans can easily be exposed to it because DEHP is ubiquitous in the environment. Recent research on the adverse effects of DEHP has focused on reproductive and developmental toxicity in rodents and/or humans. DEHP is a representative of the peroxisome proliferators. Therefore, peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways are the expected mode of action of several kinds of DEHP-induced toxicities. In this review, we summarize DEHP kinetics and its mechanisms of carcinogenicity and reproductive and developmental toxicity in relation to PPARα. Additionally, we give an overview of the impacts of science policy on exposure sources.


Assuntos
Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , PPAR alfa/genética , Plastificantes/toxicidade , Animais , Haplorrinos , Humanos , Camundongos , PPAR alfa/metabolismo , Ratos
5.
Gastroenterology ; 157(3): 744-759.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31154022

RESUMO

BACKGROUND & AIMS: Many genetic and environmental factors, including family history, dietary fat, and inflammation, increase risk for colon cancer development. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that regulates systemic lipid homeostasis. We explored the role of intestinal PPARα in colon carcinogenesis. METHODS: Colon cancer was induced in mice with intestine-specific disruption of Ppara (PparaΔIE), Pparafl/fl (control), and mice with disruption of Ppara that express human PPARA (human PPARA transgenic mice), by administration of azoxymethane with or without dextran sulfate sodium (DSS). Colons were collected from mice and analyzed by immunoblots, quantitative polymerase chain reaction, and histopathology. Liquid chromatography coupled with mass spectrometry-based metabolomic analyses were performed on urine and colons. We used molecular biology and biochemical approaches to study mechanisms in mouse colons, primary intestinal epithelial cells, and colon cancer cell lines. Gene expression data and clinical features of patients with colorectal tumors were obtained from Oncomine, and human colorectal-tumor specimens and adjacent normal tissues were collected and analyzed by immunohistochemistry. RESULTS: Levels of Ppara messenger RNA were reduced in colon tumors from mice. PparaΔIE mice developed more and larger colon tumors than control mice following administration of azoxymethane, with or without DSS. Metabolomic analyses revealed increases in methylation-related metabolites in urine and colons from PparaΔIE mice, compared with control mice, following administration of azoxymethane, with or without DSS. Levels of DNA methyltransferase 1 (DNMT1) and protein arginine methyltransferase 6 (PRMT6) were increased in colon tumors from PparaΔIE mice, compared with colon tumors from control mice. Depletion of PPARα reduced the expression of retinoblastoma protein, resulting in increased expression of DNMT1 and PRMT6. DNMT1 and PRMT6 decreased expression of the tumor suppressor genes Cdkn1a (P21) and Cdkn1b (p27) via DNA methylation and histone H3R2 dimethylation-mediated repression of transcription, respectively. Fenofibrate protected human PPARA transgenic mice from azoxymethane and DSS-induced colon cancer. Human colon adenocarcinoma specimens had lower levels of PPARA and retinoblastoma protein and higher levels of DNMT1 and PRMT6 than normal colon tissues. CONCLUSIONS: Loss of PPARα from the intestine promotes colon carcinogenesis by increasing DNMT1-mediated methylation of P21 and PRMT6-mediated methylation of p27 in mice. Human colorectal tumors have lower levels of PPARA messenger RNA and protein than nontumor tissues. Agents that activate PPARα might be developed for chemoprevention or treatment of colon cancer.


Assuntos
Adenocarcinoma/prevenção & controle , Colo/enzimologia , Neoplasias do Colo/prevenção & controle , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Anticarcinógenos/farmacologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Bases de Dados Genéticas , Modelos Animais de Doenças , Fenofibrato/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , PPAR alfa/agonistas , PPAR alfa/deficiência , PPAR alfa/genética , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais
6.
Gene ; 711: 143947, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31252163

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) include the nuclear receptor superfamily of ligand-activated transcription factors involved in several metabolic processes, including carbohydrate and lipid metabolism. MATERIAL AND METHODS: In this study we examined PPARA: rs4253778, rs1800206, PPARD: rs2267668, rs2016520, rs1053049, PPARG rs1801282 and PPARGC1A rs8192678 polymorphisms in patients with unstable angina. This study included 246 patients with unstable angina confirmed by coronary angiography (defined by >70% stenosis in at least one major coronary artery) and 189 healthy controls. RESULTS: We observed statistically significant difference in distribution of PPARG rs1801282 genotypes and alleles between patients and control group. Among patients there was the increased frequency of CG and GG genotypes and G alleles. The association between PPARG rs1801282 G allele and unstable angina was confirmed in multivariate regression analysis. There were no statistically significant differences in the distributions of other studied polymorphisms between patients with unstable angina and the control group. CONCLUSIONS: The results of our study suggest the association between PPARG rs1801282 G allele and unstable angina in Polish population.


Assuntos
Angina Instável/genética , PPAR alfa/genética , PPAR delta/genética , PPAR gama/genética , Polimorfismo de Nucleotídeo Único , Idoso , Alelos , Angina Instável/diagnóstico por imagem , Estudos de Casos e Controles , Angiografia Coronária , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Polônia
7.
J Dairy Sci ; 102(8): 7536-7547, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31178189

RESUMO

High blood concentrations of nonesterified fatty acids (NEFA) and altered lipid metabolism are key characteristics of fatty liver in dairy cows. In nonruminants, the mitochondrial membrane protein mitofusin 2 (MFN2) plays important roles in regulating mitochondrial function and intrahepatic lipid metabolism. Whether MFN2 is associated with hepatic lipid metabolism in dairy cows with moderate fatty liver is unknown. Therefore, to investigate changes in MFN2 expression and lipid metabolic status in dairy cows with moderate fatty liver, blood and liver samples were collected from healthy dairy cows (n = 10) and cows with moderate fatty liver (n = 10). To determine the effects of MFN2 on lipid metabolism in vitro, hepatocytes isolated from healthy calves were used for small interfering RNA-mediated silencing of MFN2 or adenovirus-mediated overexpression of MFN2 for 48 h, or treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 12 h. Milk production and plasma glucose concentrations in dairy cows with moderate fatty liver were lower, but concentrations of NEFA and ß-hydroxybutyrate (BHB) were greater in dairy cows with moderate fatty liver. Dairy cows with moderate fatty liver displayed hepatic lipid accumulation and lower abundance of hepatic MFN2, peroxisome proliferator-activated receptor-α (PPARα), and carnitine palmitoyltransferase 1A (CPT1A). However, sterol regulatory element-binding protein 1c (SREBP-1c), acetyl CoA carboxylase 1 (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1) were more abundant in the livers of dairy cows with moderate fatty liver. In vitro, exogenous NEFA treatment upregulated abundance of SREBP-1c, ACACA, FASN, and DGAT1, and downregulated the abundance of PPARα and CPT1A. These changes were associated with greater lipid accumulation in calf hepatocytes, and MFN2 silencing aggravated this effect. In contrast, overexpression of MFN2-ameliorated exogenous NEFA-induced lipid accumulation by downregulating the abundance of SREBP-1c, ACACA, FASN, and DGAT1, and upregulating the abundance of PPARα and CPT1A in calf hepatocytes. Overall, these data suggest that one cause for the negative effect of excessive NEFA on hepatic lipid accumulation is the inhibition of MFN2. As such, these mechanisms partly explain the development of hepatic steatosis in dairy cows.


Assuntos
Doenças dos Bovinos/metabolismo , Bovinos/metabolismo , Fígado Gorduroso/veterinária , GTP Fosfo-Hidrolases/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Animais , Bovinos/genética , Doenças dos Bovinos/enzimologia , Doenças dos Bovinos/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , GTP Fosfo-Hidrolases/genética , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
J Food Sci ; 84(7): 1900-1908, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31183867

RESUMO

The quality of canola oil is affected by different extraction methods. The effect of cold-pressed canola oil (CPCO) diet and traditional refined bleached deodorized canola oil (RBDCO) diet on lipid accumulation and hepatic steatosis in mice were investigated. The body weight, peroxisome proliferator-activated receptor-α concentration, serum lipid profile, insulin sensitivity, and oxidative stress were increased in mice fed with CPCO diet, which had higher unsaturated fatty acid, tocopherols, phytosterols, and phospholipids but lower saturated fatty acid than RBDCO, after 12 weeks,. Moreover, CPCO significantly increased tocopherols and phytosterols content in liver and reduced liver cholesterol contents and lipid vacuoles accumulation than RBDCO. Also, serum proinflammatory cytokines, 3-hydroxy-3-methylglutary coenzyme A reductase expression level, lipogenic enzymes, and transcriptional factors such as sterol regulatory element-binding proteins 1c, acetyl-CoA carboxylase, and fatty acid synthase in the liver were also markedly downregulated from CPCO diet mice. Overall, CPCO can reduce lipid accumulation and hepatic steatosis by regulating oxidative stress and lipid metabolism in Kun Ming mice compared with RBDCO. PRACTICAL APPLICATION: The results suggested that more bioactive components were contained in cold-pressed canola oil (CPCO) rather than refined bleached deodorized canola oil (RBDCO). CPCO could lower the risk of obesity and hyperlipidemia, reduce lipid accumulation, and prevent hepatic steatosis. It could be considered as a kind of better edible oil than RBDCO.


Assuntos
Fígado Gorduroso/dietoterapia , Metabolismo dos Lipídeos , Estresse Oxidativo , Óleo de Brassica napus/química , Óleo de Brassica napus/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Colesterol/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/análise , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Humanos , Resistência à Insulina , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfolipídeos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
9.
BMC Complement Altern Med ; 19(1): 144, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226981

RESUMO

BACKGROUND: Moringa oleifera, also known as horseradish tree or drumstick tree, has strong antioxidant properties. In the present study, we investigated the potential effect of Moringa oleifera stem extract (MOSE) on cataract formation induced by oxidative stress in cultured mouse lenses. METHODS: Mouse lenses cultured in vitro were pretreated with MOSE (0.5 and 1 mg/mL) for 24 h. Then, 1 mM hydrogen peroxide was added, and mouse lenses were cultured for a further 24 h. The medium was then changed to normal culture medium. After 48 h, lens opacification, reactive oxygen species (ROS) generation, reduced glutathione (GSH) content, and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in lens tissues. In addition, the protein expression of peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor with potential benefits to improve vision-threatening eye diseases, was assayed. RESULTS: MOSE (1 mg/mL) alleviated lens opacification, reduced ROS generation, increased GSH content, and elevated SOD and CAT activities in cultured lenses. Moreover, MOSE upregulated the expressions of SOD, CAT, and PPARα. CONCLUSIONS: This study showed that MOSE alleviates oxidative stress-induced cataract formation, and the mechanism of the effect is mainly related to its improvement of the endogenous antioxidant system in the lens.


Assuntos
Catarata/tratamento farmacológico , Cristalino/efeitos dos fármacos , Moringa oleifera/química , Extratos Vegetais/administração & dosagem , Animais , Catalase/genética , Catalase/metabolismo , Catarata/induzido quimicamente , Glutationa/genética , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/efeitos adversos , Cristalino/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Fish Shellfish Immunol ; 90: 244-249, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31029776

RESUMO

Adipose tissue plays an important role in energy reservation, also be considered as vital immunological organ in animals. Adipocytes are the basic unit of adipose tissue, while little is known about the relationship between lipid metabolism and inflammatory response in fish adipocytes so far. In this study, forskolin was used to induce adipocyte lipolysis, and 5 µM forskolin and 30 µM forskolin both triggered lipolysis by increasing ATGL expression. Consequently, 30 µM Forskolin instead of 5 µM Forskolin induced the expression of NF-κB and its target pro-inflammatory cytokine genes including MCP-1, IL-6 and TNF-α. Further study found that low grade rate of lipolysis activated PPARα gene, and its inhibitory effect on the mRNA expression of NF-κB and its target genes inhibited the adipocyte inflammation. On the contrary, high grade rate of lipolysis increased the expression levels of NF-κB and its target genes, while their expression were attenuated by inhibition of reactive oxygen species (ROS) using α-tocopherol, suggesting that ROS generated due to the PPARα-mediated oxidation of released fatty acids from lipolysis may contribute to adipocyte inflammation. These results indicated that PPARα has dose effect in inflammatory responses to adipocyte lipolysis in grass carp. Taken together, grass carp adipocytes have immune activity. The inflammatory response is linked to the grade rate of adipocyte lipolysis in grass carp adipocytes, and excessive adipocyte lipolysis may promote a dynamic immune response in adipose tissue. This is the first study showing the regulatory effects of lipolysis on immune functions in fish adipocytes.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Imunidade Inata/genética , Lipólise/imunologia , Transdução de Sinais/imunologia , Adipócitos/imunologia , Animais , Colforsina/farmacologia , Citocinas/genética , Citocinas/imunologia , Relação Dose-Resposta a Droga , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/genética , Proteínas de Peixes/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , PPAR alfa/genética , PPAR alfa/imunologia
11.
Mol Med Rep ; 19(6): 4673-4684, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30957185

RESUMO

Non­alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, and has high rates of morbidity and mortality worldwide. Daphnetin (DAP) possesses notable antioxidative, anti­inflammatory and anticoagulant activities; DAP is an active ingredient extracted from Daphne Koreana Nakai. To investigate the effects and the underlying mechanism of DAP on NAFLD, we treated HepG2 cells with oleic acid (OA) and DAP simultaneously and non­simultaneously. In the simultaneous treatment condition, HepG2 cells were co­treated with 0.5 mM OA and DAP (5, 20, and 50 µM) for 24 h. In the non­simultaneous treatment conditions, HepG2 cells were pretreated with 0.5 mM OA for 24 h, and then treated with DAP (5, 20 and 50 µM) for 24 h. Following the aforementioned treatments, the biochemical indexes associated with NAFLD were measured as follows: i) The intracellular contents of triglyceride (TG), reactive oxygen species (ROS) and fluorescent glucose 2­[N­(7­nitrobenz­2­oxa­1,3­diazol­4­yl) amino]­2­deoxyglucose were analyzed with corresponding detection kits; and ii) the cellular expression levels of glycolipid metabolism­ and oxidative stress­related genes, including 5'AMP­activated protein kinase (AMPK), sterol regulatory element­binding protein­1C (SREBP­1C), patatin­like phospholipase domain­containing protein 3 (PNPLA3), peroxisome proliferator­activated receptor α (PPARα), phosphoinositide 3­kinase (PI3K), protein kinase B (AKT), nuclear factor­like 2 (Nrf2), cytochrome P450 (CYP) 2E1 and CYP4A were determined by reverse transcription­quantitative polymerase chain reaction and western blotting. The results revealed the potential mechanism underlying the effects of DAP on NAFLD in vitro: i) By increasing the phosphorylation of AMPK, DAP inhibited the expression of SREBP­1C and PNPLA3, and induced that of PPARα. Lipid accumulation within hepatocytes was reduced; ii) by upregulating PI3K expression and pAKT/AKT levels, DAP may alleviate insulin resistance and promote hepatocellular glucose uptake; and iii) by upregulating the expression of Nrf2, DAP downregulated the expression of CYP2E1 and CYP4A, and the levels of reactive oxygen species in hepatocytes.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Oleico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Umbeliferonas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
12.
Ann Clin Lab Sci ; 49(2): 175-182, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31028061

RESUMO

In recent years, environmental endocrine disruptors (EEDs) have received extensive attention because of their hormone-like or anti-hormone effects. Dibutyl phthalate (DBP) is not only one of the most widely-used phthalates but also a member of EEDs with the estrogenic property. Although some studies have revealed the negative effect of DBP on the reproductive system, the underlying mechanisms are still elusive. Here the effect of DBP on P450 aromatase, a rate-limiting enzyme stimulated by FSH in the estradiol synthesis, was investigated in human granulosa cell line KGN. Cultured cells were treated with FSH and various doses of DBP (0.1µM, 1µM, 10µM, 50µM, or 100µM) for 24hr. Then the expression of aromatase was assessed, and the synthesis of estradiol was detected to reflect aromatase activity. As shown by the results, all concentrations of DBP could up-regulate the mRNA as well as protein levels of aromatase, and 0.1µM DBP increased the production of estradiol significantly. Furthermore, the ovary-specific promoter of aromatase, promoter II, was activated by 0.1µM DBP, and the expression of FSH receptor (FSHR) was increased by DBP from 0.1µM to 100µM. The study results show that DBP can affect aromatase from both quantitative and functional aspects, and this process may involve the activation of aromatase promoter II and upregulation of FSHR in KGN. Additionally, low-concentration DBP, near human serum concentration, has a more robust effect. This study suggests that DBP may affect the steroidogenic capacity in human ovaries and contributes to our understanding of the effects of DBP on the female reproductive system.


Assuntos
Aromatase/genética , Dibutilftalato/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Aromatase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do FSH/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Nat Commun ; 10(1): 1684, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975991

RESUMO

Obesity triggers the development of non-alcoholic fatty liver disease (NAFLD), which involves alterations of regulatory transcription networks and epigenomes in hepatocytes. Here we demonstrate that G protein pathway suppressor 2 (GPS2), a subunit of the nuclear receptor corepressor (NCOR) and histone deacetylase 3 (HDAC3) complex, has a central role in these alterations and accelerates the progression of NAFLD towards non-alcoholic steatohepatitis (NASH). Hepatocyte-specific Gps2 knockout in mice alleviates the development of diet-induced steatosis and fibrosis and causes activation of lipid catabolic genes. Integrative cistrome, epigenome and transcriptome analysis identifies the lipid-sensing peroxisome proliferator-activated receptor α (PPARα, NR1C1) as a direct GPS2 target. Liver gene expression data from human patients reveal that Gps2 expression positively correlates with a NASH/fibrosis gene signature. Collectively, our data suggest that the GPS2-PPARα partnership in hepatocytes coordinates the progression of NAFLD in mice and in humans and thus might be of therapeutic interest.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/metabolismo , Animais , Biópsia , Conjuntos de Dados como Assunto , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética , Fibrose , Células HEK293 , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética
14.
Biochimie ; 160: 172-182, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30890453

RESUMO

POSTN knockdown inhibits the formation of NLRP3 inflammasome in rat myocardium.Periostin (POSTN), an extracellular matrix protein, and peroxisome proliferator-activated receptor alpha (PPARα), a ligand-activated nuclear transcription factor, are reported to be involved in renal and cardiac dysfunction associated with chronic kidney disease (CKD), respectively. This study is performed to investigate how POSTN-PPARα axis affects the progress of CKD. In vivo, adenovirus particles containing POSTN short hairpin RNA (Ad-shPOSTN) were intravenously given to Sprague Dawley rats following 5/6 nephrectomy. The effects of Ad-shPOSTN on CKD and CKD-associated cardiovascular disease were evaluated. In vitro, NRK-52E renal tubular epithelial cells were infected with Ad-shPOSTN or Ad-POSTN (overexpression) to explore whether POSTN affected collagen deposition by regulating PPARα. We found that POSTN expression was upregulated, while PPARα was downregulated in the injured renal and left ventricular tissues of nephrectomized rats. Ad-shPOSTN improved renal function, prevented cardiac dysfunction, and attenuated organ fibrosis in nephrectomized rats. The expression levels of renal and myocardial PPARα were increased following Ad-shPOSTN administration. Furthermore, POSTN silencing suppressed the formation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in the myocardium: the levels of NLRP3, anti-apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase 1, mature interleukin (IL)-1ß and IL-18 were reduced. In NRK-52E cells, forced overexpression of POSTN directly inhibited PPARα expression and induced collagen deposition. WY14643, a PPARα agonist, suppressed POSTN-induced collagen deposition. In summary, our study demonstrates that POSTN negatively regulates PPARα expression. Targeting POSTN-PPARα axis may present a novel protective intervention to alleviate CKD and CKD-associated cardiac dysfunction.


Assuntos
Moléculas de Adesão Celular/metabolismo , Cardiopatias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR alfa/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Cardiopatias/genética , Cardiopatias/metabolismo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nefrectomia , PPAR alfa/genética , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
15.
BMC Genomics ; 20(1): 199, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30866796

RESUMO

BACKGROUND: Peroxisome Proliferator-Activated receptor α (PPARα) and cAMP-Responsive Element Binding Protein 3-Like 3 (CREB3L3) are transcription factors involved in the regulation of lipid metabolism in the liver. The aim of the present study was to characterize the interrelationship between PPARα and CREB3L3 in regulating hepatic gene expression. Male wild-type, PPARα-/-, CREB3L3-/- and combined PPARα/CREB3L3-/- mice were subjected to a 16-h fast or 4 days of ketogenic diet. Whole genome expression analysis was performed on liver samples. RESULTS: Under conditions of overnight fasting, the effects of PPARα ablation and CREB3L3 ablation on plasma triglyceride, plasma ß-hydroxybutyrate, and hepatic gene expression were largely disparate, and showed only limited interdependence. Gene and pathway analysis underscored the importance of CREB3L3 in regulating (apo)lipoprotein metabolism, and of PPARα as master regulator of intracellular lipid metabolism. A small number of genes, including Fgf21 and Mfsd2a, were under dual control of PPARα and CREB3L3. By contrast, a strong interaction between PPARα and CREB3L3 ablation was observed during ketogenic diet feeding. Specifically, the pronounced effects of CREB3L3 ablation on liver damage and hepatic gene expression during ketogenic diet were almost completely abolished by the simultaneous ablation of PPARα. Loss of CREB3L3 influenced PPARα signalling in two major ways. Firstly, it reduced expression of PPARα and its target genes involved in fatty acid oxidation and ketogenesis. In stark contrast, the hepatoproliferative function of PPARα was markedly activated by loss of CREB3L3. CONCLUSIONS: These data indicate that CREB3L3 ablation uncouples the hepatoproliferative and lipid metabolic effects of PPARα. Overall, except for the shared regulation of a very limited number of genes, the roles of PPARα and CREB3L3 in hepatic lipid metabolism are clearly distinct and are highly dependent on dietary status.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Perfilação da Expressão Gênica/métodos , Fígado/crescimento & desenvolvimento , PPAR alfa/genética , Ácido 3-Hidroxibutírico/sangue , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Cetogênica , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos , Fígado/química , Masculino , Camundongos , PPAR alfa/metabolismo , Transdução de Sinais , Triglicerídeos/sangue , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma
16.
PLoS One ; 14(1): e0210068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689650

RESUMO

Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Tabernaemontana divaricate, attenuates hepatic fibrosis in mice. We have previously shown that CnP inhibits non-alcoholic steatohepatitis (NASH) using a methionine-choline-deficient (MCD) diet-fed mouse model. However, little is known about the CnP mediated inhibition of hepatic steatosis in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse models. CnP (0.5 and 1 µg/g/body weight) was co-administered along with a high-fat diet to male BALB/c mice. After nine weeks of administering the high-fat diet, hepatic steatosis, triglyceride, and hepatic fat metabolism-related markers were examined. Administration of a high-fat diet for 9 weeks was found to induce hepatic steatosis. CnP dose-dependently attenuated the high-fat diet-induced hepatic steatosis. The diet also attenuated hepatic peroxisome proliferator-activated receptor alpha (PPARA) mRNA levels. PPARA is known to be involved in ß-oxidation. CnP upregulated the mRNA levels of hepatic PPARA and its target genes, such as carnitine palmitoyl transferase 1 (CPT1) and CPT2, in a dose-dependent manner in the liver. Furthermore, levels of hepatic ß-hydroxybutyrate, which is a type of ketone body, were increased by CnP in a dose-dependent manner. Finally, CnP increased the expression of the autophagosomal marker LC3-II and decreased the expression of p62, which are known to be selectively degraded during autophagy. These results indicate that CnP inhibits hepatic steatosis through the stimulation of ß-oxidation and autophagy in the liver. Therefore, CnP might prove to be a suitable therapeutic target for NAFLD.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Alcaloides de Vinca/farmacologia , Animais , Autofagia/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Fígado Gorduroso/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Hepatopatia Gordurosa não Alcoólica/etiologia , PPAR alfa/genética , PPAR alfa/metabolismo
17.
Toxicol Appl Pharmacol ; 365: 61-70, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30611723

RESUMO

Non-alcoholic fatty liver disease is manifested by hepatic accumulation of triglycerides (TG) and is commonly associated with metabolic syndrome. The isoprenoid farnesol (FOH) modulates lipid metabolism and reduces hepatic TG content in rodents. This effect involves activation of at least two nuclear receptors, peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor. We evaluated the effects of FOH (100 µM) in a cellular model of human hepatic steatosis by loading hepatocyte-like HepaRG cells with oleic acid (OA, 0.66 mM). FOH treatment decreased OA-induced TG accumulation by ~25%. Using PCR arrays, we found that FOH treatment modulated the mRNA levels of several lipid-metabolizing enzymes, both alone and when cells were loaded with OA. While FOH activated PPARα and the constitutive androstane receptor (CAR), most of the FOH-mediated effects on lipid-metabolizing genes could be attributed to activation of PPARα. In OA-loaded HepaRG cells, FOH increased fatty acid oxidation, which was accompanied by up-regulation of PPARα target genes involved in mitochondrial fatty acid oxidation, including hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase and acetyl-coenzyme A acyltransferase 2. These effects on gene expression were lost when the cells were co-treated with the PPARα antagonist, GW6471. OA treatment alone decreased the mRNA levels of the drug-metabolizing enzymes, cytochrome P450 (CYP)1A2, 2B6, and 3A4, and increased CYP2E1 expression, all of which were attenuated by FOH co-treatment. These findings show that FOH treatment increases fatty acid oxidation and decreases TG accumulation in steatotic HepaRG cells, which is likely attributable to PPARα-mediated induction of mitochondrial fatty acid oxidation.


Assuntos
Farneseno Álcool/farmacologia , Ácidos Graxos/metabolismo , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Triglicerídeos/metabolismo , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Oleico/toxicidade , Oxirredução , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
18.
Toxicology ; 415: 49-55, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660623

RESUMO

Exposure of pregnant mice to di(2-ethylhexyl)phthalate (DEHP) induces maternal lipid malnutrition and decreases the number of live fetuses/pups. In this study, we aimed to clarify the relationship between maternal lipid malnutrition and the nutritional status of the neonatal, lactational, and adult offspring, as well as the role of peroxisome proliferator-activated receptor α (PPARα) in these relationships. Sv/129 wild-type (mPPARA), Ppara-null, and PPARα-humanized (hPPARA) mice were fed diets containing 0, 0.01, 0.05, or 0.1% DEHP in utero and/or during the lactational stage. The male offspring were killed on postnatal day 2 or 21, or after 11 weeks. Exposure to either 0.05% or 0.1% DEHP during both the in utero and lactational periods decreased serum glucose concentrations in 2-day-old mPPARA offspring. These dosages also decreased both serum and plasma leptin levels in both 2- and 21-day-old mPPARA offspring. In contrast, exposure to DEHP only during the lactational period did not decrease leptin levels, suggesting the importance of in utero exposure to DEHP. Exposure to 0.05% DEHP during the in utero and lactational periods also increased food consumption after weaning in both mPPARA and hPPARA mice; this was not observed in Ppara-null offspring. In conclusion, in utero exposure to DEHP induces neonatal serum glucose malnutrition via PPARα. DEHP also decreases serum and plasma leptin concentrations in offspring during the neonatal and weaning periods, in association with PPARα, which presumably results in increased of food consumption after weaning.


Assuntos
Glicemia/metabolismo , Dietilexilftalato/toxicidade , Leptina/sangue , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal/efeitos dos fármacos , Família 4 do Citocromo P450/genética , Dietilexilftalato/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , PPAR alfa/genética , Gravidez , RNA Mensageiro/genética
19.
Cardiovasc Diabetol ; 18(1): 7, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635067

RESUMO

BACKGROUND: Metabolic abnormalities have been implicated as a causal event in diabetic cardiomyopathy (DCM). However, the mechanisms underlying cardiac metabolic disorder in DCM were not fully understood. RESULTS: Db/db mice, palmitate treated H9c2 cells and primary neonatal rat cardiomyocytes were employed in the current study. Microarray data analysis revealed that PGC-1ß may play an important role in DCM. Downregulation of PGC-1ß relieved palmitate induced cardiac metabolism shift to fatty acids use and relevant lipotoxicity in vitro. Bioinformatics coupled with biochemical validation was used to confirm that PGC-1ß was one of the direct targets of miR-30c. Remarkably, overexpression of miR-30c by rAAV system improved glucose utilization, reduced excessive reactive oxygen species production and myocardial lipid accumulation, and subsequently attenuated cardiomyocyte apoptosis and cardiac dysfunction in db/db mice. Similar effects were also observed in cultured cells. More importantly, miR-30c overexpression as well as PGC-1ß knockdown reduced the transcriptional activity of PPARα, and the effects of miR-30c on PPARα was almost abated by PGC-1ß knockdown. CONCLUSIONS: Our data demonstrated a protective role of miR-30c in cardiac metabolism in diabetes via targeting PGC-1ß, and suggested that modulation of PGC-1ß by miR-30c may provide a therapeutic approach for DCM.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Coativadores de Receptor Nuclear/metabolismo , PPAR alfa/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/ultraestrutura , Proteínas Nucleares/genética , Coativadores de Receptor Nuclear/genética , Estresse Oxidativo , PPAR alfa/genética , Ratos , Transdução de Sinais , Fatores de Transcrição/genética
20.
Lipids Health Dis ; 18(1): 11, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621686

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is closely linked to obesity, type 2 diabetes and other metabolic disorders worldwide. Crocin is a carotenoid compound possessing various pharmacological activities. In the present study, we aimed to investigate the effect on fatty liver under diabetic and obese condition and to examine the possible role of AMP-activated protein kinase (AMPK) signaling. METHODS: db/db mice were administrated with crocin and injected with LV-shAMPK or its negative control lentivirus. Metabolic dysfunction, lipogenesis and fatty acid-oxidation in liver were evaluated. RESULTS: In db/db mice, we found that oral administration of crocin significantly upregulated the phosphorylation of AMPK and downregulated the phosphorylation of mTOR in liver. Crocin reduced liver weight, serum levels of alanine aminotransferase, alanine aminotransferase, and liver triglyceride content, and attenuated morphological injury of liver in db/db mice. Crocin inhibited the mRNA expression of lipogenesis-associated genes, including sterol regulatory element binding protein-1c, peroxisome proliferator-activated receptor γ, fatty acid synthase, stearoyl-CoA desaturase 1, and diacylglycerol acyltransferase 1, and increased the mRNA expression of genes involved in the regulation of ß-oxidation of fatty acids, including PPARα, acyl-CoA oxidase 1, carnitine palmitoyltransferase 1, and 3-hydroxy-3-methylglutaryl-CoA synthase 2. Moreover, treatment of crocin resulted in a amelioration of general metabolic disorder, as evidenced by decreased fasting blood glucose, reduced serum levels of insulin, triglyceride, total cholesterol, and non-esterified fatty acid, and improved glucose intolerance. Crocin-induced protective effects against fatty liver and metabolic disorder were significantly blocked by lentivirus-mediated downregulation of AMPK. CONCLUSIONS: The results suggest that crocin can inhibit lipogenesis and promote ß-oxidation of fatty acids through activation of AMPK, leading to improvement of fatty liver and metabolic dysfunction. Therefore, crocin may be a potential promising option for the clinical treatment for NAFLD and associated metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Fármacos Antiobesidade/farmacologia , Carotenoides/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/genética , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/genética , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Modelos Animais de Doenças , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Regulação da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Transdução de Sinais , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Resultado do Tratamento , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA