Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.316
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445559

RESUMO

Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 µM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) µM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.


Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas
2.
Mol Med Rep ; 24(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34328194

RESUMO

Previous studies have suggested that oxidative stress and autophagy results in acute kidney injury (AKI) during sepsis and microRNA (miR)­214 serves a vital role in the protection of kidneys subjected to oxidative stress. The present study aimed to test whether the renoprotection of miR­214 is related to autophagy in sepsis. The role of autophagy was investigated in a mouse model of cecal ligation and puncture (CLP). Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) was used to analyze the expression of miR­214. The structure and function of kidneys harvested from the mice were evaluated. Kidney autophagy levels were detected with immunohistochemical, immunofluorescent and western blotting. It was found that miR­214 could alleviate AKI in septic mice by inhibiting the level of kidney autophagy. Furthermore, miR­214 inhibited autophagy by silencing PTEN expression in the kidney tissues of septic mice. These findings indicated that miR­214 ameliorated CLP­induced AKI by reducing oxidative stress and inhibiting autophagy through the regulation of the PTEN/AKT/mTOR pathway.


Assuntos
Injúria Renal Aguda/genética , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Ceco/lesões , Ceco/microbiologia , Modelos Animais de Doenças , Rim/metabolismo , Rim/patologia , Rim/ultraestrutura , Ligadura , Masculino , Camundongos , Estresse Oxidativo/genética , PTEN Fosfo-Hidrolase/genética , Punções , Sepse/complicações , Transdução de Sinais/genética
3.
J Int Med Res ; 49(7): 3000605211014379, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34232796

RESUMO

OBJECTIVE: To investigate the expression levels and mechanisms of microRNA (miRNA) 26a (miR-26a) and phosphatase and tensin homolog (PTEN) in patients with human papillomavirus (HPV)-induced condyloma acuminatum (CA) and penile squamous cell carcinoma (PSCC). METHODS: Thirty-one patients with HPV-positive CA and 28 with HPV-positive PSCC were included in this retrospective, cross-sectional study. PTEN mRNA and miR-26a levels in lesion tissues, blood, and urine were analyzed by quantitative reverse transcription polymerase chain reaction, and PTEN protein was detected by western blot and enzyme-linked immunosorbent assay. Cell proliferation was assessed by MTT assay. The interaction between miR-26a and PTEN was predicted by bioinformatics analysis and confirmed by dual luciferase reporter assay. RESULTS: PTEN mRNA and protein levels were significantly lower and miR-26a levels were significantly higher in all samples from patients with PSCC compared with the CA group. Bioinformatics analysis and luciferase reporter assay confirmed PTEN as a target gene of miR-26a. Up-regulation of miR-26a significantly increased the proliferation of Penl1 PSCC cells. CONCLUSIONS: PTEN expression is down-regulated and miR-26a levels are up-regulated in PSCC compared with CA. PTEN is a direct target gene of miR-26a. These results suggest that miR-26a might regulate HPV-positive progression from CA to PSCC through modulating PTEN.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Carcinoma de Células Escamosas/genética , Proliferação de Células , Estudos Transversais , Humanos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Estudos Retrospectivos
4.
Anticancer Res ; 41(7): 3363-3370, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230132

RESUMO

BACKGROUND/AIM: The mechanisms through which cetuximab (cMab) coadministration with paclitaxel (PTX) enhances antitumor efficacy remain unclear. We examined the mechanism of the antitumor enhancing effect of cMab by determining changes in gene expression in the PI3K-AKT pathway. MATERIALS AND METHODS: Eight human oral squamous cell carcinoma (OSCC) cell lines were cultured three-dimensionally and exposed to PTX + cMab. The expression levels of PTEN mRNA in OSCC cell lines after anticancer drug treatment were assessed using real-time PCR. PTEN mRNA expression levels were also confirmed after administration of PTX + cMab in vivo. Western blot analysis was used to confirm the results at the protein level. RESULTS: PTEN mRNA and protein expression were significantly increased only in the cell lines with high sensitivity to PTX + cMab, and similar results were observed in vivo. CONCLUSION: PTEN activation may enhance the antitumor effect of PTX + cMab.


Assuntos
Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , PTEN Fosfo-Hidrolase/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Cetuximab/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Paclitaxel/farmacologia , Fosfatidilinositol 3-Quinases/genética
5.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299331

RESUMO

BACKGROUND: Due to its prominence in the regulation of metabolism and inflammation, adipose tissue is a major target to investigate alterations in insulin action. This hormone activates PI3K/AKT pathway which is essential for glucose homeostasis, cell differentiation, and proliferation in insulin-sensitive tissues, like adipose tissue. The aim of this work was to evaluate the impact of chronic and intermittent high glucose on the expression of biomolecules of insulin signaling pathway during the differentiation and maturation of human visceral preadipocytes. METHODS: Human visceral preadipocytes (HPA-V) cells were treated with high glucose (30 mM)during the proliferation and/or differentiation and/or maturation stage. The level of mRNA (by Real-Time PCR) and protein (by Elisa tests) expression of IRS1, PI3K, PTEN, AKT2, and GLUT4 was examined after each culture stage. Furthermore, we investigated whether miR-29a-3p, miR-143-3p, miR-152-3p, miR-186-5p, miR-370-3p, and miR-374b-5p may affect the expression of biomolecules of the insulin signaling pathway. RESULTS: Both chronic and intermittent hyperglycemia affects insulin signaling in visceral pre/adipocytes by upregulation of analyzed PI3K/AKT pathway molecules. Both mRNA and protein expression level is more dependent on stage-specific events than the length of the period of high glucose exposure. What is more, miRs expression changes seem to be involved in PI3K/AKT expression regulation in response to hyperglycemic stimulation.


Assuntos
Hiperglicemia/metabolismo , Gordura Intra-Abdominal/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hiperglicemia/patologia , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
6.
Aging (Albany NY) ; 13(13): 17370-17379, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34198266

RESUMO

In this study, we used bioinformatics and an in vitro cellular model of glucocorticoid-induced osteoporosis to investigate mechanisms underlying the beneficial effects of baicalein (BN) against osteoporosis. STITCH database analysis revealed 30 BN-targeted genes, including AKT1, CCND1, MTOR, and PTEN. Functional enrichment analysis demonstrated that BN-targeted genes were enriched in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. MIRWALK2.0 database analysis identified 110 enriched KEGG pathways related to osteoporosis. A Venn diagram demonstrated that 26 KEGG pathways were common between osteoporosis and BN-targeted genes. The top 5 common KEGG pathways were prostate cancer, bladder cancer, glioma, pathways in cancer, and melanoma. BN-targeted genes in the top 5 shared KEGG pathways were involved in PI3K-AKT, MAPK, p53, ErbB, and mTOR signaling pathways. In addition, glucocorticoid-induced osteoporosis in MC3T3-E1 cells was partially reversed by BN through inhibition of AKT, which, by upregulating FOXO1, enhanced expression of bone turnover markers (ALP, OCN, Runx2, and Col 1) and extracellular matrix mineralization. These findings demonstrate that BN suppresses osteoporosis via an AKT/FOXO1 signaling pathway.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Flavanonas/farmacologia , Proteína Forkhead Box O1/genética , Osteoporose/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Células 3T3 , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Ciclina D1/genética , Bases de Dados Factuais , Matriz Extracelular/metabolismo , Proteína Forkhead Box O1/efeitos dos fármacos , Glucocorticoides , Humanos , Camundongos , Osteoporose/induzido quimicamente , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
7.
Stem Cell Res Ther ; 12(1): 418, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294122

RESUMO

BACKGROUND: Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. METHODS: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. RESULTS: tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. CONCLUSIONS: tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA de Transferência , Transdução de Sinais , Neoplasias Gástricas/genética
8.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299313

RESUMO

With the progress of sequencing technologies, an ever-increasing number of variants of unknown functional and clinical significance (VUS) have been identified in both coding and non-coding regions of the main Breast Cancer (BC) predisposition genes. The aim of this study is to identify a mutational profile of coding and intron-exon junction regions of 12 moderate penetrance genes (ATM, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53) in a cohort of 450 Italian patients with Hereditary Breast/Ovarian Cancer Syndrome, wild type for germline mutation in BRCA1/2 genes. The analysis was extended to 5'UTR and 3'UTR of all the genes listed above and to the BRCA1 and BRCA2 known regulatory regions in a subset of 120 patients. The screening was performed through NGS target resequencing on the Illumina platform MiSeq. 8.7% of the patients analyzed is carriers of class 5/4 coding variants in the ATM (3.6%), BRIP1 (1.6%), CHEK2 (1.8%), PALB2 (0.7%), RAD51C (0.4%), RAD51D (0.4%), and TP53 (0.2%) genes, while variants of uncertain pathological significance (VUSs)/class 3 were identified in 9.1% of the samples. In intron-exon junctions and in regulatory regions, variants were detected respectively in 5.1% and in 32.5% of the cases analyzed. The average age of disease onset of 44.4 in non-coding variant carriers is absolutely similar to the average age of disease onset in coding variant carriers for each proband's group with the same cancer type. Furthermore, there is not a statistically significant difference in the proportion of cases with a tumor onset under age of 40 between the two groups, but the presence of multiple non-coding variants in the same patient may affect the aggressiveness of the tumor and it is worth underlining that 25% of patients with an aggressive tumor are carriers of a PTEN 3'UTR-variant. This data provides initial information on how important it might be to extend mutational screening to the regulatory regions in clinical practice.


Assuntos
Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Idade de Início , Estudos de Coortes , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Variação Genética , Mutação em Linhagem Germinativa , Humanos , Itália , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Penetrância , Sequências Reguladoras de Ácido Nucleico
9.
Sci Transl Med ; 13(599)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162754

RESUMO

Increasing clinical evidence has demonstrated that the deletion or mutation of tumor suppressor genes such as the gene-encoding phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in cancer cells may correlate with an immunosuppressive tumor microenvironment (TME) and poor response or resistance to immune checkpoint blockade (ICB) therapy. It is largely unknown whether the restoration of functional PTEN may modulate the TME and improve the tumor's sensitivity to ICB therapy. Here, we demonstrate that mRNA delivery by polymeric nanoparticles can effectively induce expression of PTEN in Pten-mutated melanoma cells and Pten-null prostate cancer cells, which in turn induces autophagy and triggers cell death-associated immune activation via release of damage-associated molecular patterns. In vivo results illustrated that PTEN mRNA nanoparticles can reverse the immunosuppressive TME by promoting CD8+ T cell infiltration of the tumor tissue, enhancing the expression of proinflammatory cytokines, such as interleukin-12, tumor necrosis factor-α, and interferon-γ, and reducing regulatory T cells and myeloid-derived suppressor cells. The combination of PTEN mRNA nanoparticles with an immune checkpoint inhibitor, anti-programmed death-1 antibody, results in a highly potent antitumor effect in a subcutaneous model of Pten-mutated melanoma and an orthotopic model of Pten-null prostate cancer. Moreover, the combinatorial treatment elicits immunological memory in the Pten-null prostate cancer model.


Assuntos
Melanoma/imunologia , Nanopartículas , PTEN Fosfo-Hidrolase , Neoplasias da Próstata/imunologia , Linhagem Celular Tumoral , Genes Supressores de Tumor , Humanos , Masculino , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , Microambiente Tumoral
10.
Nat Commun ; 12(1): 3707, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140478

RESUMO

While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


Assuntos
Carcinogênese/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Proteínas de Homeodomínio/metabolismo , Melanoma/metabolismo , Fatores do Domínio POU/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Estudos de Coortes , Variações do Número de Cópias de DNA , Progressão da Doença , Técnicas de Silenciamento de Genes , Haploinsuficiência , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Melanoma/genética , Melanoma/mortalidade , Melanoma/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Fatores do Domínio POU/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , RNA Interferente Pequeno , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/secundário
11.
Sci Rep ; 11(1): 12948, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155232

RESUMO

COVID 19 disease has become a global catastrophe over the past year that has claimed the lives of over two million people around the world. Despite the introduction of vaccines against the disease, there is still a long way to completely eradicate it. There are concerns about the complications following infection with SARS-CoV-2. This research aimed to evaluate the possible correlation between infection with SARS-CoV viruses and cancer in an in-silico study model. To do this, the relevent dataset was selected from GEO database. Identification of differentially expressed genes among defined groups including SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 were screened where the |Log FC| ≥ 1and p < 0.05 were considered statistically significant. Later, the pathway enrichment analysis and gene ontology (GO) were used by Enrichr and Shiny GO databases. Evaluation with STRING online was applied to predict the functional interactions of proteins, followed by Cytoscape analysis to identify the master genes. Finally, analysis with GEPIA2 server was carried out to reveal the possible correlation between candidate genes and cancer development. The results showed that the main molecular function of up- and down-regulated genes was "double-stranded RNA binding" and actin-binding, respectively. STRING and Cytoscape analysis presented four genes, PTEN, CREB1, CASP3, and SMAD3 as the key genes involved in cancer development. According to TCGA database results, these four genes were up-regulated notably in pancreatic adenocarcinoma. Our findings suggest that pancreatic adenocarcinoma is the most probably malignancy happening after infection with SARS-CoV family.


Assuntos
Adenocarcinoma/etiologia , COVID-19/complicações , Carcinogênese/genética , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/complicações , Neoplasias Pancreáticas/etiologia , Vírus da SARS , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/complicações , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Caspase 3/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , PTEN Fosfo-Hidrolase/genética , Mapas de Interação de Proteínas , Risco , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/virologia , Transdução de Sinais/genética , Proteína Smad3/genética , Regulação para Cima/genética
12.
Braz J Med Biol Res ; 54(9): e10390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076140

RESUMO

Sorafenib (SOR) resistance is still a significant challenge for the effective treatment of hepatocellular carcinoma (HCC). The mechanism of sorafenib resistance remains unclear. Several microRNAs (miRNAs) have been identified as playing a role in impairing the sensitivity of tumor cells to treatment. We examined the mechanism behind the role of miR-92b in mediating sorafenib resistance in HCC cells. We detected that miR-92b expression was significantly upregulated in SOR-resistant HepG2/SOR cells compared to parental HepG2/WT cells. After transfection with miR-92b inhibitor, the proliferation of HepG2/SOR cells was remarkably weakened and rates of apoptosis significantly increased. PTEN was considered to be a functional target of miR-92b according to a luciferase reporter assay. Knockdown of PTEN significantly impaired the ability of miR-92b inhibitor on increasing sorafenib sensitivity of HepG2/SOR cells. Furthermore, we confirmed by western blotting and immunofluorescence that miR-92b can mediate sorafenib resistance by activating the PI3K/AKT/mTOR pathway in HCC cells by directly targeting PTEN. These findings further validate the mechanism of miR-92b in SOR resistance in HCC treatment.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , MicroRNAs , Sorafenibe , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR
13.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070901

RESUMO

Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glicocálix/metabolismo , Ácido Hialurônico/metabolismo , Sindecana-1/genética , Neoplasias de Mama Triplo Negativas/genética , Via de Sinalização Wnt/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Antígeno CD24/genética , Antígeno CD24/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Bases de Dados Factuais , Feminino , Glicocálix/química , Glicocálix/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Sindecana-1/antagonistas & inibidores , Sindecana-1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
14.
Pol J Pathol ; 72(1): 1-10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060283

RESUMO

Glioblastoma (GBM) is the most common and most aggressive primary tumor of the central nervous system. Current GBM treatments have low effectiveness. This is mainly due to the high degree of heterogeneity of GBM tumors. Despite similarities in the classic microscopic image, these tumors differ significantly in molecular terms. The aim of the study was to classify GBM tumors into one of four molecular types based on the immunohistochemical expression of EGFR, PDGFRA, NF1, IDH1, p53 and PTEN proteins and find the association between individual glioma molecular types and prognostic clinical and morphological parameters. From the group of 162 patients the classical molecular type of tumor was observed in 17 (10%) patients, in 23 (14%) the tumor was mesenchymal, in 32 (20%) proneural, and in 90 (56%) neural. No significant relationship was observed between the molecular type of GBM tumors and the studied clinical and morphological parameters of prognostic significance. There were also no statistically significant correlations between the GBM tumor molecular type and survival, both in terms of overall survival and relapse-free survival. Analyzing the impact of all prognostic variables and molecular type of GBM on the probability of overall survival, statistically significant relationships were found.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p53/genética
15.
Neoplasma ; 68(4): 788-797, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034498

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy of bone marrow. In the present study, we aimed to study the function and potential mechanism of the antisense non-coding RNA in the INK4 Locus (ANRIL) in MM. The expression levels of ANRIL in MM patients and healthy donors were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The effects and mechanisms of ANRIL in MM were evaluated by cell viability assay, BrdU incorporation assay, tumor xenograft model, flow cytometry, western blot, RNA immunoprecipitation (RIP), transcriptome RNA sequencing, and chromatin immunoprecipitation (ChIP). We found that ANRIL was upregulated in MM patients and cell lines, and associated with advanced international staging system (ISS) stage and poor overall survival. Enforced ANRIL expression promoted proliferation and tumor xenograft growth of MM cells, while knockdown of ANRIL exhibited opposite effects. Moreover, ANRIL overexpression increased the half-maximal inhibitory concentration (IC50) of bortezomib and reduced bortezomib-induced apoptosis in MM cells. ANRIL was found to accumulate in the nuclei of MM cells, and interact with EZH2 by RIP assay. Transcriptome RNA sequencing identified PTEN as a target of ANRIL in MM cells. In the ChIP assay, knockdown of ANRIL reduced EZH2 occupancy and H3K27me3 binding to the promoter region of PTEN. Furthermore, EZH2 knockout or PTEN restoration abrogated the effects caused by ANRIL overexpression in MM cells. Our results indicated that ANRIL exerted oncogenic functions and conferred chemoresistance of MM cells by EZH2-mediated epigenetically silencing of PTEN.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Apoptose , Bortezomib/farmacologia , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , PTEN Fosfo-Hidrolase/genética , RNA Longo não Codificante/genética
16.
Cancer Sci ; 112(7): 2781-2791, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33960594

RESUMO

The prevalence of neuroendocrine prostate cancer (NEPC) arising from adenocarcinoma (AC) upon potent androgen receptor (AR) pathway inhibition is increasing. Deeper understanding of NEPC biology and development of novel therapeutic agents are needed. However, research is hindered by the paucity of research models, especially cell lines developed from NEPC patients. We established a novel NEPC cell line, KUCaP13, from tissue of a patient initially diagnosed with AC which later recurred as NEPC. The cell line has been maintained permanently in vitro under regular cell culture conditions and is amenable to gene engineering with lentivirus. KUCaP13 cells lack the expression of AR and overexpress NEPC-associated genes, including SOX2, EZH2, AURKA, PEG10, POU3F2, ENO2, and FOXA2. Importantly, the cell line maintains the homozygous deletion of CHD1, which was confirmed in the primary AC of the index patient. Loss of heterozygosity of TP53 and PTEN, and an allelic loss of RB1 with a transcriptomic signature compatible with Rb pathway aberration were revealed. Knockdown of PEG10 using shRNA significantly suppressed growth in vivo. Introduction of luciferase allowed serial monitoring of cells implanted orthotopically or in the renal subcapsule. Although H3K27me was reduced by EZH2 inhibition, reversion to AC was not observed. KUCaP13 is the first patient-derived, treatment-related NEPC cell line with triple loss of tumor suppressors critical for NEPC development through lineage plasticity. It could be valuable in research to deepen the understanding of NEPC.


Assuntos
Adenocarcinoma/patologia , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral/patologia , Neoplasias da Próstata/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/secundário , Linhagem Celular Tumoral/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Deleção de Genes , Expressão Gênica , Genes Neoplásicos , Genes do Retinoblastoma , Genes Supressores de Tumor , Genes p53 , Engenharia Genética , Xenoenxertos , Homozigoto , Humanos , Cariotipagem , Perda de Heterozigosidade , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias , PTEN Fosfo-Hidrolase/genética , Neoplasias Penianas/genética , Neoplasias Penianas/secundário , Neoplasias da Próstata/genética , Proteínas de Ligação a RNA/genética , Receptores Androgênicos
17.
Cell Prolif ; 54(7): e13056, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021647

RESUMO

OBJECTIVES: In contrast to extensive studies on bone metastasis in advanced prostate cancer (PCa), liver metastasis has been under-researched so far. In order to decipher molecular and cellular mechanisms underpinning liver metastasis of advanced PCa, we develop a rapid and immune sufficient mouse model for liver metastasis of PCa via orthotopic injection of organoids from PbCre+ ; rb1f/f ;p53f/f mice. MATERIALS AND METHODS: PbCre+ ;rb1f/f ;p53f/f and PbCre+ ;ptenf/f ;p53f/f mice were used to generate PCa organoid cultures in vitro. Immune sufficient liver metastasis models were established via orthotopic transplantation of organoids into the prostate of C57BL/6 mice. Immunofluorescent and immunohistochemical staining were performed to characterize the lineage profile in primary tumour and organoid-derived tumour (ODT). The growth of niche-labelling reporter infected ODT can be visualized by bioluminescent imaging system. Immune cells that communicated with tumour cells in the liver metastatic niche were determined by flow cytometry. RESULTS: A PCa liver metastasis model with full penetrance is established in immune-intact mouse. This model reconstitutes the histological and lineage features of original tumours and reveals dynamic tumour-immune cell communication in liver metastatic foci. Our results suggest that a lack of CD8+ T cell and an enrichment of CD163+ M2-like macrophage as well as PD1+ CD4+ T cell contribute to an immuno-suppressive microenvironment of PCa liver metastasis. CONCLUSIONS: Our model can be served as a reliable tool for analysis of the molecular pathogenesis and tumour-immune cell crosstalk in liver metastasis of PCa, and might be used as a valuable in vivo model for therapy development.


Assuntos
Neoplasias Hepáticas/patologia , Neoplasias da Próstata/patologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Modelos Animais de Doenças , Neoplasias Hepáticas/secundário , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
18.
Nat Commun ; 12(1): 2550, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953176

RESUMO

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanoma/genética , Melanoma/metabolismo , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Transcriptoma
19.
J Int Med Res ; 49(5): 3000605211014363, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34044640

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) regulate prostate tumorigenesis and progression by involving different molecular pathways. In this study, we examined the role of miR-572 in prostate cancer (PCa). METHODS: The proliferation rates of LNCaP and PC-3 PCa cells were studied using MTT assays. Transwell migration and Matrigel invasion assays were performed to evaluate cell migration and invasion, respectively. Protein expression levels were examined using western blotting. Docetaxel-induced apoptosis was evaluated by Caspase-Glo3/7 assays. The putative miR-572 binding site in the phosphatase and tensin homolog (PTEN) 3' untranslated region (3' UTR) was assessed with dual-luciferase reporter assays. Additionally, miR-572 expression levels in human PCa tissues were examined by qRT-PCR assays. RESULTS: Upregulation of miR-572 promoted proliferation, migration, and invasion of PCa cells. Overexpression of miR-572 decreased sensitivity of PCa cells to docetaxel treatment by reducing docetaxel-induced apoptosis. MiR-572 can regulate migration and invasion in PCa cells. Furthermore, miR-572 could regulate expression of PTEN and p-AKT in PCa cells by directly binding to the PTEN 3' UTR. MiR-572 expression levels were increased in human PCa tissues and associated with PCa stage. CONCLUSIONS: miR-572 displayed essential roles in PCa tumor growth and its expression level may be used to predict docetaxel treatment in these tumors.


Assuntos
MicroRNAs , Neoplasias da Próstata , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
20.
Wei Sheng Yan Jiu ; 50(2): 223-229, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33985625

RESUMO

OBJECTIVE: To investigate the roles of phosphatase and tensin homolog deleted on chromosome 10(PTEN) in focal adhesion kinase(FAK) and α-smooth muscle actin(α-SMA) protein levels changes in human embryonic lung fibroblasts(HELFs) induced by silica. METHODS: The HELF cells were cultured in low serum medium containing 0, 25, 50, 100 and 200 µg/cm~2 silica for 24 hours, and the cell counting kit-8(CCK8) experiment was used to determine the appropriate dose of silica for stimulation. Meanwhile, the effect of different doses of silica on the morphology of HELFs was observed under inverted microscope. 50 µg/cm~2 silica solution was used to culture HELFs for 0, 1, 2, 4, 8, 12 and 24 hours(h), and the control group were used as the control group. In addition, Western blot was used to detect HELFs PTEN, p-PTEN, FAK, p-FAK and α-SMA protein levels at each culture time. Besides, HELFs were cultured with 2×10~(-3) mol/L PTEN inhibitor(VO-Ohpic) and/or silica for 24 h, including HELFs group, HELFs plus silica group, and HELFs plus silica plus VO-Ohpic group, and the FAK, p-FAK and α-SMA in each group were also detected by Western blot. RESULTS: With the increase of silica dose, HELFs viability firstly increased and then decreased, and the cell viability of 50 µg/cm~2 group(144. 91±5. 10) was significantly higher than that of 0 µg/cm~2 group(101. 23±6. 57)(P<0. 05). Compared with the control group of silica treated HELFs, the expression levels of PTEN and p-PTEN at 12 h and 24 h were significantly decreased(PTEN: 0. 44±0. 08 at 12 h, 0. 25±0. 02 at 24 h; p-PTEN: 0. 09±0. 01 at 12 h, 0. 01±0. 00 at 24 h; all P values<0. 05); whereas, FAK at 12 h(0. 92±0. 05) and 24 h(0. 89±0. 01), and p-FAK(0. 77±0. 02) and α-SMA at 24 h(1. 32±0. 01) were significantly increased(all P values<0. 05). The expression levels of FAK(0. 25±0. 03), p-FAK(0. 40±0. 02) and α-SMA(0. 36±0. 01) of HELFs plus silica plus VO-Ohpic group were significantly higher than those of HELFs plus silica group(P<0. 05). CONCLUSION: While silica induces HELFs FAK, p-FAK, and α-SMA increase, PTEN may downregulate FAK, p-FAK and α-SMA expression levels.


Assuntos
Actinas , Dióxido de Silício , Fibroblastos , Humanos , Pulmão , PTEN Fosfo-Hidrolase/genética , Dióxido de Silício/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...