Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
Toxins (Basel) ; 15(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668890

RESUMO

Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.


Assuntos
Lactobacillales , Olea , Patulina , Antifúngicos/farmacologia , Olea/microbiologia , Brasil , Fungos , Aflatoxina B1
2.
Toxins (Basel) ; 15(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36668881

RESUMO

Mycotoxins contamination and pest infestation of foods and feeds represent a pivotal threat for food safety and security worldwide, with crucial implications for human and animal health. Controlled atmosphere could be a sustainable strategy to reduce mycotoxins content and counteract the vitality of deleterious organisms in foodstuff. Ozone treatment (O3, 500 ppb for 30, 60 or 90 min) and high nitrogen concentration (N2, 99% for 21 consecutive days) were tested in the post-harvest management of four batches of Cicer arietinum grains to control the presence of mycotoxigenic fungi and their secondary metabolites, as well as pest (i.e., Callosobruchus maculatus) infestation. At the end of the treatment, O3 significantly decreased the incidence of Penicillium spp. (by an average of -50%, independently to the time of exposure) and reduced the patulin and aflatoxins content after 30 min (-85 and -100%, respectively). High N2 concentrations remarkably reduced mycotoxins contamination (by an average of -94%) and induced pest mortality (at 100% after 5 days of exposure). These results confirm the promising potential of O3 and N2 in post-harvest conservation strategies, leading to further investigations to evaluate the effects on the qualitative characteristics of grains.


Assuntos
Cicer , Micotoxinas , Patulina , Vigna , Gorgulhos , Humanos , Animais , Micotoxinas/análise , Fungos/metabolismo , Sementes/química , Patulina/análise , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
3.
Biosensors (Basel) ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36671974

RESUMO

Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanotubos de Carbono , Patulina , Praguicidas , Humanos , Nanotubos de Carbono/química , Nanoestruturas/química , Nanotecnologia
4.
Food Res Int ; 162(Pt B): 112085, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461334

RESUMO

This study aimed to determine Patulin (PAT) in samples of organically and conventionally grown tomato varieties, to correlate it with their phenolic profile and at evaluating effects of phenolic extracts of tomato samples against the Penicillium expansum CCT 7549 strain. Four varieties of tomatoes (Cherry, Khaki, Italian and Long Life) subject to conventional and organic management were collected in markets in the south of Brazil. PAT was determined in samples by validated method Matrix Solid Phase Dispersion (MSPD) with detection in HPLC-PDA. Titratable acidity, phenolic profile and antifungal activity (minimum inhibitory concentration - MIC and minimum fungicidal concentration - MFC) against P. expansum were determined. In most tomatoes PAT was found at levels that were below the Maximum Recommended Level (MRL = 50 µg/kg). Samples of conventionally grown Cherry tomato showed high acidity and PAT contamination, whose correlation was confirmed by the Principal Component Analysis (PCA). Phenolic extracts of tomatoes subject to conventional management were more efficient to inhibit P. expansum, a fact that may be explained by the content of caffeic acid. However, since PAT production was not inhibited in fruit, it is recommended that PAT should be monitored and a new management strategy should be investigated.


Assuntos
Patulina , Penicillium , Fenóis/farmacologia
5.
Food Res Int ; 162(Pt B): 112077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461394

RESUMO

Patulin (PAT) is a highly water soluble, heat resistant and toxic fungal metabolite mostly contaminating apple juice. Due to its serious health effects, its removal from foodstuffs is required to ensure food safety. In this study, carboxy- and amine-terminated iron oxide spheres (Fe3O4-COOH and Fe3O4-NH2) were investigated for their adsorbing capacity of PAT in both aqueous solution and apple juice, and evaluated for being an effective detoxifying agent for PAT. The physical and chemical properties of adsorbents were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The maximum adsorption capacities Fe3O4-COOH and Fe3O4-NH2 for PAT obtained at 25 °C, pH 6 for 5 h were 0.206 mg/g and 0.104 mg/g, respectively. Best fitting adsorption isotherm and kinetics models of PAT adsorption process were Hill isotherm (Radj2 = 0.985) and pseudo-second kinetic models (Radj2 > 0.99) for carboxy groups and Langmuir isotherm (Radj2 = 0.974) and pseudo-second kinetic models (Radj2 > 0.99) for amine groups on the surface of adsorbents. These models with the experimental results confirmed the physical adsorption process, while thermodynamic analysis indicated that adsorption process was spontaneous and endothermic between PAT and both adsorbents. Reusability study showed the effective removal of PAT at four cycles by both adsorbents. This study indicated that carboxy- and amine-terminated magnetic spheres have promising potentials in PAT removal from both aqueous solution and apple juice without affecting quality parameters of juice.


Assuntos
Malus , Patulina , Adsorção , Aminas , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Fenômenos Magnéticos
6.
Toxins (Basel) ; 14(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36355987

RESUMO

Patulin (PAT) is a toxic secondary metabolite produced by certain species of Penicillium sp. and Aspergillus sp. on apples and pears. In this study, we investigated the effects of ascorbic acid and the combination of ascorbic acid and ferrous iron on degradation of PAT in 100% pure pear juice and apple juice using high-performance liquid chromatography UV detector (HPLC-UVD). The addition of 2 different levels of ascorbic acid (143 or 286 µg/mL) into pear juice or apple juice containing 0.08 or 0.4 µg/mL of PAT showed 87.7-100% and 67.3-68.7% of PAT degradation rates, respectively, after 24 h incubation at 25 °C. Moreover, the addition of both ascorbic acid (143 or 286 µg/mL) and ferrous iron (0.033 or 0.11 µmol/mL) into pear juice or apple juice containing the same level of PAT exhibited higher PAT degradation rates (100 and 75-94%, respectively) than the addition of only ascorbic acid after 24 h incubation at 25 °C. Our data demonstrated that ascorbic acid plus ferrous iron as well as ascorbic acid were highly effective on degradation of PAT in pear juice and apple juice and that addition of both ascorbic acid and ferrous iron produced higher PAT degradation rates than addition of only ascorbic acid.


Assuntos
Malus , Patulina , Pyrus , Patulina/metabolismo , Malus/química , Ácido Ascórbico/análise , Ferro , Contaminação de Alimentos/análise , Bebidas/análise
7.
Toxins (Basel) ; 14(10)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36287964

RESUMO

Patulin (PAT) is one of mycotoxins that usually contaminates apple juice, and it is not easily detoxified by cysteine (CYS) at room temperature due to the highly acidic conditions based on the Michael addition reaction. However, it could be effectively degraded by a heating treatment at 120 °C for 30 min in the presence of cysteine. In our study, a total of eight degradation products (DP A-H) were characterized and identified via liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) in a negative ion mode, and their structures and formulas were proposed based on their accurate mass data. The fragmentation patterns of PAT and its degradation products were obtained from the MS/MS analysis. Meanwhile, the possible reaction mechanisms involved in the degradation of PAT were established and explained for the first time. According to the relation between the structure and toxicity of PAT, it could be deduced that the toxic effects of PAT degradation products were potentially much less than those of PAT-self.


Assuntos
Malus , Patulina , Patulina/metabolismo , Cisteína , Espectrometria de Massas em Tandem/métodos , Temperatura Alta , Malus/química
8.
Toxins (Basel) ; 14(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36287968

RESUMO

Mycotoxins are generated by a series of fungal pathogens in postharvest fruit, resulting in serious health threat to consumers and great economic loss to the fruit storage industry. The microbial differences between rotten and healthy fruit during storage and their relationship with mycotoxin production have not been fully studied. In this study, differences in microbial diversity between rotten and healthy fruit after 30 days of storage at ambient temperature were investigated using high-throughput sequencing technology in 'Huangguan' pear (Pyrus bretschneideri Rehd cv. Huangguan) harvested from five different producing regions of Hebei province, China. The bacterial genus Gluconobacter was much more abundant in rotten fruit (76.24%) than that in healthy fruit (32.36%). In addition, Komagataeibacter and Acetobacter were also relatively higher in abundance in rotten fruit. In contrast, bacterial genera Pantoea, Alistipes, Muribaculaceae, Lactobacillus, and Ruminococcaceae_UCG were found to be more abundant in healthy fruit. Fungal genera including Botryosphaeria, Colletotrichum, Valsa, Alternaria, Rosellinia, Fusarium, and Trichothecium were found to be abundant in rotten fruit. The results of principal coordinate analysis (PCoA) showed that there were significant differences in the microbial diversity of different regions. PAT (patulin) was detected in all rotten fruit samples, while tenuazonic acid (TeA), alternariol (AOH), and alternariolmonomethyl ether (AME) were only detected in samples collected from one region (Weixian). Canonical correlation analysis (CCA) and Pearson correlation analysis showed that the abundance of Alistipes and Pantoea were negatively correlated with the contents of PAT, suggesting that bacterial genera Alistipes and Pantoea have potential in reducing mycotoxin production in 'Huangguan' pear.


Assuntos
Micotoxinas , Patulina , Pyrus , Micotoxinas/análise , Ácido Tenuazônico/análise , Patulina/análise , Alternaria , Frutas/microbiologia , Éteres
9.
J Cell Mol Med ; 26(22): 5680-5689, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282887

RESUMO

Zic family member 5 (ZIC5) is a transcription factor that promotes the survival of several cancer cell types. As ZIC5 is expressed at minimal levels in normal human adult tissues, it is a potential therapeutic target. In this study, we screened a chemical library containing 3398 compounds that includes pre-existing drugs and compounds with known effects to identify ZIC5 inhibitors. In the first screening, 18 hit compounds decreased GFP intensity in melanoma A375 cells overexpressing GFP-tagged ZIC5. In the second screening, five compounds that attenuated ZIC5 protein levels in A375 cells were identified. Among them, LL-Z1640-2 and patulin selectively induced apoptosis in melanoma cells expressing ZIC5, while only inducing very low levels of apoptosis in normal human melanocytes, which have no detectable ZIC5 expression. LL-Z1640-2 and patulin also induced apoptosis in BRAF inhibitor-resistant melanoma, pancreatic cancer, cholangiocarcinoma and colorectal cancer cells. LL-Z1640-2- and patulin-mediated suppression of melanoma proliferation were rescued by ZIC5 overexpression. These results suggest that LL-Z1640-2 and patulin are promising compounds that decrease ZIC5 expression to induce apoptosis in cancer cells.


Assuntos
Melanoma , Patulina , Adulto , Humanos , Proteínas de Ligação a DNA/genética , Patulina/farmacologia , Apoptose , Melanoma/genética , Família , Fatores de Transcrição/genética
10.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232948

RESUMO

Patulin (PAT) is a common mycotoxin in the food industry, and is found in apple products in particular. Consumption of food or feed contaminated with PAT can cause acute or chronic toxicity in humans and animals. Lactiplantibacillus plantarum CCFM1287 is a probiotic strain that effectively degrades PAT in PBS and food systems. In this study, it was found that the concentration of PAT (50 mg/L) in MRS medium decreased by 85.09% during the first stages of CCFM1287 growth, and this change was consistent with the first-order degradation kinetic model. Meanwhile, the regulation of oxidative stress by L. plantarum CCFM1287 in response to PAT exposure and metabolic changes that occur during PAT degradation were investigated. The degree of intracellular damage was attenuated after 16 h of exposure compared to 8 h. Meanwhile, metabolomic data showed that 30 and 29 significantly different metabolites were screened intracellularly in the strain after 8 h and 16 h of PAT stress at 50 mg/L, respectively. The results of pathway enrichment analysis suggested that the purine metabolic pathway was significantly enriched at both 8 h and 16 h. However, as is consistent with the performance of the antioxidant system, the changes in Lactiplantibacillus diminished with increasing time of PAT exposure. Therefore, this study helps to further explain the mechanism of PAT degradation by L. plantarum CCFM1287.


Assuntos
Malus , Patulina , Probióticos , Animais , Antioxidantes , Humanos , Malus/metabolismo , Patulina/metabolismo , Patulina/toxicidade , Purinas
11.
Biosens Bioelectron ; 217: 114723, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150324

RESUMO

Patulin (PAT) is an unsaturated lactone mycotoxin primarily produced by Penicillium expansum and Aspergillus clavatus. Given the potential health risks and economic losses associated with PAT, the rapid detection of PAT using fluorescent aptasensors is of significant importance in evaluating food safety. However, it easily increases the cost and complexity caused by signal labeling. We combined TCPP/BDC-NH2 mixed ligands functionalized Zr metal-organic frameworks (Zr-MOFmix) and terminated three-stranded DNA gates (ttsDNA gates) to fabricate a label-free fluorescent aptasensor for PAT detection. The Zr-MOFmix system was synthesized via a one-pot strategy and could be used to address the problem of pore size limitation and increase the loading amounts of dyes. TtsDNA gate was integrated into the Zr-MOFmix system to control the release of dyes, exhibiting a high signal-to-background ratio. The single-stranded aptamer region in ttsDNA gate situated away from the surface of the Zr-MOFmix, resulting in a natural release of dyes in the absence of PAT. While binding to PAT resulted in target-induced conformational changes that helped form the hairpin structure of the aptamer. This structure hindered the release of dyes from the pores of Zr-MOFmix, thus reducing the fluorescence signals intensity. The stimuli-responsive DNA-gated material provides a platform for PAT analysis under conditions of a low limit of detection (0.871 pg/mL). Furthermore, the excellent specificity and anti-interference of the fluorescent aptasensor make the system suitable for the analysis of apple juice samples. This label-free strategy is cheaper and simper compared with labeled detection, especially for the development of multi-target-detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Patulina , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Corantes , DNA , Lactonas , Limite de Detecção , Estruturas Metalorgânicas/química , Porfirinas
12.
Food Chem Toxicol ; 169: 113396, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087620

RESUMO

This review aims to highlight recent advances where transcriptomics and proteomics have been used as a key tool to understand molecular toxicity of mycotoxins. The most studied mycotoxin by using transcriptomic approach is deoxynivalenol (DON), followed by aflatoxins (AFs) and zearalenone (ZEA). Instead, proteomics mostly focuses on AFs but also in this case, mildly to ZEA and DON. However, in both omics approaches, fewer studies investigated the toxicological effect of emerging mycotoxins, patulin, ochratoxin A, T-2 toxin, alternariol and amino-14,16-dimethyloctadecan-3-ol. The study of changes in the expression of genes involved in immune system are the most common purposes for transcriptomics whereas cellular processes in proteomics field. Concerning the techniques used to perform the experiments, RT-qPCR is the most employed in gene expression analysis whereas liquid chromatography coupled with mass spectrometry is the master technique for proteomics assays. The gathered data have reported that the interest in using these omic approaches has increased in the last five years. However, in vitro models take precedence over the in vivo and ex vivo ones. Therefore, there is a need to enhance the use of in vivo models and alternative methods to better understand mycotoxins mode of action on animal and human health.


Assuntos
Contaminação de Alimentos , Micotoxinas , Proteoma , Transcriptoma , Animais , Humanos , Aflatoxinas/toxicidade , Micotoxinas/toxicidade , Patulina/análise , Proteômica , Toxina T-2/toxicidade , Transcriptoma/efeitos dos fármacos , Tricotecenos/toxicidade , Zearalenona/toxicidade , Proteoma/efeitos dos fármacos , Perfilação da Expressão Gênica
13.
Int J Biol Macromol ; 222(Pt A): 421-428, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36176222

RESUMO

Patulin is a fatal mycotoxin that is widely detected in drinking water and fruit-derived products contaminated by diverse filamentous fungi. CgSDR from Candida guilliermondii represents the first NADPH-dependent short-chain dehydrogenase/reductase that catalyzes the reduction of patulin to the nontoxic E-ascladiol. To elucidate the catalytic mechanism of CgSDR, we solved its crystal structure in complex with cofactor and substrate. Structural analyses indicate that patulin is situated in a hydrophobic pocket adjacent to the cofactor, with the hemiacetal ring orienting toward the nicotinamide moiety of NADPH. In addition, we conducted structure-guided engineering to modify substrate-binding residue V187 and obtained variant V187F, V187K and V187W, whose catalytic activity was elevated by 3.9-, 2.2- and 1.7-fold, respectively. The crystal structures of CgSDR variants suggest that introducing additional aromatic stacking or hydrogen-bonding interactions to bind the lactone ring of patulin might account for the observed enhanced activity. These results illustrate the catalytic mechanism of SDR-mediated patulin detoxification for the first time and provide the upgraded variants that exhibit tremendous potentials in industrial applications.


Assuntos
Patulina , Redutases-Desidrogenases de Cadeia Curta , Patulina/metabolismo , NADP/metabolismo , Ligação de Hidrogênio
14.
Fungal Biol ; 126(9): 547-555, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008047

RESUMO

Apples (Malus domestica) are one of the most consumed fruits globally. It is a relevant crop in Argentina and Spain, and one of the main fruits for export and industrialization in these countries. Quality control of apples, fundamentally in the postharvest stage, is critical to prevent fungal diseases. The blue mould, caused by Penicillium expansum, is responsible for great economic losses due to the deterioration of the fruit and mycotoxin production. Many studies have characterized this pathogen; however, little is known about the differences between populations from distant geographical origins. The objective of the present study was to characterize two P. expansum populations, from Argentina and Spain, through morphological, metabolomic and molecular approaches, and to evaluate the existence of differences related to their geographical source. A total of 103 isolates, 53 from Argentina and 50 from Spain were studied. Their morphological features were consistent with the species description. The secondary metabolite profiles revealed low chemical diversity. All 103 isolates shared the production of 13 compounds, namely andrastins, aurantioclavine, chaetoglobosins, communesins, expansolides, roquefortine C and patulin. Penostatins and citrinin were produced by 102 and 101 isolates, respectively. A region of the ß-tubulin gene was selected to analyse the diversity of the P. expansum isolates. No substantial differences were observed between isolates of different geographical origins through morphology, patulin accumulation, secondary metabolite profiles and phylogenetic analysis. However, the analysis of polymorphisms revealed 29 haplotypes with a relative separation between isolates of both populations; 13 haplotypes contained Argentinean isolates, while Spanish isolates were separated into 16 haplotypes. The diversity indices of Shannon (H'=2.075; H'=2.402) and Simpson (SiD = 0.850; SiD = 0.895) for isolates from Argentina and Spain, respectively, indicated that the diversity of P. expansum is greater in Spain than in Argentina. This distribution could be explained both by the existence of haplotype exchange between both countries, with the ancestral haplotypes originating in Spain, and the subsequent adaptation to the environmental conditions or apples varieties grown in each region.


Assuntos
Malus , Patulina , Penicillium , Argentina , Frutas/microbiologia , Malus/microbiologia , Patulina/análise , Penicillium/genética , Penicillium/metabolismo , Filogenia , Espanha
15.
Anal Methods ; 14(35): 3375-3381, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35975688

RESUMO

In this study, a simple, novel and practical label-free colorimetric aptasensor was successfully prepared for the ultrasensitive detection of patulin, based on the hybridization chain reaction (HCR) and hemin/G-quadruplex DNAzyme-signal amplification strategy. In this aptasensor, a detection probe was designed consisting of the aptamer sequence for the patulin and an initiator sequence to trigger the HCR. Two hairpin structures (H1 and H2) that included the G-quadruplex sequences in inactive configuration were used as functional elements. The presence of patulin triggered the opening of the hairpin structure and the beginning of the HCR. After the addition of hemin, G-rich DNA self-assembled into the peroxidase-mimicking hemin/G-quadruplex DNAzymes, which catalyzed a colorimetric reaction. Under optimized conditions, patulin was measured within a linear range of 0.1-200 ng mL-1, and the detection limit was 0.060 ng mL-1. The recovery rates ranged from 91.4 to 105% for fruits and fruit-based products. Subsequently, a total of 311 samples comprising fruits, fruit-based products and dried fruits were collected from supermarkets, production bases and farmers' markets in Xinjiang, and analyzed for patulin using the proposed aptasensor. Patulin was detected in 16 samples (5.14%) at concentrations ranging from 1.23 to 16.4 µg kg-1. None of the samples exceeded the maximal level set by the EU commission (50 µg kg-1). The positivity in fresh fruits (7.69%) was significantly higher than that of fruit-based products (4.00%) and dried fruits (1.25%). In summary, the proposed aptasensor can quickly detect patulin in food samples, thus providing a warning for mycotoxin contamination.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Patulina , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Colorimetria , DNA , DNA Catalítico/química , DNA Catalítico/genética , Frutas , Hemina , Peroxidases
16.
Toxins (Basel) ; 14(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35878161

RESUMO

Patulin is a mycotoxin that primarily contaminate apples and apple products. Whole cell or cell-free extracts of Gluconobacter oxydans ATCC 621 were able to transform patulin to E-ascladiol. Proteins from cell-free extracts were separated by anion exchange chromatography and fractions with patulin transformation activity were subjected to peptide mass fingerprinting, enabling the identification of two NADPH dependent short chain dehydrogenases, GOX0525 and GOX1899, with the requisite activity. The genes encoding these enzymes were expressed in E. coli and purified. Kinetic parameters for patulin reduction, as well as pH profiles and thermostability were established to provide further insight on the potential application of these enzymes for patulin detoxification.


Assuntos
Gluconobacter oxydans , Malus , Patulina , Escherichia coli/metabolismo , Furanos , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Malus/química , Oxirredutases , Patulina/metabolismo
17.
Toxins (Basel) ; 14(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35878178

RESUMO

The fungal secondary metabolite patulin is a mycotoxin widespread in foods and beverages which poses a serious threat to human health. However, no enzyme was known to be able to degrade this mycotoxin. For the first time, we discovered that a manganese peroxidase (MrMnP) from Moniliophthora roreri can efficiently degrade patulin. The MrMnP gene was cloned into pPICZα(A) and then the recombinant plasmid was transformed into Pichia pastoris X-33. The recombinant strain produced extracellular manganese peroxidase with an activity of up to 3659.5 U/L. The manganese peroxidase MrMnP was able to rapidly degrade patulin, with hydroascladiol appearing as a main degradation product. Five mg/L of pure patulin were completely degraded within 5 h. Moreover, up to 95% of the toxin was eliminated in a simulated patulin-contaminated apple juice after 24 h. Using Escherichia coli as a model, it was demonstrated that the deconstruction of patulin led to detoxification. Collectively, these traits make MrMnP an intriguing candidate useful in enzymatic detoxification of patulin in foods and beverages.


Assuntos
Malus , Patulina , Agaricales , Bebidas/análise , Contaminação de Alimentos/análise , Humanos , Malus/microbiologia , Patulina/metabolismo , Peroxidases , Saccharomycetales
18.
Food Chem ; 395: 133607, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35802978

RESUMO

A new and novel poly(vinyl benzyl dithiocarbonate-dimethyl amino ethyl methacrylate) block copolymer (Pvb-DMA-Xa) as adsorbent was synthesized for the vortex-assisted dispersive solid phase microextraction (VA-DSPME) of patulin from apple products and dried fruits using Uv-visible spectrophotometer. The characterization of synthesized Pvb-DMA-Xa block copolymer was performed with Fourier Transform Infrared spectroscopy (FTIR-ATR) technique. Analytical characteristics such as pH, sorbent amount, adsorption time, eluent type and its volume, desorption time and adsorption capacity were optimized. Limit of detection (3Sb/m) and limit of quantitation (10Sb/m) were found 0.3 and 1.0 ng mL-1. Linear dynamic range (LDR), relative standard deviation (RSD) and recovery values were found in the range of 1-30 ng mL-1, 2.1-2.7 % and 93.5-97.3 %, respectively. Enhancement factor (EF) was found 193. The accuracy of the method was confirmed with standard addition method and analyzing of samples by reference method.


Assuntos
Malus , Patulina , Frutas/química , Limite de Detecção , Malus/química , Metacrilatos , Patulina/análise , Polímeros/química , Microextração em Fase Sólida/métodos
19.
J Hazard Mater ; 438: 129530, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816803

RESUMO

Due to improper storage, the presence of patulin in fruits poses a threat to food safety. Herein, a one-step dual amplification strategy-based electrochemical aptasensor was proposed for patulin detection. Silver-palladium nanoparticles (AgPdNPs) with a hollow and branched structure were used as a supporting material for thionine to provide numerous attachment sites. AuNFs/g-C3N4 was employed as an electrode modification material, which has been demonstrated to facilitate electron transport and improve signal label loading capacity. Ag+ ions were released in the presence of patulin, activating the Ag+-DNAzyme on the electrode surface. The formed Ag+-DNAzymes further cyclically cleaved the substrate DNA, and the released sequences were used as a new trigger to mediate the secondary recirculation. This one-step dual amplification strategy enabled double target recycling without additional procedures. The signal cascade amplification through dual target recycling, was thus available for trace detection of patulin. Under the optimal conditions, the electrochemical aptasensor achieved a satisfactory linear range from 5.0 × 10-6 µg L-1 to 50 µg L-1 with a detection limit of 0.92 fg·mL-1 for the determination of patulin. In addition, the aptasensor exhibited favorable selectivity, reproducibility, repeatability and long-term stability, and thus can be employed for patulin detection in apple juice samples, providing excellent choice for the detection of trace patulin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Patulina , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Paládio , Patulina/análise , Reprodutibilidade dos Testes
20.
Food Res Int ; 158: 111562, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840251

RESUMO

Penicillium expansum is the causative fungus of blue mold decay in postharvest pears resulting in substantial economic losses. Investigating P. expansum-pear fruit interactions is necessary to help develop P. expansum control strategies for effective and safe pear production. Investigating the P. expansum gene expression alterations and essential gene functions during the infection process is indispensable. Based on our results, the necrosis-inducing protein (NIP) gene was closely associated with genes related to plant cell wall degrading enzymes (CWDEs) and involved in P. expansum virulence. The NIP has high homology with other already-known fungal NIPs. To evidence the role of NIP in P. expansum virulence, NIP mutant (including knockout (ΔNIP) and complementation mutant (cNIP)) P. expansum were generated. Despite the NIP deletion did not affect the basic morphology and structure of P. expansum, it slowed down the fungal growth and hyphal production, thus reducing P. expansum's sporulation and patulin (PAT) accumulation. Furthermore, the deletion of NIP reduced the pathogenicity of P. expansum in pear. The complementation of NIP (cNIP) restored the growth, conidia production, PAT accumulation, and virulence of ΔNIP to the level of wild-type P. expansum. In addition, PAT can cause decay and aggravate the disease severity of wild-type P. expansum and ΔNIP on pears. Our results confirmed NIP plays a crucial role in P. expansum's growth, hyphal production, and pathogenicity in pears.


Assuntos
Patulina , Penicillium , Pyrus , Necrose , Doenças das Plantas/microbiologia , Pyrus/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...