Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.926
Filtrar
1.
J Ethnopharmacol ; 301: 115862, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36283638

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer (Ginseng) has traditionally been used to treat diabetes. Polysaccharide is the main active component of ginseng, and has been proved to have hypoglycaemic and hypolipidaemic effects, but its mechanism remains unclear. AIM OF THE STUDY: This study aimed to evaluate the effect and the potential mechanism of rhamnogalacturonan-I enriched pectin (GPS-1) from steamed ginseng on lipid metabolism in type 2 diabetes mellitus (T2DM) rats. MATERIALS AND METHODS: GPS-1 was prepared by water extraction, ion-exchange and gel chromatography. High-glucose/high-fat diet combined with streptozotocin was used to establish T2DM rat models, and lipid levels in serum and liver were tested. 16S rRNA sequencing and gas chromatography-mass spectrometry were used to detect the changes of gut microbiota and metabolites. The protein and mRNA levels of lipid synthesis-related genes were detected by Western blot and quantitative real-time polymerase chain reaction. RESULTS: The polyphagia, polydipsia, weight loss, hyperglycaemia, hyperlipidaemia and hepatic lipid accumulation in T2DM rats were alleviated after GPS-1 intervention. GPS-1 modulated the gut microbiota composition of T2DM rats, increased the levels of short-chain fatty acids, and promoted the secretion of glucagon-like peptide-1 and peptide tyrosine tyrosine. Further, GPS-1 activated AMP-activated protein kinases, phosphorylated acetyl-CoA carboxylase, reduced the expression of sterol regulatory element-binding protein-1c and fatty acid synthases in T2DM rats. CONCLUSIONS: The regulation effects of GPS-1 on lipid metabolism in T2DM rats are related to the regulation of gut microbiota and activation of AMP-activated protein kinase pathway.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Panax , Ratos , Animais , Metabolismo dos Lipídeos , Panax/química , Proteínas Quinases Ativadas por AMP/metabolismo , Ramnogalacturonanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , RNA Ribossômico 16S , Pectinas/farmacologia , Pectinas/metabolismo , Ácidos Graxos Voláteis , Tirosina/metabolismo
2.
Methods Mol Biol ; 2566: 269-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152259

RESUMO

The plant cell wall comprises various types of macromolecules whose abundance and spatial distribution change dynamically and are crucial for plant architecture. High-resolution live cell imaging of plant cell wall components is, therefore, a powerful tool for plant cell biology and plant developmental biology. To acquire suitable data, the experimental setup for staining and imaging of non-fixed samples must be straightforward and avoid creating stress-induced artifacts. We present a detailed sample preparation and live image acquisition protocol for fluorescence visualization of cell wall components using commercially available probes and stains.


Assuntos
Celulose , Pectinas , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Células Vegetais/metabolismo
3.
Food Chem ; 399: 133997, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037687

RESUMO

The effect of hydrogen-rich water (HRW) treatment on softening, cell wall components and cell wall metabolic genes in okras after harvest was studied. The results showed that HRW treatment could maintain fruit firmness and delay softening, thereby prolonging shelf life in okras during storage. The treated okras displayed significantly lower levels water- and chelate-soluble pectins while higher contents of Na2CO3-soluble pectin, hemicellulose and cellulose. The cell wall biosynthesis was maintained by HRW treatment via up-regulating genes involved in biosynthesis of pectin, hemicellulose and cellulose at the beginning of storage. On the contrary, the treatment could inhibit the cell wall disassembly due to the down-regulation of numerous cell wall degradative genes including AePME, AeGAL and AeCX at the end of storage. Taken together, our results suggested that HRW treatment delayed softening and extended shelf life in postharvest okras through modifying cell wall biosynthesis and disassembly at different times of storage.


Assuntos
Abelmoschus , Frutas , Abelmoschus/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Frutas/metabolismo , Hidrogênio/farmacologia , Pectinas/metabolismo , Água/metabolismo
4.
Food Chem ; 398: 133801, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961168

RESUMO

Effects of pectin, inulin, and their combination on the production of microbiota-derived indoles and short-chain fatty acids (SCFAs) from different colon segments were investigated in a batch system inoculated with microbiota from proximal colon (PC) and distal colon (DC) compartments of the Simulator of Human Intestinal Microbial Ecosystem. Bacteria from DC compartment had a higher abundance of Firmicutes and a stronger capacity to produce indoles and SCFAs than bacteria from PC compartment. Fiber supplementation significantly increased the production of SCFAs, indole-3-propionic acid, and indole-3-lactic acid, but decreased the production of oxindole, tryptamine, and serotonin. Pectin specifically promoted the production of indole-3-acetic acid and indole-3-aldehyde. Interestingly, supplementation of pectin or inulin increased the relative abundance of Bacteroidetes whereas supplementation of a mixture of two fibers decreased it. Overall, these results suggest that fiber supplementation and colon segment affect the composition of gut microbiota and the microbial catabolism of tryptophan.


Assuntos
Inulina , Microbiota , Bactérias/genética , Bactérias/metabolismo , Colo/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Indóis/metabolismo , Inulina/metabolismo , Pectinas/metabolismo
5.
Environ Health Perspect ; 130(11): 117003, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36331819

RESUMO

BACKGROUND: Perfluorooctane sulfonate (PFOS) is a persistent environmental pollutant that has become a significant concern around the world. Exposure to PFOS may alter gut microbiota and liver metabolic homeostasis in mammals, thereby increasing the risk of cardiometabolic diseases. Diets high in soluble fibers can ameliorate metabolic disease risks. OBJECTIVES: We aimed to test the hypothesis that soluble fibers (inulin or pectin) could modulate the adverse metabolic effects of PFOS by affecting microbe-liver metabolism and interactions. METHODS: Male C57BL/6J mice were fed an isocaloric diet containing different fibers: a) inulin (soluble), b) pectin (soluble), or c) cellulose (control, insoluble). The mice were exposed to PFOS in drinking water (3µg/g per day) for 7 wk. Multi-omics was used to analyze mouse liver and cecum contents. RESULTS: In PFOS-exposed mice, the number of differentially expressed genes associated with atherogenesis and hepatic hyperlipidemia were lower in those that were fed soluble fiber than those fed insoluble fiber. Shotgun metagenomics showed that inulin and pectin protected against differences in microbiome community in PFOS-exposed vs. control mice. It was found that the plasma PFOS levels were lower in inulin-fed mice, and there was a trend of lower liver accumulation of PFOS in soluble fiber-fed mice compared with the control group. Soluble fiber intake ameliorated the effects of PFOS on host hepatic metabolism gene expression and cecal content microbiome structure. DISCUSSIONS: Results from metabolomic, lipidomic, and transcriptomic studies suggest that inulin- and pectin-fed mice were less susceptible to PFOS-induced liver metabolic disturbance, hepatic lipid accumulation, and transcriptional changes compared with control diet-fed mice. Our study advances the understanding of interaction between microbes and host under the influences of environmental pollutants and nutrients. The results provide new insights into the microbe-liver metabolic network and the protection against environmental pollutant-induced metabolic diseases by high-fiber diets. https://doi.org/10.1289/EHP11360.


Assuntos
Poluentes Ambientais , Inulina , Camundongos , Masculino , Animais , Inulina/metabolismo , Inulina/farmacologia , Lipidômica , Metagenômica , Transcriptoma , Camundongos Endogâmicos C57BL , Fígado , Poluentes Ambientais/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Pectinas/metabolismo , Pectinas/farmacologia , Mamíferos
6.
Nat Plants ; 8(11): 1289-1303, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357524

RESUMO

Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.


Assuntos
Arabidopsis , Pectinas , Polimerização , Pectinas/metabolismo , Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo
7.
ACS Synth Biol ; 11(10): 3516-3528, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194500

RESUMO

The cell wall constitutes a fundamental structural component of plant cells, providing them with mechanical resistance and flexibility. Mimicking this wall is a critical step in the conception of an experimental model of the plant cell. The assembly of cellulose/hemicellulose in the form of cellulose nanocrystals and xyloglucans as a representative model of the plant cell wall has already been mastered; however, these models lacked the pectin component. In this work, we used an engineered chimeric protein designed for bridging pectin to the cellulose/hemicellulose network, therefore achieving the assembly of complete cell wall mimics. We first engineered a carbohydrate-binding module from Ruminococcus flavefaciens able to bind oligogalacturonan, resulting in high-affinity polygalacturonan receptors with Kd in the micromolar range. A Janus protein, with cell wall gluing property, was then designed by assembling this carbohydrate-binding module with a Ralstonia solanacearum lectin specific for fucosylated xyloglucans. The resulting supramolecular architecture is able to bind fucose-containing xyloglucans and homogalacturonan, ensuring high affinity for both. A two-dimensional assembly of an artificial plant cell wall was then built first on synthetic polymer and then on the supported lipid bilayer. Such an artificial cell wall can serve as a basis for the development of plant cell mechanical models and thus deepen the understanding of the principles underlying various aspects of plant cells and tissues.


Assuntos
Bicamadas Lipídicas , Células Vegetais , Células Vegetais/metabolismo , Bicamadas Lipídicas/metabolismo , Fucose/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Pectinas/análise , Pectinas/química , Pectinas/metabolismo , Celulose/metabolismo , Lectinas/análise , Lectinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
8.
Genes (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292591

RESUMO

A complex molecular regulatory network plays an important role in the development and ripening of fruits and leads to significant differences in apparent characteristics. Comparative transcriptome and sRNAome analyses were performed to reveal the regulatory mechanisms of fruit ripening in a spontaneous early-ripening navel orange mutant ('Ganqi 4', Citrus sinensis L. Osbeck) and its wild type ('Newhall' navel orange) in this study. At the transcript level, a total of 10792 genes were found to be differentially expressed between MT and WT at the four fruit development stages by RNA-Seq. Additionally, a total of 441 differentially expressed miRNAs were found in the four periods, and some of them belong to 15 families. An integrative analysis of the transcriptome and sRNAome data revealed some factors that regulate the mechanisms of formation of early-ripening traits. First, secondary metabolic materials, especially endogenous hormones, carotenoids, cellulose and pectin, obviously changed during fruit ripening in MT and WT. Second, we found a large number of differentially expressed genes (PP2C, SnRK, JAZ, ARF, PG, and PE) involved in plant hormone signal transduction and starch and sucrose metabolism, which suggests the importance of these metabolic pathways during fruit ripening. Third, the expression patterns of several key miRNAs and their target genes during citrus fruit development and ripening stages were examined. csi-miR156, csi-miR160, csi-miR397, csi-miR3954, and miRN106 suppressed specific transcription factors (SPLs, ARFs, NACs, LACs, and TCPs) that are thought to be important regulators involved in citrus fruit development and ripening. In the present study, we analyzed ripening-related regulatory factors from multiple perspectives and provide new insights into the molecular mechanisms that operate in the early-ripening navel orange mutant 'Ganqi 4'.


Assuntos
Citrus sinensis , MicroRNAs , Citrus sinensis/genética , Transcriptoma/genética , Frutas , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carotenoides/metabolismo , Sacarose/metabolismo , Pectinas/metabolismo , Amido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios , Celulose/metabolismo
9.
Ecotoxicol Environ Saf ; 246: 114178, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244168

RESUMO

Plant root growth is inhibited markedly by aluminium (Al) even at micromolar concentration and Al is mainly accumulated in plant roots outer layer cell walls. But the underlying reason for this asymmetric transverse distribution is unknown. In this study, two wheat (Triticum aestivum L.) genotypes ET8 and ES8 differing in Al resistance were investigated by hydroculture. The Al-tolerant ET8 expressed a higher root elongation rate (RER) than Al-sensitive ES8 under Al stress. Morphological examination showed symptoms such as root surface ruptures were observed in ET8 and ES8, with ES8 being more obvious. The cation exchange capacity (CEC) values of root tips of ES8 under different Al concentrations are higher than those of ET8. The sensitive genotype ES8 accumulated more Al than ET8 in plant apical root tips as well as cell walls. Under 48 h Al exposure, the root cell wall pectin concentration was increased with a higher magnitude in ES8 than in ET8. The functional groups on ET8 and ES8 roots outer layer and inner cells were investigated by Fourier transform infrared spectrometry (FTIR) under Al stress. The FTIR spectra of selected examined areas showed that the characteristic absorption peaks were located at 1692, 2920, and 3380 cm-1. The outer layer cells had stronger peaks than inner cells at wavenumber 1680-1740 cm-1, indicating root outer layer cells contain more carboxyls in both ET8 and ES8. The results demonstrate that Al transverse distribution on plants apical root cross section is likely influenced by functional groups such as negatively charged carboxylic acid.


Assuntos
Alumínio , Triticum , Triticum/genética , Triticum/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo
10.
Plant Physiol Biochem ; 191: 67-77, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195034

RESUMO

Ammonium promotes rice P uptake and reutilization better than nitrate, under P starvation conditions; however, the underlying mechanism remains unclear. In this study, ammonium treatment significantly increased putrescine and ethylene content in rice roots under P deficient conditions, by increasing the protein content of ornithine decarboxylase and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase compared with nitrate treatment. Ammonium treatment increased rice root cell wall P release by increasing pectin content and pectin methyl esterase (PME) activity, increased rice shoot cell membrane P release by decreasing phosphorus-containing lipid components, and maintained internal P homeostasis by increasing OsPT2/6/8 expression compared with nitrate treatment. Ammonium also improved external P uptake by regulating root morphology and increased rice grain yield by increasing the panicle number compared with nitrate treatment. The application of putrescine and ethylene synthesis precursor ACC further improved the above process. Our results demonstrate for the first time that ammonium increases rice P acquisition, reutilization, and homeostasis, and rice grain yield, in a putrescine- and ethylene-dependent manner, better than nitrate, under P starvation conditions.


Assuntos
Compostos de Amônio , Oryza , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Esterases/metabolismo , Etilenos/metabolismo , Lipídeos , Nitratos/metabolismo , Ornitina Descarboxilase/metabolismo , Oryza/metabolismo , Oxirredutases/metabolismo , Pectinas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Putrescina/metabolismo
11.
Carbohydr Polym ; 297: 120025, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184173

RESUMO

Pectin is a major component in many agricultural feedstocks. Despite the wide use in industrial production of cellulases and hemicellulases, the fungus Trichoderma reesei lacks a complete enzyme set for pectin degradation. In this study, three representative pectinolytic enzymes were expressed and screened for their abilities to improve the efficiency of T. reesei enzymes on the conversion of different agricultural residues. By replacing 5 % of the T. reesei proteins, endopolygalacturonase and pectin lyase remarkably increased the release of sugars from inferior tobacco leaves. In contrast, pectin methylesterase showed the strongest improving effect (by 31.1 %) on the hydrolysis of beetroot residue. The pectin in beetroot residue was only mildly degraded with the supplementation of pectin methylesterase, which allowed the extraction of pectin keeping the original emulsifying activity with a 51.1 % higher yield. The results provide a basis for precise optimization of lignocellulolytic enzyme systems for targeted valorization of pectin-rich agricultural residues.


Assuntos
Celulase , Celulases , Trichoderma , Biomassa , Celulase/metabolismo , Celulases/metabolismo , Hidrólise , Pectinas/metabolismo , Poligalacturonase/metabolismo , Açúcares/metabolismo
12.
Sci Rep ; 12(1): 15830, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138114

RESUMO

Pectin is one of the main structural components in fruits and an indigestible fiber made of D-galacturonic acid units with α (1-4) linkage. This study investigates the microbial degradation of pectin in apple waste and the production of bioactive compounds. Firstly, pectin-degrading bacteria were isolated and identified, then pectinolytic activity was assessed by DNS. The products were evaluated by TLC and LC-MS-ESI. The antioxidative effects were investigated using DPPH and anti-cancer effects and cytotoxicity were analyzed by MTT and flow cytometry. In this study two new bacterial isolates, Alcaligenes faecalis AGS3 and Paenibacillus polymyxa S4 with the pectinolytic enzyme were introduced. Structure analysis showed that the products of enzymatic degradation include unsaturated mono, di, tri, and penta galacturonic acids with 74% and 69% RSA at 40 mg/mL for A. faecalis and P. polymyxa S4, respectively. The results of anti-tumor properties on MCF-7 cells by MTT assay, for products of AGS3 and S4 at 40 mg/mL after 48 h, showed 7% and 9% survival, respectively. In the flow cytometric assessment, the compounds of AGS3 at 40 mg/mL were 100% lethal in 48 h and regarding S4 isolate caused 98% death. Cytotoxicity evaluation on L-929 cells showed no significant toxicity on living cells.


Assuntos
Alcaligenes faecalis , Malus , Paenibacillus polymyxa , Paenibacillus , Alcaligenes faecalis/metabolismo , Ácidos Hexurônicos , Malus/metabolismo , Paenibacillus/metabolismo , Paenibacillus polymyxa/metabolismo , Pectinas/metabolismo , Poligalacturonase/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(40): e2205857119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161953

RESUMO

Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.


Assuntos
Besouros , Transferência Genética Horizontal , Poligalacturonase , Animais , Besouros/enzimologia , Besouros/genética , Técnicas de Inativação de Genes , Pectinas/metabolismo , Filogenia , Plantas/química , Poligalacturonase/genética
14.
Int J Biol Macromol ; 222(Pt A): 671-679, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174858

RESUMO

Factors causing differences in immune activities between pectin and pectin-derived oligosaccharides have not been fully studied. In this article, four samples with different molecular weights and monosaccharide compositions, including polygalacturonic acid (poly-GA) and its oligosaccharide (oligo-GA), navel orange peel pectin (NP) and its oligosaccharide (oligo-NP), were used to compare their immunomodulatory properties on RAW264.7 cells. All samples had nontoxic effect on cells, oligo-GA and oligo-NP could increase the production of nitric oxide and cytokines to a much higher level than poly-GA and NP. The findings revealed that reducing the molecular weight and preserving the branched regions of pectin-derived samples could improve their immune-enhancing effects on macrophages. Interestingly, the addition of TAK-242 (TLR4 inhibitor) also demonstrated that the tested pectin oligosaccharides could stimulate the activation of macrophages through TLR4 signaling pathway. These results confirmed the potential value of pectin oligosaccharides, and provided theoretical support for their application in the pharmaceutical industry.


Assuntos
Pectinas , Receptor 4 Toll-Like , Pectinas/farmacologia , Pectinas/metabolismo , Oligossacarídeos/farmacologia , Monossacarídeos , Peso Molecular
15.
Food Funct ; 13(19): 9999-10012, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36065954

RESUMO

Pectin as a dietary fiber supplement has shown emerging potential in clinical ulcerative colitis (UC) adjuvant therapy. In this study, the preventive and prebiotic effects of enzymatically degraded pectic oligosaccharides (POS) were further explored in dextran sodium sulfate (DSS)-induced colitis mice. The POS supplement (400 mg kg-1) was significantly effective at improving preventive efficacy, promoting colonic epithelial barrier integrity and reducing inflammatory cytokines. Meanwhile, the changes in T regulatory (Treg) cells and T helper 17 (Th17) cells indicated that POS treatment regulated the Treg/Th17 balance. Gut microbiota analysis showed that the POS supplement reshaped the dysfunctional gut microbiota. Further Spearman's correlation coefficient analysis indicated that the changes of the gut microbiota were highly associated with modulating the epithelial barrier, promoting the development of Treg cells and suppressing the differentiation of pro-inflammatory Th17 cells. All of these results suggest that enzymatically- degraded POS is a promising therapeutic agent for UC prevention and adjuvant treatment by maintaining intestinal homeostasis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Fibras na Dieta/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos/metabolismo , Pectinas/metabolismo , Linfócitos T Reguladores , Células Th17
16.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144759

RESUMO

Potato (Solanum tuberosum L.) exhibits broad variations in cultivar resistance to tuber and root infections by the soilborne, obligate biotrophic pathogen Spongospora subterranea. Host resistance has been recognised as an important approach in potato disease management, whereas zoospore root attachment has been identified as an effective indicator for the host resistance to Spongospora root infection. However, the mechanism of host resistance to zoospore root attachment is currently not well understood. To identify the potential basis for host resistance to S. subterranea at the molecular level, twelve potato cultivars differing in host resistance to zoospore root attachment were used for comparative proteomic analysis. In total, 3723 proteins were quantified from root samples across the twelve cultivars using a data-independent acquisition mass spectrometry approach. Statistical analysis identified 454 proteins that were significantly more abundant in the resistant cultivars; 626 proteins were more abundant in the susceptible cultivars. In resistant cultivars, functional annotation of the proteomic data indicated that Gene Ontology terms related to the oxidative stress and metabolic processes were significantly over-represented. KEGG pathway analysis identified that the phenylpropanoid biosynthesis pathway was associated with the resistant cultivars, suggesting the potential role of lignin biosynthesis in the host resistance to S. subterranea. Several enzymes involved in pectin biosynthesis and remodelling, such as pectinesterase and pectin acetylesterase, were more abundant in the resistant cultivars. Further investigation of the potential role of root cell wall pectin revealed that the pectinase treatment of roots resulted in a significant reduction in zoospore root attachment in both resistant and susceptible cultivars. This study provides a comprehensive proteome-level overview of resistance to S. subterranea zoospore root attachment across twelve potato cultivars and has identified a potential role for cell wall pectin in regulating zoospore root attachment.


Assuntos
Plasmodioforídeos , Solanum tuberosum , Lignina/metabolismo , Pectinas/metabolismo , Doenças das Plantas , Plasmodioforídeos/genética , Poligalacturonase/metabolismo , Proteoma/metabolismo , Proteômica , Solanum tuberosum/metabolismo
17.
J Agric Food Chem ; 70(38): 12095-12106, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121066

RESUMO

In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.


Assuntos
Metagenoma , Microbiota , Animais , Biomassa , Ácidos Graxos Voláteis/metabolismo , Fermentação , Pectinas/metabolismo , Rúmen/metabolismo , Xilanos/metabolismo
18.
Nutrients ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145086

RESUMO

Ulcerative colitis (UC) patients often avoid foods containing fermentable fibers as some can promote symptoms during active disease. Pectin has been identified as a more protective fermentable fiber, but little has been done to determine the interaction between pectin and bioactive compounds present in foods containing that fiber type. Quercetin and chlorogenic acid, two bioactives in stone fruits, may have anti-cancer, anti-oxidant, and anti-inflammatory properties. We hypothesized that quercetin and chlorogenic acid, in the presence of the fermentable fiber pectin, may suppress the expression of pro-inflammatory molecules, alter the luminal environment, and alter colonocyte proliferation, thereby protecting against recurring bouts of UC. Rats (n = 63) received one of three purified diets (control, 0.45% quercetin, 0.05% chlorogenic acid) containing 6% pectin for 3 weeks before exposure to dextran sodium sulfate (DSS, 3% for 48 h, 3x, 2 wk separation, n = 11/diet) in drinking water to initiate UC, or control (no DSS, n = 10/diet) treatments prior to termination at 9 weeks. DSS increased the fecal moisture content (p < 0.05) and SCFA concentrations (acetate, p < 0.05; butyrate, p < 0.05). Quercetin and chlorogenic acid diets maintained SLC5A8 (SCFA transporter) mRNA levels in DSS-treated rats at levels similar to those not exposed to DSS. DSS increased injury (p < 0.0001) and inflammation (p < 0.01) scores, with no differences noted due to diet. Compared to the control diet, chlorogenic acid decreased NF-κB activity in DSS-treated rats (p < 0.05). Quercetin and chlorogenic acid may contribute to the healthy regulation of NF-κB activation (via mRNA expression of IκΒα, Tollip, and IL-1). Quercetin enhanced injury-repair molecule FGF-2 expression (p < 0.01), but neither diet nor DSS treatment altered proliferation. Although quercetin and chlorogenic acid did not protect against overt indicators of injury and inflammation, or fecal SCFA concentrations, compared to the control diet, their influence on the expression of injury repair molecules, pro-inflammatory cytokines, SCFA transport proteins, and NF-κB inhibitory molecules suggests beneficial influences on major pathways involved in DSS-induced UC. Therefore, in healthy individuals or during periods of remission, quercetin and chlorogenic acid may promote a healthier colon, and may suppress some of the signaling involved in inflammation promotion during active disease.


Assuntos
Colite Ulcerativa , Colite , Água Potável , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Butiratos/metabolismo , Proteínas de Transporte/metabolismo , Ácido Clorogênico/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Dieta , Fibras na Dieta/metabolismo , Modelos Animais de Doenças , Água Potável/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B/genética , NF-kappa B/metabolismo , Pectinas/metabolismo , Pectinas/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , RNA Mensageiro/metabolismo , Ratos
19.
J Adv Res ; 40: 59-68, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100334

RESUMO

INTRODUCTION: Cell wall degradation and remodeling is the key factor causing fruit softening during ripening. OBJECTIVES: To explore the mechanism underlying postharvest cell wall metabolism, a transcriptome analysis method for more precious prediction on functional genes was needed. METHODS: Kiwifruits treated by ethylene (a conventional and effective phytohormone to accelerate climacteric fruit ripening and softening as kiwifruits) or air were taken as materials. Here, Consensus Coexpression Network Analysis (CCNA), a procedure evolved from Weighted Gene Co-expression Network Analysis (WGCNA) package in R, was applied and generated 85 consensus clusters from twelve transcriptome libraries. Advanced and comprehensive modifications were achieved by combination of CCNA and WGCNA with introduction of physiological traits, including firmness, cell wall materials, cellulose, hemicellulose, water soluble pectin, covalent binding pectin and ionic soluble pectin. RESULTS: As a result, six cell wall metabolisms related structural genes AdGAL1, AdMAN1, AdPL1, AdPL5, Adß-Gal5, AdPME1 and four transcription factors AdZAT5, AdDOF3, AdNAC083, AdMYBR4 were identified as hub candidate genes for pectin degradation. Dual-luciferase system and electrophoretic mobility shift assays validated that promoters of AdPL5 and Adß-Gal5 were recognized and trans-activated by transcription factor AdZAT5. The relatively higher enzyme activities of PL and ß-Gal were observed in ethylene treated kiwifruit, further emphasized the critical roles of these two pectin related genes for fruit softening. Moreover, stable transient overexpression AdZAT5 in kiwifruit significantly enhanced AdPL5 and Adß-Gal5 expression, which confirmed the in vivo regulations between transcription factor and pectin related genes. CONCLUSION: Thus, modification and application of CCNA would be powerful for the precious phishing the unknown regulators. It revealed that AdZAT5 is a key factor for pectin degradation by binding and regulating effector genes AdPL5 and Adß-Gal5.


Assuntos
Actinidia , Frutas , Actinidia/genética , Actinidia/metabolismo , Consenso , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Pectinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Food Chem ; 397: 133837, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35947936

RESUMO

Compared with P. longanae-infected longan, 2, 4-dinitrophenol (DNP) treatment for P. longanae-infected longan displayed the lower levels of pulp firmness, cell wall materials, ionic-soluble pectin, covalent-soluble pectin, hemicellulose, or cellulose, but the higher amount of water-soluble pectin, the higher activities of cell wall-degrading enzymes (CWDEs) (PG, ß-Gal, PME, Cx, and XET), and the higher transcript levels of CWDEs-related genes (DlPG1, DlPG2, Dlß-Gal1, DlPME1, DlPME2, DlPME3, DlCx1, and DlXET30). On the contrary, ATP treatment for P. longanae-infected longan exhibited opposite effects. The above results imply that DNP accelerated P. longanae-induced pulp softening and breakdown of fresh longan, which was because DNP up-regulated the transcript levels of CWDEs-related genes, enhanced the CWDEs activities, and accelerated the degradation of cell wall polysaccharides (CWP). However, ATP suppressed longan pulp softening and breakdown caused by P. longanae, because ATP down-regulated the transcript levels of CWDEs-related genes, lowered the CWDEs activities, and reduced the CWP degradation.


Assuntos
Frutas , Pectinas , Trifosfato de Adenosina/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Frutas/genética , Frutas/metabolismo , Pectinas/metabolismo , Phomopsis , Polissacarídeos/metabolismo , Sapindaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...