Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
1.
Nature ; 591(7849): 281-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568815

RESUMO

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Assuntos
Macrófagos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Mioblastos/citologia , Nicotinamida Fosforribosiltransferase/metabolismo , Nicho de Células-Tronco , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Macrófagos/citologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fator de Transcrição PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneração/fisiologia , Análise de Célula Única , Peixe-Zebra/imunologia
2.
Int J Biol Macromol ; 170: 42-52, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316344

RESUMO

In the present study, an immunological arabinan, LCP70-2A, was isolated from Ligusticum chuanxiong for the first time. The absolute molecular weight of LCP70-2A was determined to be 6.46 × 104 g/mol using the HPSEC-MALLS-RID method. The absolute configuration of arabinose in LCP70-2A was determined to be L-configuration. Physicochemical characterization revealed that LCP70-2A was a homogeneous polysaccharide and had a backbone of (1 â†’ 5)-linked α-L-Araf with terminal α-L-arabinose residues at position O-2 and O-3. Molecular conformation analysis showed that LCP70-2A was a branching polysaccharide with a compact coil chain conformation in 0.1 M NaCl solution. In addition, in vitro cell assays showed that LCP70-2A can activate macrophages by enhancing the phagocytosis and potentiating the secretion of immunoregulatory factors including NO, TNF-α, IL-6, and IL-1ß. Furthermore, LCP70-2A was proved to promote the production of ROS and NO using the zebrafish model, suggesting that LCP70-2A can be further developed as a candidate supplement for immunological enhancement.


Assuntos
Medicamentos de Ervas Chinesas/química , Ligusticum/química , Polissacarídeos/química , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Técnicas de Química Analítica , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Peso Molecular , Óxido Nítrico/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fagocitose/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Rizoma/química , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia
3.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-48007

RESUMO

Pesquisadores da Universidade de São Paulo (USP) investigam o uso do zebrafish para testar segurança de vacinas contra a Covid-19, a partir de análises do sistema imunológico do peixe. Parceria com o Instituto Nacional de Controlde de Qualidade em Saúde (INCQS/Fiocruz) viabilizará testes com a vacina de Oxford, da Astrazeneca.


Assuntos
Infecções por Coronavirus , Vacinas , Peixe-Zebra/imunologia
4.
Nat Protoc ; 15(9): 3105-3128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32826993

RESUMO

Zebrafish are an ideal cell transplantation model. They are highly fecund, optically clear and an excellent platform for preclinical drug discovery studies. Traditionally, xenotransplantation has been carried out using larval zebrafish that have not yet developed adaptive immunity. Larval engraftment is a powerful short-term transplant platform amenable to high-throughput drug screening studies, yet animals eventually reject tumors and cannot be raised at 37 °C. To address these limitations, we have recently developed adult casper-strain prkdc-/-, il2rgα-/- immunocompromised zebrafish that robustly engraft human cancer cells for in excess of 28 d. Because the adult zebrafish can be administered drugs by oral gavage or i.p. injection, our model is suitable for achieving accurate, preclinical drug dosing. Our platform also allows facile visualization of drug effects in vivo at single-cell resolution over days. Here, we describe the procedures for xenograft cell transplantation into the prkdc-/-, il2rgα-/- model, including refined husbandry protocols for optimal growth and rearing of immunosuppressed zebrafish at 37 °C; optimized intraperitoneal and periocular muscle cell transplantation; and epifluorescence and confocal imaging approaches to visualize the effects of administering clinically relevant drug dosing at single-cell resolution in vivo. After identification of adult homozygous animals, this procedure takes 35 d to complete. 7 days are required to acclimate adult fish to 37 °C, and 28 d are required for engraftment studies. Our protocol provides a comprehensive guide for using immunocompromised zebrafish for xenograft cell transplantation and credentials the model as a new preclinical drug discovery platform.


Assuntos
Transformação Celular Neoplásica , Imagem Molecular/métodos , Análise de Célula Única/métodos , Peixe-Zebra/imunologia , Animais , Linhagem Celular Tumoral , Humanos
5.
Proc Natl Acad Sci U S A ; 117(26): 15066-15074, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554492

RESUMO

Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.


Assuntos
Melanoma/metabolismo , Telômero/metabolismo , Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Melanoma/genética , Melanoma/imunologia , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Encurtamento do Telômero , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Chemosphere ; 255: 127040, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416398

RESUMO

There is growing concern that microplastics (MPs), which act as carriers of other organic contaminants, are mistakenly ingested by aquatic organisms, consequently causing unpredictable adverse effects. In this study, zebrafish larvae (6 d post fertilization) were exposed to either 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), polystyrene microplastics (PS-MPs) or their combination for 7 d to evaluate the effects of the presence of PS-MPs on the bioaccumulation and immunomodulation of F-53B. PS-MPs greatly promoted the sorption of F-53B, which reduced the bioavailability and bioaccumulation of F-53B in zebrafish larvae. F-53B, PS-MPs, or their mixture significantly reduced the body weight of zebrafish larvae. Combined exposure of PS-MPs and F-53B resulted in a significant reduction in superoxide dismutase (SOD) and lysozyme activity, indicating the occurrence of oxidative stress and inflammatory response in zebrafish larvae. The content of malondialdehyde (MDA) and immunoglobulin M (IgM) was not affected by F-53B or PS-MPs, but significantly increased in their combined exposure. Furthermore, co-exposure of F-53B and PS-MPs significantly upregulated the transcripts of pro-inflammatory cxcl-clc and il-1ß genes and increased the levels of iNOS protein in zebrafish larvae. In addition, enhanced protein expression of NF-κB paralleled the upregulation in the expression of most immune-related genes, suggesting NF-κB pathway was mechanistically involved in these responses. Collectively, the presence of MPs decreased F-53B bioaccumulation, but induced inflammatory stress in larval zebrafish. These findings highlight the health risks of co-contamination of MPs and F-53B in aquatic environments.


Assuntos
Alcanossulfonatos/toxicidade , Bioacumulação , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Alcanossulfonatos/metabolismo , Animais , Disponibilidade Biológica , Larva/efeitos dos fármacos , Larva/imunologia , Larva/metabolismo , Malondialdeído/metabolismo , Microplásticos/metabolismo , Estresse Oxidativo/imunologia , Poliestirenos/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/imunologia
7.
Nanotoxicology ; 14(5): 667-682, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32141807

RESUMO

Graphene oxide (GO) is an increasingly important nanomaterial that exhibits great promise in the area of bionanotechnology and nanobiomedicine. However, the toxic effects of GO on the vertebrate developmental system are still poorly understood. Here, we aimed to investigate the toxic effects and molecular mechanisms of GO exposure in larval and adult zebrafish. The results showed that the major hepatotoxic phenotype induced by GO in zebrafish embryos was a significant decrease in liver area and a dose-dependent decrease in the hepatocytes. Moreover, the number of macrophages and neutrophils in zebrafish embryos were reduced but the expressions of pro-inflammatory cytokines were increased after GO treatment. High through-put RNA-Seq identified 314 differentially expressed genes (DEGs) in GO-induced zebrafish embryos including 192 up-regulated and 122 down-regulated. KEGG and GO functional analysis revealed that steroid hormone biosynthesis, lipoprotein metabolic process, and PPAR signaling pathway were significantly enriched. Most of the lipid metabolism genes were down-regulated while majority of the immune genes were up-regulated after GO treatment. Moreover, GO induced NF-κB p65 into the nucleus and increased the protein levels of NF-κB p65, JAK2, STAT3, and Bcl2 in adult zebrafish liver. In addition, pharmacological experiments showed that inhibition of ROS and blocking the MAPK signaling could rescue the hepatotoxic phenotypes induced by GO exposure. On the contrary, pharmacological activation of PPAR-α expression have increased the hepatotoxic effects in GO-induced larval and adult zebrafish. Taken together, these informations demonstrated that GO induced hepatic dysfunction mainly through the ROS and PPAR-α mediated innate immune signaling in zebrafish.


Assuntos
Grafite/toxicidade , Imunidade Inata/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Peixe-Zebra/imunologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/imunologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Grafite/química , Larva/efeitos dos fármacos , Larva/imunologia , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/imunologia , Macrófagos/citologia , Nanopartículas/química , Neutrófilos/citologia , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Chemosphere ; 249: 126200, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086066

RESUMO

Perfluorooctanoic acid (PFOA) has been identified as a new persistent organic pollutant. This pollutant is ubiquitous in water and environments. Although PFOA is toxic to fishes, the precise immunotoxicological mechanism remains unclear. In this study, HPLC-MS analysis proved that PFOA can accumulate in the spleen of zebrafish. As comparison of 7-day and 14-day data, the cumulative content in the spleen significantly increased by 26% even in the 0.1 mg/L PFOA-treated group. Morphological observations revealed that PFOA can damage immune cells in zebrafish spleen by inducing vacuolization, lipofuscin granule production, and mitochondrial swelling. The Toll-like receptor 2 (TLR2)/myeloid differentiation factor 88 (myd88)/NF-κB (P65) pathway can mediate the mRNA expression levels of interferon (IFN) and B cell-activating factor (BAFF); immunoglobulin (Ig) secretion is further regulated. RT-PCR results indicated that the expression levels of P65 and IFN in the 1 mg/L group after PFOA exposure for 7 d increased by 4.03- and 3.28-fold, respectively, in a dose-dependent manner compared with those of the control group. The linear correlation coefficient (r2) was analyzed, and the results indicated that the Ig-mediated pathway can be affected by PFOA. For example, the r2 between IgD and P65 decreased from 0.641 (7 d) to 0.295 (14 d) after the cells were exposed to PFOA for a prolonged time; the r2 between IgD and IFN increased from 0.562 (7 d) to 0.808 (14 d). The triangle plot method strongly demonstrated that increased PFOA concentration and prolonged exposure to PFOA can inhibit Ig secretion. Therefore, immune organs, particularly the spleen, of zebrafish are vulnerable to PFOA. These results can help to improve the understanding of the possible noncarcinogenic risk mechanisms induced by PFOA.


Assuntos
Caprilatos/toxicidade , Fluorcarbonetos/toxicidade , Baço/imunologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/imunologia , Animais , Poluentes Ambientais/metabolismo , Imunossupressão , Baço/metabolismo , Receptor 2 Toll-Like , Fator de Transcrição RelA/metabolismo , Peixe-Zebra/metabolismo
9.
Fish Physiol Biochem ; 46(2): 759-770, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31897859

RESUMO

The main purpose of this study was to evaluate the immunity, antioxidant indices, and disease resistance of quercetin in zebrafish (Danio rerio). A total of 630 fish were assigned to 21 tanks with 30 fish/tank, and they were exposed to 0, 0.01, 0.1, 1, 10, 100, and 1000 µg/L quercetin, respectively, for 56 days. Results indicated that the immune indices including acid phosphatase (ACP), myeloperoxidase (MPO), lysozyme activities, and Complement 3 (C3), C4, IgM contents were significantly higher in 1 µg/L quercetin group than these parameters in the control group (P < 0.05). TNF-α and IL-8 mRNA expressions significantly decreased as the levels of quercetin increased up to 1 µg/L and increased thereafter (P < 0.05). 1 and 10 µg/L quercetin groups showed significantly lower TNF-α and IL-8 mRNA levels than the quercetin-free group. Transforming growth factor-ß and IL-10 mRNA levels showed an obviously opposite trend with TNF-α expression. The SOD, GPX, CAT, T-AOC activities, and SOD and GPX gene expression in the liver were enhanced with increasing quercetin up to 1 µg/L, and decreased thereafter. MDA contents were affected by quercetin, in which 1 and 10 µg/L quercetin had a significantly lower level than that of the control group (P < 0.05). Defensin and Leap-II mRNA expression in the liver were the highest for fish exposed to 1 µg/L quercetin. The fish that exposed to 1 µg/L quercetin also showed a significantly higher survival rate than these of fish exposed to 0, 0.01, and 1000 µg/L quercetin (P < 0.05). In conclusion, the optimal level of quercetin promotes immunostimulant properties, antioxidant indices, and disease resistance of zebrafish.


Assuntos
Quercetina , Peixe-Zebra/fisiologia , Ração Animal , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Resistência à Doença , Interleucina-10 , Peixe-Zebra/imunologia
10.
Fish Shellfish Immunol ; 97: 564-570, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31891808

RESUMO

Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor that responds to environmental chemicals, has been recently found to be closely associated with immune response in mammals. Pseudomonas plecoglossicida (P. plecoglossicida) is a temperature-dependent bacterial pathogen of visceral white spot disease in fish. Using dual RNA-seq, we previously evaluated the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in the spleen of Epinephelus coioides at different time points after infection with P. plecoglossicida. In the present study, the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in different organs of E. coioides and Danio rerio showed similar trends after being infected by P. plecoglossicida. It also was noted that liver, intestine, spleen, and heart were the most obviously affected organs, and ahr2 particularly showed a dramatically increase in the spleen. Subsequently, macrophages of E. coioides were isolated, and then infected by P. plecoglossicida, followed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, which revealed that the expression level of ahr1a in macrophages was significantly down-regulated, while expression levels of ahr1b, ahr2 and cyp1a were noticeably up-regulated. Eventually, it was noted that ahr1b and ahr2 were knocked-down in macrophages, and intracellular survival rate and immune escape rate of P. plecoglossicida were markedly improved. Taken together, ahr1a, ahr1b, ahr2 and cyp1a participate in the immune response to P. plecoglossicida in different organs of fish, while ahr1b and ahr2 may play pivotal roles in the immune response of spleen and macrophages.


Assuntos
Bass/imunologia , Imunidade Inata , Infecções por Pseudomonas/veterinária , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Peixe-Zebra/imunologia , Animais , Proteínas de Bactérias/genética , Bass/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Pseudomonas , Infecções por Pseudomonas/imunologia , RNA-Seq , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
11.
Dis Model Mech ; 13(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31932292

RESUMO

The specific roles of the two major innate immune cell types - neutrophils and macrophages - in response to infection and sterile inflammation are areas of great interest. The larval zebrafish model of innate immunity, and the imaging capabilities it provides, is a source of new research and discoveries in this field. Multiple methods have been developed in larval zebrafish to specifically deplete functional macrophages or neutrophils. Each of these has pros and cons, as well as caveats, that often make it difficult to directly compare results from different studies. The purpose of this Review is to (1) explore the pros, cons and caveats of each of these immune cell-depleted models; (2) highlight and place into a broader context recent key findings on the specific functions of innate immune cells using these models; and (3) explore future directions in which immune cell depletion methods are being expanded.


Assuntos
Imunidade Inata/imunologia , Macrófagos/fisiologia , Neutrófilos/fisiologia , Peixe-Zebra/imunologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Larva/imunologia , Metronidazol/farmacologia , Camundongos , Microglia/fisiologia
12.
BMC Res Notes ; 13(1): 6, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900206

RESUMO

OBJECTIVES: Cell-culture studies reported that prokaryotic RNA molecules among the various microbe-associated molecular patterns (MAMPs) were uniquely present in live bacteria and were categorized as viability-associated MAMPs. They also reported that specific nucleotide modifications are instrumental in the discrimination between self and nonself RNAs. The aim of this study was to characterize the in vivo immune induction potential of prokaryotic and eukaryotic ribosomal RNAs (rRNAs) using zebrafish embryos as novel whole animal model system. Additionally, we aimed to test the possible role of rRNA modifications in immune recognition. RESULTS: We used three immune markers to evaluate the induction potential of prokaryotic rRNA derived from Escherichia coli and eukaryotic rRNAs from chicken (nonself) and zebrafish (self). Lipopolysaccharide (LPS) of Pseudomonas aeruginosa served as a positive control. E. coli rRNA had an induction potential equivalent to that of LPS. The zebrafish innate immune system could discriminate between self and nonself rRNAs. Between the nonself rRNAs, E. coli rRNA was more immunogenic than chicken rRNA. The in vitro transcript of zebrafish 18S rRNA gene without the nucleotide modifications was not recognized by its own immune system. Our data suggested that prokaryotic rRNA is immunostimulatory in vivo and could be useful as an adjuvant.


Assuntos
Embrião não Mamífero/imunologia , Imunidade Inata , Células Procarióticas/metabolismo , RNA Ribossômico/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia , Animais , Biomarcadores/metabolismo , Lipopolissacarídeos/imunologia , RNA Ribossômico 18S/genética , Transcrição Genética
13.
Fish Shellfish Immunol ; 96: 262-269, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31816414

RESUMO

Norfloxacin nicotinate (NOR-N), an adduct of norfloxacin (NOR) and nicotinic acid, has been widely used for replacing NOR in animal husbandry and fishery industry. Nowadays, increasing evidences showed that NOR could pose toxic effects on fish and other aquatic organisms, but as its adduct, whether NOR-N could cause adverse effects on aquatic organisms is still unclear. To evaluate the toxic effects of NOR-N on the early life stage of zebrafish, we determined the changes in embryonic development (hatching rate, body length, malformation rate and mortality), antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx)) activities, malondialdehyde (MDA) content and gene expression levels related to antioxidant enzymes (Cu/Zn-sod, Mn-sod, CAT and Gpx) and innate immune system (tumor necrosis factor α (TNFα), interferon (IFN), Interleukin-1 beta (IL-1ß), IL-8, CXCL-clc, CC-chemokine, lysozyme (Lzy) and complement factors (C3)) after embryonic exposure to NOR-N till 96 hpf. The results showed that NOR-N exposure could decreased the hatching rate and body length, and increased abnormality and mortality as concentration-dependent during embryonic development process. NOR-N induced oxidative stress in zebrafish larvae through increasing the contents of MDA and the activities of SOD, CAT and Gpx, as well as the mRNA levels of genes related to these antioxidant enzymes. Moreover, the expression of TNFα, IFN, IL-1ß, IL-8, CXCL-clc, CC-chemokine, Lzy and C3 genes were significantly up-regulated after exposure to high concentration (5 and/or 25 mg/L) of NOR-N till 96 hpf, indicating that the innate immune system in zebrafish larvae was disturbed by NOR-N. Overall, our results suggested that NOR-N caused development toxicity, oxidative stress and immunotoxicity on the early life stage of zebrafish. Thus, widespread application of NOR-N might pose potential ecotoxicological risk on aquatic ecosystems.


Assuntos
Antibacterianos/toxicidade , Imunidade Inata/efeitos dos fármacos , Norfloxacino/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/imunologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/imunologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/imunologia , Ácidos Nicotínicos/toxicidade , Norfloxacino/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
14.
Fish Shellfish Immunol ; 96: 114-121, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31786342

RESUMO

Our study investigated the effects of spinetoram on the developmental toxicity and immunotoxicity of zebrafish. 10 h post-fertilization (hpf) zebrafish embryos were exposed to several concentrations of spinetoram (0, 5.0 mg/L, 7.5 mg/L, 10 mg/L) for up to 96 hpf, and their mortality, heart rate, number of innate and adaptive immune cells, oxidative stress, apoptosis and gene expression were detected. Studies indicated that the spinetoram exposed zebrafish embryos showed yolk sac edema, slow growth, decreased heart rate, decreased number of immune cells, delayed thymic development and cell apoptosis. In addition, there were also significant changes in oxidative stress related indicators in zebrafish, the content of ROS and MDA and the activity of CAT and SOD increased with the increase of spinetoram concentration. Moreover, we detected the expression of TLR4 related genes including TLR4, MYD88 and NF-κB p65 which were significantly up-regulated in the treated groups. Meanwhile, we also found that pro-inflammatory factors IL-6, IL-8, IFN-γ and CXCL-c1c were up-regulated, but anti-inflammatory factor IL-10 was down-regulated in the treated groups. Briefly, our results show that spinetoram induces the developmental toxicity and immunotoxicity of zebrafish to a certain extent, providing basis for the further research on the molecular mechanism of spinetoram exposure to aquatic ecosystems.


Assuntos
Inseticidas/toxicidade , Macrolídeos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/imunologia , Desenvolvimento Embrionário/efeitos dos fármacos
15.
Dev Comp Immunol ; 103: 103523, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31626817

RESUMO

Tuberculosis remains a major global health challenge. To gain information about genes important for defense against tuberculosis, we used a well-established tuberculosis model; Mycobacterium marinum infection in adult zebrafish. To characterize the immunological response to mycobacterial infection at 14 days post infection, we performed a whole-genome level transcriptome analysis using cells from kidney, the main hematopoietic organ of adult zebrafish. Among the upregulated genes, those associated with immune signaling and regulation formed the largest category, whereas the largest group of downregulated genes had a metabolic role. We also performed a forward genetic screen in adult zebrafish and identified a fish line with severely impaired survival during chronic mycobacterial infection. Based on transcriptome analysis, these fish have decreased expression of several immunological genes. Taken together, these results give new information about the genes involved in the defense against mycobacterial infection in zebrafish.


Assuntos
Sistema Hematopoético/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Peixe-Zebra/imunologia , Animais , Perfilação da Expressão Gênica , Rim/imunologia , Mycobacterium marinum
16.
Fish Shellfish Immunol ; 97: 41-45, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830569

RESUMO

One of the most important emerging pathogens in the aquaculture industry is Edwardsiella tarda, and it causes extensive losses in farmed fish globally. The identification of protective immunogens against E. tarda is increasingly valued. We previously investigated 20 recombinant proteins of 38 E. tarda extracellular secretory proteins and identified 10 as protective immunogens in a zebrafish model. Here, we clone 10 of the remaining 18 genes, and the resulting recombinant proteins are used for evaluation of immune protection. ETAE_2147 (FliK), ETAE_0654 (PpdD), and ETAE_3259 (DamX) are identified as protective immunogens. Furthermore, their protection mechanism is explored by the detection of innate immunity genes encoding IL-1b, IL-6, IL-8, C3b, and NF-κB. The three protective immunogens stimulate zebrafish to produce higher and more lasting expression of the five immunity genes than non-protective immunogens during the first 48 h of infection. In addition, these protective immunogens are prone to be regulated by host products, which is helpful for cross-talk between host and pathogen, and thus they become vaccine candidates. These results highlight the way to understand the working mechanisms of protective immunogens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Edwardsiella tarda/imunologia , Imunidade Inata , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Infecções por Enterobacteriaceae , Doenças dos Peixes/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Peixe-Zebra/imunologia
17.
Fish Shellfish Immunol ; 97: 648-655, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830572

RESUMO

There is crosstalk between the immune and reproductive systems in which sexual dimorphism is a common pattern in vertebrates. In recent years, epigenetics has emerged as a way to study the molecular mechanisms involved in gonadal development, those responsible for integrating environmental information that contribute to assigning a specific sexual phenotype (either an ovary or a testis). The knowledge of epigenetic mechanisms in certain molecular processes allows the development of epigenetic markers. In fish gonads, the existence of reproduction-immune system interactions is known, although the epigenetic mechanisms involved are far from clear. Here, we used the zebrafish (Danio rerio) as a model to study the DNA methylation patterns in gonads of two well-known innate immune genes: IL1ß and Casp9. DNA methylation levels were studied by a candidate gene approach at single nucleotide resolution and gene expression analyses were also carried out. Results showed that there was clear sexual dimorphism in the DNA methylation levels of the two immune genes studied, being significantly higher in the testes when compared to the ovaries. In summary, and although further research is needed, this paper presents sexual dimorphic methylation patterns of two immune-related genes, thus sex-biased differences in methylation profiles should considered when analyzing immune responses in fish. Data showed here can help to develop epimarkers with forthcoming applications in livestock and fish farming production, for example, in immune fish diseases or sexual control programs as epigenetic molecular tools to predict environmental pressure in the gonads.


Assuntos
Caspase 9/genética , Metilação de DNA , Gônadas/imunologia , Interleucina-1beta/genética , Caracteres Sexuais , Peixe-Zebra/genética , Animais , Caspase 9/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Interleucina-1beta/imunologia , Masculino , Ovário/imunologia , Testículo/imunologia , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
18.
Bull Cancer ; 107(1): 30-40, 2020 Jan.
Artigo em Francês | MEDLINE | ID: mdl-31466696

RESUMO

Primarily used in genetic studies of development, the zebrafish (Danio rerio) has rapidly emerged as a promising animal model of human cancer. Cancer cell transplantation in zebrafish constitutes a key platform for clinical research since it allows to study cellular and molecular events involved in various aspects of tumorigenesis and to evaluate the efficacy of therapeutic molecules in vivo. Applied to patient-derived cells, the xenotransplantation approach in zebrafish allows to define the most appropriate therapeutic strategies for specific alterations found in patients in the context of personalized medicine. This review discusses the zebrafish transplantation model for the study of cancer development and drug discovery.


Assuntos
Transplante de Neoplasias , Neoplasias Experimentais/etiologia , Medicina de Precisão/métodos , Pesquisa Médica Translacional/métodos , Peixe-Zebra , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica , Modelos Animais de Doenças , Progressão da Doença , Descoberta de Drogas , Genes Neoplásicos , Xenoenxertos , Humanos , Imunossupressão/métodos , Neoplasias Experimentais/genética , Oncogenes , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia
19.
Fish Shellfish Immunol ; 98: 670-680, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31689552

RESUMO

ASGPR (asialoglycoprotein receptor, also known as hepatic lectin) was the first identified animal lectin, which participated in a variety of physiological processes. Yet its detailed immune functions are not well studied in lower vertebrates. After reporting a zebrafish hepatic lectin (Zhl), we identified a novel hepatic lectin (zebrafish hepatic lectin-like, Zhl-l) in zebrafish. The zhl-l was mainly expressed in liver in a tissue specific manner. And challenge with LPS/LTA induced a significant change of zhl-l expression. What's more, recombinant C-type lectin domain (rCTLD) of Zhl-l had the activity of agglutinating and binding to both Gram-negative and Gram-positive bacteria. It promoted the phagocytosis of bacteria by carp macrophages. Moreover, rCTLD could bind to insoluble lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN) independent of Ca2+, which was inhibited by galactose. Interestingly, Zhl-l was located in the membrane, and its overexpression could upregulate the production of pre-inflammatory cytokines. Taken together, these results indicated that Zhl-l played a role in immune defense, and would provide further information to understand functions of C-type lectin family and the innate immunity in vertebrates.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia
20.
Braz J Microbiol ; 51(1): 409-416, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31691176

RESUMO

To develop an alternative bio-control measure for multi-drug resistant pathogenic Aeromonas hydrophila, which causes motile Aeromonas septicemia in fish, novel virulent phage (AHP-1) was isolated from carp tissues. Morphological analysis by transmission electron microscopy revealed that AHP-1 belongs to Myoviridae family. AHP-1 displayed 81% of moderate adsorption by 25 min, and latent period of 40 min with burst size of 97 PFU mL-1 at an optimal multiplicity of infection (MOI) 0.1. AHP-1 was stable over a broad range of pH (4-11), temperature (4-50 °C), and salinity (0.1-3.5%). Both time and MOI dependent in vitro A. hydrophila growth inhibition was observed with AHP-1. AHP-1 (10 MOI) showed higher growth inhibition against A. hydrophila than chloramphenicol (5 µg mL-1), and combined treatment was more promising than individuals. Immune gene expression analysis of zebrafish upon continuous bath exposure to AHP-1 resulted significantly higher (il-6 and sod-1) or slight induction (tnf-α, il1-ß, il-10, and cxcl-8a) than controls at beginning of the phage exposure, but those lowered to basal level by day 12 post-phage exposure. It suggests no adverse immune responses have occurred for the AHP-1 dose that used, and have potential for the phage therapy. Further detailed in vivo studies are needed to confirm the protective efficacy of newly isolated AHP-1 against A. hydrophila infection.


Assuntos
Aeromonas hydrophila , Doenças dos Peixes/microbiologia , Myoviridae/isolamento & purificação , Peixe-Zebra/imunologia , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/virologia , Animais , Bacteriófagos/imunologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Agentes de Controle Biológico , Carpas/virologia , Cloranfenicol/farmacologia , Doenças dos Peixes/terapia , Peixes , Imunidade Celular , Myoviridae/imunologia , Myoviridae/ultraestrutura , Peixe-Zebra/microbiologia , Peixe-Zebra/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...