Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Physiol Plant ; 174(2): e13676, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316540

RESUMO

Drought is a major abiotic stress that affects crop productivity. Endophytic bacteria have been found to alleviate the adverse effects of drought on plants. In the present study, we evaluated the effects of two endophytic bacteria Shewanella putrefaciens strain MCL-1 and Cronobacter dublinensis strain MKS-1 on pearl millet (Pennisetum glaucum (L.) R. Br.) under drought stress conditions. Pearl millet plants were grown under three water levels: field capacity (FC), mild drought stress (MD), and severe drought stress (SD). The effects of inoculation on plant growth, physiological attributes, phytohormone content, and drought stress-responsive genes were assessed. The inoculation of pearl millet seeds with endophytes significantly improved shoot and root dry weight and root architecture of plants grown under FC and drought stress conditions. There was a significant increase in relative water content and proline accumulation in the inoculated plants. Among the phytohormones analyzed, the content of ABA and IAA was significantly higher in endophyte-treated plants under all moisture regimes than in uninoculated plants. C. dublinensis-inoculated plants had higher GA content than uninoculated plants under all moisture regimes. The expression level of genes involved in phytohormone biosynthesis (SbNCED, SbGA20oX, and SbYUC) and coding drought-responsive transcription factors (SbAP2, SbSNAC1 and PgDREB2A) was significantly higher under SD in endophyte-inoculated plants than in uninoculated plants. Thus, these endophytic bacteria presumably enhanced the tolerance of pearl millet to drought stress by modulating root growth, plant hormones, physiology and the expression of genes involved in drought tolerance.


Assuntos
Pennisetum , Shewanella putrefaciens , Cronobacter , Secas , Hormônios/metabolismo , Hormônios/farmacologia , Pennisetum/genética , Pennisetum/metabolismo , Pennisetum/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Shewanella putrefaciens/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
2.
Sci Rep ; 12(1): 276, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997160

RESUMO

Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Pennisetum/genética , Proteínas de Plantas/genética , Transcriptoma , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Valor Nutritivo , Pennisetum/crescimento & desenvolvimento , Pennisetum/metabolismo , Proteínas de Plantas/metabolismo , RNA-Seq
3.
Sci Rep ; 12(1): 207, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997057

RESUMO

Fungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


Assuntos
Produtos Agrícolas/microbiologia , Fungos/crescimento & desenvolvimento , Micobioma , Pennisetum/microbiologia , Raízes de Plantas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , Fungos/genética , Concentração de Íons de Hidrogênio , Pennisetum/crescimento & desenvolvimento , Pennisetum/metabolismo , Fósforo/química , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Senegal , Solo/química
4.
Physiol Plant ; 174(1): e13605, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837239

RESUMO

Salinity stress poses a significant risk to plant development and agricultural yield. Therefore, elucidation of stress-response mechanisms has become essential to identify salt-tolerance genes in plants. In the present study, two genotypes of pearl millet (Pennisetum glaucum L.) with contrasting tolerance for salinity exhibited differential morpho-physiological and proteomic responses under 150 mM NaCl. The genotype IC 325825 was shown to withstand the stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain intracellular osmotic, ionic, and redox homeostasis and membrane integrity under stress. The IC 325825 genotype exhibited a higher abundance of C4 photosynthesis enzymes, efficient enzymatic and non-enzymatic antioxidant system, and lower Na+ /K+ ratio compared with IP 17224. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt stress. The differentially abundant proteins were in silico characterized for their functions, subcellular-localization, associated pathways, and protein-protein interaction. These proteins were mainly involved in photosynthesis/response to light stimulus, carbohydrate and energy metabolism, and stress responses. Proteomics data were validated through expression profiling of the selected genes, revealing a poor correlation between protein abundance and their relative transcript levels. This study has provided novel insights into salt adaptive mechanisms in P. glaucum, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for engineering stress tolerance in salt-sensitive major crops.


Assuntos
Pennisetum , Regulação da Expressão Gênica de Plantas , Genótipo , Pennisetum/genética , Pennisetum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Salinidade , Estresse Fisiológico
5.
Int J Biol Macromol ; 195: 207-216, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34890636

RESUMO

Pearl millet is a nutrient dense and gluten free cereal, however it's flour remains underutilized due to the onset of rancidity during its storage. To the best of our knowledge, processing methods, which could significantly reduce the rancidity of the pearl millet flour during storage, are non-existent. In this study, pearl millet grains were subjected to a preliminary hydro-treatment (HT). Subsequently, the hydrated grain-wet flour have undergone individual and combined thermal treatments viz., hydrothermal (HTh) and thermal near infrared rays (thNIR). Effects of these thermal treatments on the biochemical process of hydrolytic and oxidative rancidity were analyzed in stored flour. A significant (p < 0.05) decrease in the enzyme activities of lipase (47.8%), lipoxygenase (84.8%), peroxidase (98.1%) and polyphenol oxidase (100%) in HT-HTh-thNIR treated flour compared to the individual treatments was documented. Upon storage (90 days), decline of 67.84% and 66.4% of free fatty acid and peroxide contents were observed in flour under HT-HTh-thNIR treatment without altering starch and protein digestibility properties. HT-HTh treated flour exhibited the highest (7.6%) rapidly digestible starch, decreased viscosity and increased starch digestibility (67.17%). FTIR analysis of HT-HTh treated flour divulged destabilization of short-range ordered crystalline structure and altered protein structures with decreased in vitro digestibility of protein. Overall, these results demonstrated the effectiveness of combined thermal treatment of HT-HTh-thNIR in reducing rancidity and preserving the functional properties of the stored flour.


Assuntos
Manipulação de Alimentos/métodos , Pennisetum/metabolismo , Amido/química , Catecol Oxidase , Digestão , Grão Comestível , Farinha/análise , Temperatura Alta , Lipoxigenase
6.
Physiol Plant ; 174(1): e13521, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34392545

RESUMO

Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.


Assuntos
MicroRNAs , Pennisetum , Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Plantas Geneticamente Modificadas/genética , Pressão de Vapor
7.
Cells ; 10(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34831297

RESUMO

As efforts are made to increase food security, millets are gaining increasing importance due to their excellent nutritional credentials. Among the millets, pearl millet is the predominant species possessing several health benefiting nutritional traits in its grain that are helpful in mitigating chronic illnesses such as type-2 diabetes and obesity. In this paper, we conducted metabolomic fingerprinting of 197 pearl millet inbred lines drawn randomly from within the world collection of pearl millet germplasm and report the extent of genetic variation for health benefitting metabolites in these genotypes. Metabolites were extracted from seeds and assessed using flow infusion high-resolution mass spectrometry (FIE-HRMS). Metabolite features (m/z), whose levels significantly differed among the germplasm inbred lines, were identified by ANOVA corrected for FDR and subjected to functional pathway analysis. A number of health-benefiting metabolites linked to dietary starch, antioxidants, vitamins, and lipid metabolism-related compounds were identified. Metabolic genome-wide association analysis (mGWAS) performed using the 396 m/z as phenotypic traits and the 76 K SNP as genotypic variants identified a total of 897 SNPs associated with health benefiting nutritional metabolite at the -log p-value ≤ 4.0. From these associations, 738 probable candidate genes were predicted to have an important role in starch, antioxidants, vitamins, and lipid metabolism. The mGWAS analysis focused on genes involved in starch branching (α-amylase, ß-amylase), vitamin-K reductase, UDP-glucuronosyl, and UDP-glucosyl transferase (UGTs), L-ascorbate oxidase, and isoflavone 2'-monooxygenase genes, which are known to be linked to increases in human health benefiting metabolites. We demonstrate how metabolomic, genomic, and statistical approaches can be utilized to pinpoint genetic variations and their functions linked to key nutritional properties in pearl millet, which in turn can be bred into millets and other cereals crops using plant breeding methods.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Saúde , Metaboloma/genética , Fenômenos Fisiológicos da Nutrição , Pennisetum/genética , Pennisetum/metabolismo , Estudos de Associação Genética , Marcadores Genéticos , Humanos , Redes e Vias Metabólicas , Análise de Componente Principal , Sementes/genética
8.
Genes (Basel) ; 12(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828322

RESUMO

High-temperature stress negatively affects the growth and development of plants, and therefore threatens global agricultural safety. Cultivating stress-tolerant plants is the current objective of plant breeding programs. Pearl millet is a multi-purpose plant, commonly used as a forage but also an important food staple. This crop is very heat-resistant and has a higher net assimilation rate than corn under high-temperature stress. However, the response of heat resistant pearl millet has so far not been studied at the transcriptional level. In this study, transcriptome sequencing of pearl millet leaves exposed to different lengths of heat treatment (1 h, 48 h and 96 h) was conducted in order to investigate the molecular mechanisms of the heat stress response and to identify key genes related to heat stress. The results showed that the amount of heat stress-induced DEGs in leaves differs with the length of exposure to high temperatures. The highest value of DEGs (8286) was observed for the group exposed to heat stress for 96 h, while the other two treatments showed lower DEGs values of 4659 DEGs after 1 h exposure and 3981 DEGs after 48 h exposure to heat stress. The DEGs were mainly synthesized in protein folding pathways under high-temperature stress after 1 h exposure. Moreover, a large number of genes encoding ROS scavenging enzymes were activated under heat stress for 1 h and 48 h treatments. The flavonoid synthesis pathway of pearl millet was enriched after heat stress for 96 h. This study analyzed the transcription dynamics under short to long-term heat stress to provide a theoretical basis for the heat resistance response of pearl millet.


Assuntos
Perfilação da Expressão Gênica/métodos , Pennisetum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Vias Biossintéticas , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Resposta ao Choque Térmico , Pennisetum/genética , Pennisetum/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Sequência de RNA , Fatores de Tempo
9.
Physiol Plant ; 173(4): 1616-1628, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455597

RESUMO

Late embryogenesis abundant (LEA) genes display distinct functions in response to abiotic stresses in plants. In pearl millet (Pennisetum glaucum L.), a total of 21 PgLEA genes were identified and classified into six groups including LEA1, LEA2, LEA3, LEA5, LEA7, and dehydrins (DHN). Open reading frames (ORFs) of PgLEAs range from 291 bp (PgLEA1-1) to 945 bp (PgLEA2-11) and distributed randomly among the seven chromosomes. Phylogenetic analysis revealed that all PgLEA proteins are closely related to sorghum LEA proteins. The PgLEAs were found to be expressed differentially under high progressive vapor pressure deficit (VPD), PgLEA7 was significantly expressed under high VPD and was selected for functional validation. In silico analysis of the PgLEA promoter regions revealed abiotic stress-specific cis-acting elements such as ABRE, CCAAT, MYBS, and LTRE. Based on the type of motifs, PgLEAPC promoter (758 bp), its deletion 1 (PgLpd1, 349 bp) and deletion 2 (PgLpd2, 125 bp) were cloned into the plant expression vector pMDC164 having the promoter-less uidA gene. All the three plant expression vectors were introduced into tobacco through Agrobacterium tumefaciens-mediated transformation to obtain T1 and T2 generations of transgenic plants. Based on expression of the uidA gene, tissue-specific expression was observed in mature stems, roots and seedlings of PgLEAPC and PgLpd1 carrying transgenics only. While the transgenic PgLEAPC plants displayed significantly higher uidA expression in the stem and root tissues under salt, drought, heat, and cold stresses, very low or no expression was observed in PgLpd1 and PgLpd2 transgenics under the tested stress conditions. The results of this study indicate that the complete promoter of PgLEAPC plays a role in developing abiotic stress tolerance in plants.


Assuntos
Pennisetum , Secas , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Pennisetum/genética , Pennisetum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/genética
10.
Funct Plant Biol ; 48(10): 1039-1052, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34266539

RESUMO

Pearl millet is an important C4 cereal plant that possesses enormous capacity to survive under extreme climatic conditions. It serves as a major food source for people in arid and semiarid regions of south-east Asia and Africa. GRAS is an important transcription factor gene family of plant that play a critical role in regulating developmental processes, stress responses and phytohormonal signalling. In the present study, we have identified a total number of 57 GRAS members in pearl millet. Phylogenetic analysis clustered all the PgGRAS genes into eight groups (GroupI-GroupVIII). Motif analysis has shown that all the PgGRAS proteins had conserved GRAS domains and gene structure analysis revealed a high structural diversity among PgGRAS genes. Expression patterns of PgGRAS genes in different tissues (leaf, stem and root) and under various abiotic stress (drought, heat and salinity) were determined. Further, expression analysis was also carried out in response to various hormones (SA, MeJA, GA and ABA). The results provide a clear understanding of GRAS transcription factor family in pearl millet, and lay a good foundation for the functional characterisation of GRAS genes in pearl millet.


Assuntos
Pennisetum , Regulação da Expressão Gênica de Plantas , Pennisetum/metabolismo , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico/genética
11.
Methods Mol Biol ; 2290: 287-316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009597

RESUMO

Reduction of fossil fuels at an alarming rate has attracted increasing attention to blending biofuels worldwide. India's energy demand is expected to grow at an annual rate of 4-5 times over the next couple of decades. With self-sufficiency levels in crude oil becoming a distant dream, there is growing interest to look out for alternative fuels and the biofuels are an important option for policy makers in India. In this context, this paper reviews the experiences in India in the last two decades with respect to biofuel cultivation and its impact on land use, environment, and the livelihoods of rural communities. The objective of this paper is to assess the economics of biofuel production using Sorghum and Pearl millet feedstocks in India using a Life Cycle Analysis (LCA) approach. Baseline study was conducted during the year 2013 in the Madhya Pradesh state of India covering five districts and 333 sample farmers to understand the farmers perception about the various issues related to the production of biofuels using Indian staple food crops Sorghum and Pearl millet. Empirical data from the multi-locational trials conducted during the years 2014-2015 and 2015-2016 in farmers' fields was used to conduct the LCA analysis. Sorghum and Pearl millet feedstocks which are rain-fed crops are considered for bioethanol production with different pretreatment methods. Net Energy Ratio (NER), Net Energy Balance (NEB), Net Carbon Balance (NCB), and % Carbon reduction were some of the key parameters used for analysis and the results are evaluated based on the environmental impacts through the Life Cycle Assessment at 5% blending. Findings reveal that, dilute alkali pretreatment process is most energy intensive due to consumption of alkali consumption. Whereas dilute acid pretreatment has higher conversion efficiency than the other pretreatment processes which is due to higher glucan and xylan conversion efficiencies.The study concludes that Sorghum feedstock is more energy intensive than Pearl millet feedstock due to higher water requirement and yield. Biofuels, either conventional or advanced, should not been couraged without a comprehensive outlook on the overall impact that will ultimately have on the society, environment, or on the countries' energy security. Efforts should be made toward encouragement of research and development in the field as well as in formulating a comprehensive and effective biofuel policy for India.


Assuntos
Biocombustíveis/economia , Pennisetum/metabolismo , Sorghum/metabolismo , Carbono , Pegada de Carbono/economia , Produtos Agrícolas , Meio Ambiente , Índia , Pennisetum/genética , Energia Renovável/economia , Sorghum/genética
12.
Carbohydr Polym ; 260: 117776, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712132

RESUMO

Pearl millet (Pennisetum glaucum (L.) R.Br.) is a sustainable and underutilized starch source, constituting up to 70 % starch in its grain. Pearl millet could be used as a cheaper source of starch as compared to other cereals for developing functional foods. This review is mainly focused on isolation methods, and chemical composition of the pearl millet starch (PMS). Techno-functional characteristics such as; gelatinization, pasting properties, solubility, swelling power, and digestibility to infer wider application of the PMS critically highlighted in the review. Native starches have limited functionalitiesfor food applications due to the instability in developed pastes and gels. A number of modifications (physical, mechanical and enzymatic) have been developed to increase the functionality and to obtain desired characteristics of PMS thus improving its utilization in food applications. Further, the utilization of native as well as modified PMS is also discussed comprehensively. In addition, a number of recommendations to further improve its functionality and increase its application are also discussed.


Assuntos
Pennisetum/metabolismo , Amido/química , Portadores de Fármacos/química , Embalagem de Alimentos , Géis/química , Peso Molecular , Nanopartículas/química , Solubilidade , Difração de Raios X
13.
J Sci Food Agric ; 101(12): 5028-5037, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570166

RESUMO

BACKGROUND: With the rapid development of animal husbandry, the silage trade has increased in frequency. The re-ensiling of materials is often required before or after trading, resulting in the exposure of the silage to air before re-sealing. To develop a re-ensiling technique for silage, different silage exposure periods were simulated to check the possible effects on the fermentation quality and microbial community of silage. RESULTS: Fresh and wilted napier grass (Pennisetum purpureum) were ensiled for 90 days, then exposed to air for 0, 6, 12, 24, 36 or 48 h, before being re-ensiled. As a control, grass was directly ensiled for 180 days. Wilting increased the relative abundance of Klebsiella. The relative abundance of Paenibacillus in the unwilted silage was much higher than that in the wilted silage. Re-ensiling increased the relative abundance of Lactobacillus, but decreased the relative abundances of Klebsiella, Bacillus, and Paenibacillus. In addition, Lactobacillus became the dominant bacteria in the re-ensiled fresh and wilted silages. Re-ensiling within 48 h of exposure did not affect the fermentation quality of the wilted silage, whereas that of the unwilted silage declined when exposed to air for over 24 h. CONCLUSION: Re-ensiling wilted napier grass silage within 48 h of aerobic exposure did not cause the fermentation quality to decline. The unwilted napier grass silage contained a higher relative abundance of Paenibacillus and significantly deteriorated when re-ensiled after over 24 h of aerobic exposure. © 2021 Society of Chemical Industry.


Assuntos
Microbiota , Pennisetum/microbiologia , Silagem/microbiologia , Ração Animal/análise , Ração Animal/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fermentação , Manipulação de Alimentos , Pennisetum/metabolismo
14.
Ecotoxicol Environ Saf ; 211: 111943, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493720

RESUMO

Pearl millet (Pennisetum americanum (L.) K. Schum) has been proven as a potential remediation plant of the pollution caused by atrazine. Plants used in remediation can release root exudates to communicate with rhizosphere microorganisms and accelerate the removal of pollutants in soil. However, the response of pearl millet root exudates under atrazine stress has remained unclear. In this study, hydroponic experiments were conducted at Northeast Agricultural University, Harbin, China, to investigate the oxidative stress response and the changes in composition of root exudates in pearl millet plants that were exposed to 19.4 mgL-1 of atrazine, compared to the untreated control. The experiment was established as six treatments with exposure to no atrazine for 2, 4 and 6 days (CK-2, CK-4, CK-6) and 19.4 mgL-1 atrazine for 2, 4 and 6 days (AT-2, AT-4, AT-6), respectively. The results suggest that the growth of the seedlings changed slightly when exposed to atrazine for 2 days. The content of thiobarbituric acid reactive substances exposed to atrazine for 6 days increased 26% compared with the treatment that was exposed for 2 days. Moreover, the reactive oxygen species in test plant obviously increased when exposed to atrazine for 6 days. In addition, the activity of superoxide dismutase increased from 30.82 ug-1 to 37.33 ug-1 fresh weight after 6 days of exposure to atrazine. The results of a nontargeted metabolomic analysis suggest that carbohydrate metabolism, fatty acid metabolism and amino acid metabolism in pearl millet were obviously affected by the oxidative stress caused by atrazine. The contents of sphinganine and methylimidazole acetaldehyde in CK-6 increased by 5.14 times and 2.05 times, respectively, compared with those of CK-2. Furthermore, the contents of (S)-methylmalonic acid semialdehyde and 1-pyrroline-2-carboxylic acid decreased by 0.56 times and 0.5 times, respectively, compared with the AT-6. These results strongly suggest that the changes observed in the composition of root exudates in pearl millet seedlings can be attributed to the oxidative stress caused by atrazine.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Estresse Oxidativo/fisiologia , Pennisetum/efeitos dos fármacos , Exsudatos de Plantas/metabolismo , Atrazina/metabolismo , China , Herbicidas/metabolismo , Oxirredução , Pennisetum/metabolismo , Pennisetum/fisiologia , Rizosfera , Plântula/metabolismo , Solo/química , Superóxido Dismutase/metabolismo
15.
BMC Genomics ; 22(1): 70, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478383

RESUMO

BACKGROUND: Pearl millet (Pennisetum glaucum) is a cereal crop that possesses the ability to withstand drought, salinity and high temperature stresses. The NAC [NAM (No Apical Meristem), ATAF1 (Arabidopsis thaliana Activation Factor 1), and CUC2 (Cup-shaped Cotyledon)] transcription factor family is one of the largest transcription factor families in plants. NAC family members are known to regulate plant growth and abiotic stress response. Currently, no reports are available on the functions of the NAC family in pearl millet. RESULTS: Our genome-wide analysis found 151 NAC transcription factor genes (PgNACs) in the pearl millet genome. Thirty-eight and 76 PgNACs were found to be segmental and dispersed duplicated respectively. Phylogenetic analysis divided these NAC transcription factors into 11 groups (A-K). Three PgNACs (- 073, - 29, and - 151) were found to be membrane-associated transcription factors. Seventeen other conserved motifs were found in PgNACs. Based on the similarity of PgNACs to NAC proteins in other species, the functions of PgNACs were predicted. In total, 88 microRNA target sites were predicted in 59 PgNACs. A previously performed transcriptome analysis suggests that the expression of 30 and 42 PgNACs are affected by salinity stress and drought stress, respectively. The expression of 36 randomly selected PgNACs were examined by quantitative reverse transcription-PCR. Many of these genes showed diverse salt- and drought-responsive expression patterns in roots and leaves. These results confirm that PgNACs are potentially involved in regulating abiotic stress tolerance in pearl millet. CONCLUSION: The pearl millet genome contains 151 NAC transcription factor genes that can be classified into 11 groups. Many of these genes are either upregulated or downregulated by either salinity or drought stress and may therefore contribute to establishing stress tolerance in pearl millet.


Assuntos
Pennisetum , Secas , Regulação da Expressão Gênica de Plantas , Humanos , Pennisetum/genética , Pennisetum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Salino , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Sci Food Agric ; 101(3): 927-936, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748962

RESUMO

BACKGROUND: A large number of digestates have not been fully utilized due to a lack of scientific, reasonable guidance, as well as imperfect technology. Hybrid giant Napier has great potential for use as a type of energy plant. As such, this study investigated the effects of digestate on the growth of a candidate energy crop and examined whether digestate was an ecologically viable means for soil restoration. RESULTS: The results showed that the total yields of all treatment groups receiving irrigation of digestate were higher (5.19-26.00%) than those of the control. The total phosphorus, total potassium, available nitrogen, available phosphorus, and available potassium content of the soil had also increased after digestate application, compared with the control. Urease activities for all treatments increased 15.28 to 69.44% more than that of the corresponding control. Soil dissolved organic matter (DOM) mainly contained humic-like and fulvic-like components through the application of digestate. More fluorescent components were also identified by two-dimensional correlation spectroscopy (2D-COS). These fluorescent components can improve the aromaticity and molecular weight of soil DOM so as to improve soil quality. CONCLUSIONS: Digestate improved not only the aboveground biomass accumulation, but also the chemical properties of the soil, which was an appropriate strategy for restoring soil quality and contributing to the sustainable development of marginal. The long-term impact of digestate application on soil quality will require additional long-term experiments. © 2020 Society of Chemical Industry.


Assuntos
Pennisetum/química , Solo/química , Biomassa , Fertilizantes/análise , Substâncias Húmicas/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Pennisetum/crescimento & desenvolvimento , Pennisetum/metabolismo , Fósforo/análise , Fósforo/metabolismo , Potássio/análise , Potássio/metabolismo
17.
J Appl Microbiol ; 130(6): 1857-1867, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33128833

RESUMO

AIMS: To isolate and identify cellulolytic bacteria from yak rumen and further evaluate the effects of the isolates on the silage quality, structural carbohydrates degradation and cellulose convertibility of Napier grass silage. METHODS AND RESULTS: Two out of 218 strains were selected based on their most extensive transparent zone and the highest filter paper disintegration rate. The two isolates (JFL12 and JF85) could grow normally at 15-55°C, pH 3·0-7·0 and NaCl (3·0, 6·5%), and were identified as Enterococcus casseliflavus and Enterococcus faecalis by 16S rDNA sequence analysis, respectively. Napier grass was ensiled with no additive control (C), Lactobacillus plantarum (Lp), JFL12, JF85, JFL12 + Lp and JF85 + Lp for 3, 5, 7, 14, 30 and 60 days. All inoculated silages had higher lactic acid content, lower pH, ammonia nitrogen (NH3 -N) and lignocellulose contents than the control silage. Silages treated with JFL12 + Lp and JF85 + Lp had the lowest pH and NH3 -N contents, the highest lactic acid content and lignocellulose degradation among all treatments. The isolates with or without Lp significantly (P < 0·01) increased water soluble carbohydrates (WSC), glucose, fructose and sucrose contents as compared with the control silage. Silages treated with JFL12 + Lp and JF85 + Lp had higher glucose yield and cellulose convertibility than the other silages. CONCLUSIONS: Therefore, the application of isolates (JFL12 and JF85) with Lp had synergistic effects on accelerating the degradation of structural carbohydrates and improving the silage quality. SIGNIFICANCE AND IMPACT OF THE STUDY: Napier grass presents difficulty to ensiling due to its low WSC and high structural carbohydrates contents. The screened cellulolytic bacteria could be a candidate strain in improving fermentation quality and structural carbohydrates degradability of ensiled forages.


Assuntos
Bovinos/microbiologia , Celulose/metabolismo , Enterococcus/isolamento & purificação , Pennisetum/metabolismo , Rúmen/microbiologia , Animais , Metabolismo dos Carboidratos , Enterococcus/classificação , Enterococcus/metabolismo , Enterococcus faecalis/metabolismo , Fermentação , Lactobacillus plantarum/metabolismo , Silagem , Tibet
18.
BMC Plant Biol ; 20(1): 528, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213376

RESUMO

BACKGROUND: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered. RESULTS: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a 'blue' module highly associated with cellulose synthesis and a 'turquoise' module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes. CONCLUSIONS: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


Assuntos
Metabolismo dos Carboidratos/genética , Celulose/metabolismo , Genoma de Planta/genética , Lignina/metabolismo , Pennisetum/genética , Transcriptoma , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Lignina/análise , Redes e Vias Metabólicas/genética , Especificidade de Órgãos , Pennisetum/metabolismo , Polissacarídeos/metabolismo , Propano/metabolismo , Análise de Sequência de RNA , Amido/metabolismo , Sacarose/metabolismo
19.
Sci Rep ; 10(1): 19473, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173120

RESUMO

Pearl millet hybrids biofortified with iron (Fe) and zinc (Zn) promise to be part of a long-term strategy to combat micronutrient malnutrition in the arid and semi-arid tropical (SAT) regions of the world. Biofortification through molecular breeding is the way forward to achieving a rapid trait-based breeding strategy. This genome-wide association study (GWAS) was conducted to identify significant marker-trait associations (MTAs) for Fe, Zn, and protein content (PC) for enhanced biofortification breeding. A diverse panel of 281 advanced inbred lines was evaluated for Fe, Zn, and PC over two seasons. Phenotypic evaluation revealed high variability (Fe: 32-120 mg kg-1, Zn: 19-87 mg kg-1, PC: 8-16%), heritability (hbs2 ≥ 90%) and significantly positive correlation among Fe, Zn and PC (P = 0.01), implying concurrent improvement. Based on the Diversity Arrays Technology (DArT) seq assay, 58,719 highly informative SNPs were filtered for association mapping. Population structure analysis showed six major genetic groups (K = 6). A total of 78 MTAs were identified, of which 18 were associated with Fe, 43 with Zn, and 17 with PC. Four SNPs viz., Pgl04_64673688, Pgl05_135500493, Pgl05_144482656, and Pgl07_101483782 located on chromosomes Pgl04 (1), Pgl05 (2) and Pgl07 (1), respectively were co-segregated for Fe and Zn. Promising genes, 'Late embryogenesis abundant protein', 'Myb domain', 'pentatricopeptide repeat', and 'iron ion binding' coded by 8 SNPs were identified. The SNPs/genes identified in the present study presents prospects for genomics assisted biofortification breeding in pearl millet.


Assuntos
Grão Comestível/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Ferro/metabolismo , Pennisetum/genética , Proteínas de Plantas/genética , Zinco/metabolismo , Algoritmos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/metabolismo , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Pennisetum/classificação , Pennisetum/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único
20.
PLoS One ; 15(11): e0242618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227025

RESUMO

Pennisetum setaceum 'Rubrum' is an ornamental grass plant that produces purple leaves in high-light environments and light purple or green leaves in low-light environments, the latter of which greatly reduces its aesthetic appeal. Therefore, we aimed to identify the key genes associated with leaf coloration and elucidate the molecular mechanisms involved in the color changes in P. setaceum 'Rubrum' leaves. We performed transcriptome sequencing of P. setaceum 'Rubrum' leaves before and after shading. A total of 19,043 differentially expressed genes were identified, and the numbers of upregulated and downregulated genes at T1 stage, when compared with their expression at the T0 stage, were 10,761 and 8,642, respectively. The possible pathways that determine P. setaceum 'Rubrum' leaf color included flavonoid biosynthesis, flavone and flavonol biosynthesis, and carotenoid biosynthesis. There were 31 differentially expressed genes related to chlorophyll metabolism, of which 21 were related to chlorophyll biosynthesis and 10 to chlorophyll degradation, as well as three transcription factors that may be involved in the regulation of chlorophyll degradation. There were 31 key enzyme genes involved in anthocyanin synthesis and accumulation in P. setaceum 'Rubrum' leaves, with four transcription factors that may be involved in the regulation of anthocyanin metabolism. The transcriptome data were verified and confirmed reliable by real-time fluorescence quantitative PCR analysis. These findings provide a genetic basis for improving leaf color in P. setaceum 'Rubrum.'


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Pennisetum , Pigmentação/fisiologia , Folhas de Planta , Transcriptoma/fisiologia , Flavonoides/biossíntese , Flavonoides/genética , Pennisetum/genética , Pennisetum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...