Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.510
Filtrar
1.
Genes (Basel) ; 12(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34680966

RESUMO

The renin-angiotensin-aldosterone system (RAAS) appears to play an important role in SARS-CoV-2 infection. Polymorphisms within the genes that control this enzymatic system are candidates for elucidating the pathogenesis of COVID-19, since COVID-19 is not only a pulmonary disease but also affects many organs and systems throughout the body in multiple ways. Most striking is the fact that ACE2, one of the major components of the RAAS, is a prerequisite for SARS-COV-2 infection. Recently, we and other groups reported an association between a polymorphism of the ACE1 gene (a homolog of ACE2) and the phenotypic expression of COVID-19, particularly in its severity. The ethnic difference in ACE1 insertion (I)/deletion (D) polymorphism seems to explain the apparent difference in mortality between the West and East Asia. The purpose of this review was to further evaluate the evidence linking ACE1 polymorphisms to COVID-19. We searched the Medline database (2019-2021) for reference citations of relevant articles and selected studies on the clinical outcome of COVID-19 related to ACE1 I/D polymorphism. Although the numbers of patients are not large enough yet, most available evidence supports the notion that the DD genotype adversely influences COVID-19 symptoms. Surprisingly, small studies conducted in several countries yielded opposite results, suggesting that the ACE1 II genotype is a risk factor. This contradictory result may be the case in certain geographic areas, especially in subgroups of patients. It may also be due to interactions with other genes or to yet unexplained biochemical mechanisms. According to our hypothesis, such candidates are genes that are functionally involved in the pathophysiology of COVID-19, can act in concert with the ACE1 DD genotype, and that show differences in their frequency between the West and East Asia. For this, we conducted research focusing on Alu-related genes. The current study on the ACE1 genotype will provide potentially new clues to the pathogenesis, treatment, and diagnosis of SARS-CoV-2 infections.


Assuntos
COVID-19 , Regulação Viral da Expressão Gênica , Genótipo , Mutação INDEL , Peptidil Dipeptidase A , Polimorfismo Genético , SARS-CoV-2/metabolismo , COVID-19/genética , COVID-19/metabolismo , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fatores de Risco
2.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685735

RESUMO

The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/metabolismo , Sistema Renina-Angiotensina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Humanos , Peptidil Dipeptidase A/metabolismo , Renina/farmacologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
3.
J Infect Public Health ; 14(11): 1686-1692, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649043

RESUMO

As far as comorbidity is concerned, cardiovascular diseases (CVD) appear to be accounted for the highest prevalence, severity, and fatality among COVID 19 patients. A wide array of causal links connecting CVD and COVID-19 baffle the overall prognosis as well as the efficacy of the given therapeutic interventions. At the centre of this puzzle lies ACE2 that works as a receptor for the SARS-CoV-2, and functional expression of which is also needed to minimize vasoconstriction otherwise would lead to high blood pressure. Furthermore, SARS-CoV-2 infection seems to reduce the functional expression of ACE2. Given these circumstances, it might be advisable to consider a treatment plan for COVID-19 patients with CVD in an approach that would neither aggravate the vasodeleterious arm of the renin-angiotensinogen-aldosterone system (RAAS) nor compromise the vasoprotective arm of RAAS but is effective to minimize or if possible, inhibit the viral replication. Given the immune modulatory role of Zn in both CVD and COVID-19 pathogenesis, zinc supplement to the selective treatment plan for CVD and COVID-19 comorbid conditions, to be decided by the clinicians depending on the cardiovascular conditions of the patients, might greatly improve the therapeutic outcome. Notably, ACE2 is a zinc metalloenzyme and zinc is also known to inhibit viral replication.


Assuntos
COVID-19 , Doenças Cardiovasculares , Enzima de Conversão de Angiotensina 2 , Doenças Cardiovasculares/epidemiologia , Comorbidade , Humanos , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2 , Zinco
4.
PLoS One ; 16(9): e0257905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582502

RESUMO

SARS-CoV-2 virus, the causative agent of Covid-19, has fired up a global pandemic. The virus interacts with the human receptor angiotensin-converting enzyme 2 (ACE2) for an invasion via receptor binding domain (RBD) on its spike protein. To provide a deeper understanding of this interaction, we performed microsecond simulations of the RBD-ACE2 complex for SARS-CoV-2 and compared it with the closely related SARS-CoV discovered in 2003. We show residues in the RBD of SARS-CoV-2 that were mutated from SARS-CoV, collectively help make the RBD anchor much stronger to the N-terminal part of ACE2 than the corresponding residues on RBD of SARS-CoV. This would result in a reduced dissociation rate of SARS-CoV-2 from human receptor protein compared to SARS-CoV. The phenomenon was consistently observed in simulations beyond 500 ns and was reproducible across different force fields. Altogether, our study adds more insight into the critical dynamics of the key residues at the virus spike and human receptor binding interface and potentially aids the development of diagnostics and therapeutics to combat the pandemic efficiently.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , COVID-19/genética , Humanos , Modelos Teóricos , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Biochem Biophys Res Commun ; 577: 146-151, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34517212

RESUMO

The human lung cell A549 is susceptible to infection with a number of respiratory viruses. However, A549 cells are resistant to Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection in conventional submerged culture, and this would appear to be due to low expression levels of the SARS-CoV-2 entry receptor: angiotensin-converting enzyme-2 (ACE2). Here, we examined SARS-CoV-2 susceptibility to A549 cells after adaptation to air-liquid interface (ALI) culture. A549 cells in ALI culture yielded a layer of mucus on their apical surface, exhibited decreased expression levels of the proliferation marker KI-67 and intriguingly became susceptible to SARS-CoV-2 infection. We found that A549 cells increased the endogenous expression levels of ACE2 and TMPRSS2 following adaptation to ALI culture conditions. Camostat, a TMPRSS2 inhibitor, reduced SARS-CoV-2 infection in ALI-cultured A549 cells. These findings indicate that ALI culture switches the phenotype of A549 cells from resistance to susceptibility to SARS-CoV-2 infection through upregulation of ACE2 and TMPRSS2.


Assuntos
Células Epiteliais Alveolares/virologia , COVID-19/virologia , Técnicas de Cultura de Células/métodos , SARS-CoV-2/fisiologia , Células A549 , Células Epiteliais Alveolares/patologia , Células Cultivadas , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Regulação para Cima/genética
6.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572076

RESUMO

Coronavirus disease 19 (COVID-19) is caused by an enveloped, positive-sense, single-stranded RNA virus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the realm Riboviria, order Nidovirales, family Coronaviridae, genus Betacoronavirus and the species Severe acute respiratory syndrome-related coronavirus. This viral disease is characterized by a myriad of varying symptoms, such as pyrexia, cough, hemoptysis, dyspnoea, diarrhea, muscle soreness, dysosmia, lymphopenia and dysgeusia amongst others. The virus mainly infects humans, various other mammals, avian species and some other companion livestock. SARS-CoV-2 cellular entry is primarily accomplished by molecular interaction between the virus's spike (S) protein and the host cell surface receptor, angiotensin-converting enzyme 2 (ACE2), although other host cell-associated receptors/factors, such as neuropilin 1 (NRP-1) and neuropilin 2 (NRP-2), C-type lectin receptors (CLRs), as well as proteases such as TMPRSS2 (transmembrane serine protease 2) and furin, might also play a crucial role in infection, tropism, pathogenesis and clinical outcome. Furthermore, several structural and non-structural proteins of the virus themselves are very critical in determining the clinical outcome following infection. Considering such critical role(s) of the abovementioned host cell receptors, associated proteases/factors and virus structural/non-structural proteins (NSPs), it may be quite prudent to therapeutically target them through a multipronged clinical regimen to combat the disease.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/virologia , Sistemas de Liberação de Medicamentos , Furina/química , Furina/metabolismo , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Estrutura Molecular , Neuropilinas/química , Neuropilinas/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus
8.
PLoS One ; 16(9): e0256595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473745

RESUMO

When fish are processed, fish bone becomes a key component of the waste, but to date very few researchers have sought to use fish bone to prepare protein hydrolysates as a means of adding value to the final product. This study, therefore, examines the potential of salmon bone, through an analysis of the benefits of its constituent components, namely fat, moisture, protein, and ash. In particular, the study seeks to optimize the process of enzymatic hydrolysis of salmon bone with trypsin in order to produce angiotensin-I converting enzyme (ACE) inhibitory peptides making use of response surface methodology in combination with central composite design (CCD). Optimum hydrolysis conditions concerning DH (degree of hydrolysis) and ACE-inhibitory activity were initially determined using the response surface model. Having thus determined which of the salmon bone protein hydrolysates (SBPH) offered the greatest level of ACE-inhibitory activity, these SBPH were duly selected to undergo ultrafiltration for further fractionation. It was found that the greatest ACE-inhibitory activity was achieved by the SBPH fraction which had a molecular weight lower than 0.65 kDa. This fraction underwent further purification using RP-HPLC, revealing that the F7 fraction offered the best ACE-inhibitory activity. For ACE inhibition, the ideal peptide in the context of the F7 fraction comprised eight amino acids: Phe-Cys-Leu-Tyr-Glu-Leu-Ala-Arg (FCLYELAR), while analysis of the Lineweaver-Burk plot revealed that the FCLYELAR peptide can serve as an uncompetitive ACE inhibitor. An examination of the molecular docking process showed that the FCLYELAR peptide was primarily able to provide ACE-inhibitory qualities as a consequence of the hydrogen bond interactions taking place between ACE and the peptide. Furthermore, upon isolation form the SBPH, the ACE-inhibitory peptide demonstrated ACE-inhibitory capabilities in vitro, underlining its potential for applications in the food and pharmaceutical sectors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Osso e Ossos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Salmão/metabolismo , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Sítios de Ligação , Análise Fatorial , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Peso Molecular , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tripsina/química , Ultrafiltração
10.
J Chem Inf Model ; 61(9): 4656-4669, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34427448

RESUMO

Even with the availability of vaccines, therapeutic options for COVID-19 still remain highly desirable, especially in hospitalized patients with moderate or severe disease. Soluble ACE2 (sACE2) is a promising therapeutic candidate that neutralizes SARS CoV-2 infection by acting as a decoy. Using computational mutagenesis, we designed a number of sACE2 derivatives carrying three to four mutations. The top-predicted sACE2 decoy based on the in silico mutagenesis scan was subjected to molecular dynamics and free-energy calculations for further validation. After illuminating the mechanism of increased binding for our designed sACE2 derivative, the design was verified experimentally by flow cytometry and BLI-binding experiments. The computationally designed sACE2 decoy (ACE2-FFWF) bound the receptor-binding domain of SARS-CoV-2 tightly with low nanomolar affinity and ninefold affinity enhancement over the wild type. Furthermore, cell surface expression was slightly greater than wild-type ACE2, suggesting that the design is well-folded and stable. Having an arsenal of high-affinity sACE2 derivatives will help to buffer against the emergence of SARS CoV-2 variants. Here, we show that computational methods have become sufficiently accurate for the design of therapeutics for current and future viral pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
J Chem Inf Model ; 61(9): 4425-4441, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34428371

RESUMO

The spike protein of SARS-CoV-2 binds to the ACE2 receptor via its receptor-binding domain (RBD), with the RBD-ACE2 complex presenting an essential molecular target for vaccine development to stall the virus infection proliferation. The computational analyses at molecular, amino acid (AA), and atomic levels have been performed systematically to identify the key interacting AAs in the formation of the RBD-ACE2 complex for SARS-CoV and SARS-CoV-2 with its Alpha and Beta variants. Our study uses the molecular dynamics (MD) simulations with the molecular mechanics generalized Born surface area (MM-GBSA) method to predict the binding free energy (BFE) and to determine the actual interacting AAs, as well as two ab initio quantum chemical protocols based on the density functional theory (DFT) implementation. Based on MD results, Q493, Y505, Q498, N501, T500, N487, Y449, F486, K417, Y489, F456, Y495, and L455 have been identified as hotspots in SARS-CoV-2 RBD, while those in ACE2 are K353, K31, D30, D355, H34, D38, Q24, T27, Y83, Y41, and E35. RBD with Alpha and Beta variants has slightly different interacting AAs due to N501Y mutation. Both the electrostatic and hydrophobic interactions are the main driving force to form the AA-AA binding pairs. We confirm that Q493, Q498, N501, F486, K417, and F456 in RBD are the key residues responsible for the tight binding of SARS-CoV-2 with ACE2 compared to SARS-CoV. RBD with the Alpha variant binds with ACE2 stronger than the wild-type RBD or Beta. In the Beta variant, K417N reduces the binding, E484K slightly enhances it, and N501Y significantly increases it as in Alpha. The DFT results reveal that N487, Q493, Y449, T500, G496, G446, and G502 in RBD of SARS2 form pairs via specific hydrogen bonding with Q24, H34, E35, D38, Y41, Q42, and K353 in ACE2.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Humanos , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411004

RESUMO

BACKGROUNDThe angiotensin-converting enzyme (ACE) D allele is more prevalent among African Americans compared with other races and ethnicities and has previously been associated with severe coronavirus disease 2019 (COVID-19) pathogenesis through excessive ACE1 activity. ACE inhibitors/angiotensin receptor blockers (ACE-I/ARB) may counteract this mechanism, but their association with COVID-19 outcomes has not been specifically tested in the African American population.METHODSWe identified 6218 patients who were admitted into Mount Sinai hospitals with COVID-19 between February 24 and May 31, 2020, in New York City. We evaluated whether the outpatient and in-hospital use of ACE-I/ARB is associated with COVID-19 in-hospital mortality in an African American compared with non-African American population.RESULTSOf the 6218 patients with COVID-19, 1138 (18.3%) were ACE-I/ARB users. In a multivariate logistic regression model, ACE-I/ARB use was independently associated with a reduced risk of in-hospital mortality in the entire population (OR, 0.655; 95% CI, 0.505-0.850; P = 0.001), African American population (OR, 0.44; 95% CI, 0.249-0.779; P = 0.005), and non-African American population (OR, 0.748, 95% CI, 0.553-1.012, P = 0.06). In the African American population, in-hospital use of ACE-I/ARB was associated with improved mortality (OR, 0.378; 95% CI, 0.188-0.766; P = 0.006), whereas outpatient use was not (OR, 0.889; 95% CI, 0.375-2.158; P = 0.812). When analyzing each medication class separately, ARB in-hospital use was significantly associated with reduced in-hospital mortality in the African American population (OR, 0.196; 95% CI, 0.074-0.516; P = 0.001), whereas ACE-I use was not associated with impact on mortality in any population.CONCLUSIONIn-hospital use of ARB was associated with a significant reduction in in-hospital mortality among COVID-19-positive African American patients.FUNDINGNone.


Assuntos
Afro-Americanos , Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , COVID-19 , Mortalidade Hospitalar/etnologia , SARS-CoV-2/metabolismo , Idoso , COVID-19/tratamento farmacológico , COVID-19/etnologia , COVID-19/metabolismo , COVID-19/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptidil Dipeptidase A/metabolismo , Estudos Retrospectivos , Taxa de Sobrevida
13.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445669

RESUMO

Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , Peptidil Dipeptidase A/metabolismo , Peptoides/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , COVID-19/tratamento farmacológico , COVID-19/virologia , Humanos , Células MCF-7 , Peptoides/metabolismo , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Front Cell Infect Microbiol ; 11: 707194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434902

RESUMO

SARS-CoV-2 infectivity is largely determined by the virus Spike protein binding to the ACE2 receptor. Meanwhile, marked infection rate differences were reported between populations and individuals. To understand the disease dynamic, we developed a computational approach to study the implications of both SARS-CoV-2 RBD mutations and ACE2 polymorphism on the stability of the virus-receptor complex. We used the 6LZG PDB RBD/ACE2 3D model, the mCSM platform, the LigPlot+ and PyMol software to analyze the data on SARS-CoV-2 mutations and ACE variants retrieved from GISAID and Ensembl/GnomAD repository. We observed that out of 351 RBD point mutations, 83% destabilizes the complex according to free energy (ΔΔG) differences. We also spotted variations in the patterns of polar and hydrophobic interactions between the mutations occurring in 15 out of 18 contact residues. Similarly, comparison of the effect on the complex stability of different ACE2 variants showed that the pattern of molecular interactions and the complex stability varies also according to ACE2 polymorphism. We infer that it is important to consider both ACE2 variants and circulating SARS-CoV-2 RBD mutations to assess the stability of the virus-receptor association and evaluate infectivity. This approach might offers a good molecular ground to mitigate the virus spreading.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Mutação , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Am J Respir Crit Care Med ; 204(9): 1024-1034, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449302

RESUMO

Rationale: ACE2 (angiotensin-converting enzyme 2), the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is expressed in type 2 alveolar epithelial cells (AT2) that may play key roles in postinjury repair. An imbalance between ACE2 and ACE has also been hypothesized to contribute to lung injury. Objectives: To characterize the expression and distribution of ACE2 and ACE and to compare AT2 with endothelial cell expression in coronavirus disease (COVID-19)-related or -unrelated acute respiratory distress syndrome (ARDS) and controls. Methods: Lung tissue stainings (using multiplex immunofluorescence) and serum concentrations of ACEs were determined retrospectively in two different cohorts of patients. AT2 and endothelial cells were stained in lung tissue for ProSPC (pro-surfactant protein C) and CD31, respectively. Measurements and Main Results: Pulmonary ACE2 expression was increased in patients with COVID-19-related and -unrelated ARDS (0.06% of tissue area and 0.12% vs. 0.006% for control subjects; P = 0.013 and P < 0.0001, respectively). ACE2 was upregulated in endothelial cells (0.32% and 0.53% vs. 0.01%; P = 0.009 and P < 0.0001) but not in AT2 cells (0.13% and 0.08% vs. 0.03%; P = 0.94 and P = 0.44). Pulmonary expression of ACE was decreased in both COVID-19-related and -unrelated ARDS (P = 0.057 and P = 0.032). Similar increases in ACE2 and decreases in ACE were observed in sera of COVID-19 (P = 0.0054 and P < 0.0001) and non-COVID-19 ARDS (P < 0.0001 and P = 0.016). In addition, AT2 cells were decreased in patients with COVID-19-related ARDS compared with COVID-19-unrelated ARDS (1.395% vs. 2.94%, P = 0.0033). Conclusions: ACE2 is upregulated in lung tissue and serum of both COVID-19-related and -unrelated ARDS, whereas a loss of AT2 cells is selectively observed in COVID-19-related ARDS.


Assuntos
Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Peptidil Dipeptidase A/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , COVID-19/diagnóstico , COVID-19/fisiopatologia , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/virologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Regulação para Cima
16.
Cells ; 10(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359878

RESUMO

Objective: Inhibitors of the angiotensin converting enzyme (ACE) are the primarily chosen drugs to treat heart failure and hypertension. Moreover, an imbalance in tissue ACE/ACE2 activity is implicated in COVID-19. In the present study, we tested the relationships between circulating and tissue (lung and heart) ACE levels in men. Methods: Serum, lung (n = 91) and heart (n = 72) tissue samples were collected from Caucasian patients undergoing lung surgery or heart transplantation. ACE I/D genotype, ACE concentration and ACE activity were determined from serum and tissue samples. Clinical parameters were also recorded. Results: A protocol for ACE extraction was developed for tissue ACE measurements. Extraction of tissue-localized ACE was optimal in a 0.3% Triton-X-100 containing buffer, resulting in 260 ± 12% higher ACE activity over detergent-free conditions. SDS or higher Triton-X-100 concentrations inhibited the ACE activity. Serum ACE concentration correlated with ACE I/D genotype (II: 166 ± 143 ng/mL, n = 19, ID: 198 ± 113 ng/mL, n = 44 and DD: 258 ± 109 ng/mL, n = 28, p < 0.05) as expected. In contrast, ACE expression levels in the lung tissue were approximately the same irrespective of the ACE I/D genotype (II: 1423 ± 1276 ng/mg, ID: 1040 ± 712 ng/mg and DD: 930 ± 1273 ng/mg, p > 0.05) in the same patients (values are in median ± IQR). Moreover, no correlations were found between circulating and lung tissue ACE concentrations and activities (Spearman's p > 0.05). In contrast, a significant correlation was identified between ACE activities in serum and heart tissues (Spearman's Rho = 0.32, p < 0.01). Finally, ACE activities in lung and the serum were endogenously inhibited to similar degrees (i.e., to 69 ± 1% and 53 ± 2%, respectively). Conclusion: Our data suggest that circulating ACE activity correlates with left ventricular ACE, but not with lung ACE in human. More specifically, ACE activity is tightly coordinated by genotype-dependent expression, endogenous inhibition and secretion mechanisms.


Assuntos
Peptidil Dipeptidase A/metabolismo , Idoso , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Peptidil Dipeptidase A/análise , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Processamento de Proteína Pós-Traducional
17.
J Am Heart Assoc ; 10(14): e016543, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34259014

RESUMO

Background High-fructose diet (HFr) induces hypertension and renal damage. However, it has been unknown whether the HFr-induced hypertension and renal damage are exaggerated in subjects with salt sensitivity. We tested impacts of HFr in Dahl salt-sensitive (DS) and salt-resistant (DR) rats. Methods and Results Male DS and DR rats were fed control diet or HFr (60% fructose) with normal-salt content. After 12 weeks, plasma and urinary parameters, renal histological characteristics, and renal expression of renin-angiotensin system components were examined. Furthermore, effects of renin-angiotensin system inhibitors were also examined in DS rats fed the HFr. HFr elevated blood pressure in DS rats but not in DR rats. HFr increased urinary albumin and liver type fatty acid binding protein excretions in both rats, but the excretions were exaggerated in DS rats. HFr increased plasma lipids and uric acid in both rats, whereas HFr increased creatinine clearance in DS rats but not DR rats. Although HFr decreased plasma renin activity in DS rats, HFr-induced glomerular injury, afferent arteriolar thickening, and renal interstitial fibrosis were exaggerated in DS rats. HFr increased renal expression of angiotensinogen, renin, (pro)renin receptor, angiotensin-converting enzyme, and angiotensin II type 1 receptor in DS rat, whereas HFr increased only angiotensin-converting enzyme expression and decreased renin and angiotensin II type 1 receptor expressions in DR rats. Enalapril and candesartan attenuated the HFr-induced hypertension, albuminuria, glomerular hyperfiltration, and renal damage in DS rats. Conclusion HFr-induced hypertension and renal damage are exaggerated in DS rats via renal renin-angiotensin system activation, which can be controlled by renin-angiotensin system inhibitors.


Assuntos
Frutose/administração & dosagem , Frutose/metabolismo , Hipertensão/etiologia , Glomérulos Renais/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Enalapril/farmacologia , Glomérulos Renais/patologia , Masculino , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Endogâmicos Dahl , Receptor Tipo 1 de Angiotensina/metabolismo , Renina/sangue , Sódio na Dieta/administração & dosagem , Tetrazóis/farmacologia
18.
Cell Rep ; 36(4): 109433, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34273271

RESUMO

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , Humanos , Mutação/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/imunologia
19.
Antiviral Res ; 193: 105138, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246735

RESUMO

The global spread of SARS-CoV-2 has made millions ill with COVID-19 and even more from the economic fallout of this pandemic. Our quest to test new therapeutics and vaccines require small animal models that replicate disease phenotypes seen in COVID-19 cases. Rodent models of SARS-CoV-2 infection thus far have shown mild to moderate pulmonary disease; mortality, if any, has been associated with prominent signs of central nervous system (CNS) infection and dysfunction. Here we describe the isolation of SARS-CoV-2 variants with propensity for either pulmonary or CNS infection. Using a wild-type SARS-CoV-2 isolated from a COVID-19 patient, we first found that infection was lethal in transgenic mice expressing the human angiotensin I-converting enzyme 2 (hACE2). Fortuitously, full genome sequencing of SARS-CoV-2 from the brain and lung of these animals showed genetic differences. Likewise, SARS-CoV-2 isolates from brains and lungs of these also showed differences in plaque morphology. Inoculation of these brain and lung SARS-CoV-2 isolates into new batch of hACE2 mice intra-nasally resulted in lethal CNS and pulmonary infection, respectively. Collectively, our study suggests that genetic variants of SARS-CoV-2 could be used to replicate specific features of COVID-19 for the testing of potential vaccines or therapeutics.


Assuntos
COVID-19/patologia , Modelos Animais de Doenças , Pulmão/patologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/metabolismo , COVID-19/mortalidade , COVID-19/virologia , Feminino , Humanos , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo
20.
Biophys J ; 120(14): 2785-2792, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34214538

RESUMO

The entry of the severe acute respiratory syndrome coronavirus 2 virus in human cells is mediated by the binding of its surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor. A 23-residue long helical segment (SBP1) at the binding interface of human ACE2 interacts with viral spike protein and therefore has generated considerable interest as a recognition element for virus detection. Unfortunately, emerging reports indicate that the affinity of SBP1 to the receptor-binding domain of the spike protein is much lower than that of the ACE2 receptor itself. Here, we examine the biophysical properties of SBP1 to reveal factors leading to its low affinity for the spike protein. Whereas SBP1 shows good solubility (solubility > 0.8 mM), circular dichroism spectroscopy shows that it is mostly disordered with some antiparallel ß-sheet content and no helicity. The helicity is substantial (>20%) only upon adding high concentrations (≥20% v/v) of 2,2,2-trifluoroethanol, a helix promoter. Fluorescence correlation spectroscopy and single-molecule photobleaching studies show that the peptide oligomerizes at concentrations >50 nM. We hypothesized that mutating the hydrophobic residues (F28, F32, and F40) of SBP1, which do not directly interact with the spike protein, to alanine would reduce peptide oligomerization without affecting its spike binding affinity. Whereas the mutant peptide (SBP1mod) shows substantially reduced oligomerization propensity, it does not show improved helicity. Our study shows that the failure of efforts, so far, to produce a short SBP1 mimic with a high affinity for the spike protein is not only due to the lack of helicity but is also due to the heretofore unrecognized problem of oligomerization.


Assuntos
COVID-19 , Peptidil Dipeptidase A , Enzima de Conversão de Angiotensina 2 , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...