Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
1.
J Agric Food Chem ; 72(12): 6432-6443, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470110

RESUMO

Faba bean flour, after in vitro gastrointestinal digestion, showed important antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities. In the present study, 11 faba bean- derived peptides were synthesized to confirm their bioactivities and provide a deeper understanding of their mechanisms of action. The results revealed that 7 peptides were potent antioxidants, namely, NYDEGSEPR, TETWNPNHPEL, TETWNPNHPE, VIPTEPPH, VIPTEPPHA, VVIPTEPPHA, and VVIPTEPPH. Among them, TETWNPNHPEL had the highest activity in the ABTS (EC50 = 0.5 ± 0.2 mM) and DPPH (EC50 = 2.1 ± 0.1 mM) assays (p < 0.05), whereas TETWNPNHPE had the highest activity (p < 0.05) in the ORAC assay (2.84 ± 0.08 mM Trolox equivalent/mM). Synergistic and/or additive effects were found when selected peptides (TETWNPNHPEL, NYDEGSEPR, and VVIPTEPPHA) were combined. Four peptides were potent ACE inhibitors, where VVIPTEPPH (IC50 = 43 ± 1 µM) and VVIPTEPPHA (IC50 = 50 ± 5 µM) had the highest activity (p < 0.05), followed by VIPTEPPH (IC50 = 90 ± 10 µM) and then VIPTEPPHA (IC50 = 123 ± 5 µM) (p < 0.05). These peptides were noncompetitive inhibitors, as supported by kinetic studies and a molecular docking investigation. This study demonstrated that peptides derived from faba beans have multifunctional bioactivities, making them a promising food-functional and nutraceutical ingredient.


Assuntos
Antioxidantes , Vicia faba , Antioxidantes/química , Vicia faba/metabolismo , Simulação de Acoplamento Molecular , Cinética , Peptídeos/química , Digestão , Angiotensinas , Peptidil Dipeptidase A/química
2.
Food Funct ; 15(7): 3824-3837, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511617

RESUMO

In this study, the effects of Lactiplantibacillus plantarum M11 (Lb. plantarum M11) in conjunction with sodium caseinate on the characteristics and angiotensin converting enzyme (ACE) inhibitory activity of yogurt were investigated. ACE inhibitory peptides (ACEIPs) in yogurt were identified by nano-LC-MS/MS and potential ACEIPs were predicted by in silico and molecular docking methods. The results showed that the ACE-inhibitory activity of yogurt was significantly enhanced (p < 0.05), while maintaining the quality characteristics of the yogurt. Thirteen ACEIPs in the improved yogurt (883 + M11-CS group) were identified, which were more abundant than the other yogurt groups (control 883 group, 883 + M11 group and 883-CS group). Two novel peptides with potential ACE inhibitory activity, YPFPGPIH and NILRFF, were screened. The two peptides showed PeptideRanker scores above 0.8, small molecular weight and strong hydrophobicity, and were non-toxic after prediction. Molecular docking results showed that binding energies with ACE were -9.4 kcal mol-1 and -10.7 kcal mol-1, respectively, and could bind to the active site of ACE. These results indicated that yogurt with Lb. plantarum M11 and sodium caseinate has the potential to be utilized as a functional food with antihypertensive properties. The combination of ACEIP-producing strains and casein fortification could be an effective method to promote the release of ACEIPs from yogurt.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Lactobacillus plantarum , Inibidores da Enzima Conversora de Angiotensina/química , Caseínas/química , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptidil Dipeptidase A/química , Iogurte , Peptídeos/química
3.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
4.
Mar Drugs ; 22(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393061

RESUMO

Protein hydrolysates from sea cucumber (Apostichopus japonicus) gonads are rich in active materials with remarkable angiotensin-converting enzyme (ACE) inhibitory activity. Alcalase was used to hydrolyze sea cucumber gonads, and the hydrolysate was separated by the ultrafiltration membrane to produce a low-molecular-weight peptide component (less than 3 kDa) with good ACE inhibitory activity. The peptide component (less than 3 kDa) was isolated and purified using a combination method of ACE gel affinity chromatography and reverse high-performance liquid chromatography. The purified fractions were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the resulting products were filtered using structure-based virtual screening (SBVS) to obtain 20 peptides. Of those, three noncompetitive inhibitory peptides (DDQIHIF with an IC50 value of 333.5 µmol·L-1, HDWWKER with an IC50 value of 583.6 µmol·L-1, and THDWWKER with an IC50 value of 1291.8 µmol·L-1) were further investigated based on their favorable pharmacochemical properties and ACE inhibitory activity. Molecular docking studies indicated that the three peptides were entirely enclosed within the ACE protein cavity, improving the overall stability of the complex through interaction forces with the ACE active site. The total free binding energies (ΔGtotal) for DDQIHIF, HDWWKER, and THDWWKER were -21.9 Kcal·mol-1, -71.6 Kcal·mol-1, and -69.1 Kcal·mol-1, respectively. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that HDWWKER could significantly decrease the systolic blood pressure (SBP) of SHRs after intravenous administration. The results showed that based on the better antihypertensive activity of the peptide in SHRs, the feasibility of targeted affinity purification and computer-aided drug discovery (CADD) for the efficient screening and preparation of ACE inhibitory peptide was verified, which provided a new idea of modern drug development method for clinical use.


Assuntos
Anti-Hipertensivos , Pepinos-do-Mar , Ratos , Animais , Anti-Hipertensivos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Cromatografia Líquida , Simulação de Acoplamento Molecular , Pepinos-do-Mar/metabolismo , Espectrometria de Massas em Tandem , Peptídeos/química , Ratos Endogâmicos SHR , Cromatografia de Afinidade , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Gônadas/metabolismo , Angiotensinas
5.
Adv Mater ; 36(14): e2311537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174591

RESUMO

Three kinds of coronaviruses are highly pathogenic to humans, and two of them mainly infect humans through Angiotensin-converting enzyme 2 (ACE2)receptors. Therefore, specifically blocking ACE2 binding at the interface with the receptor-binding domain is promising to achieve both preventive and therapeutic effects of coronaviruses. Alternatively, drug-targeted delivery based on ACE2 receptors can further improve the efficacy and safety of inhalation drugs. Here, these two approaches are innovatively combined by designing a nanoemulsion (NE) drug delivery system (termed NE-AYQ) for inhalation that targets binding to ACE2 receptors. This inhalation-delivered remdesivir nanoemulsion (termed RDSV-NE-AYQ) effectively inhibits the infection of target cells by both wild-type and mutant viruses. The RDSV-NE-AYQ strongly inhibits Severe acute respiratory syndrome coronavirus 2 at two dimensions: they not only block the binding of the virus to host cells at the cell surface but also restrict virus replication intracellularly. Furthermore, in the mouse model of acute lung injury, the inhaled drug delivery system loaded with anti-inflammatory drugs (TPCA-1-NE-AYQ) can significantly alleviate the lung tissue injury of mice. This smart combination provides a new choice for dealing with possible emergencies in the future and for the rapid development of inhaled drugs for the treatment of respiratory diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/farmacologia , Replicação Viral
6.
FEBS Lett ; 598(2): 242-251, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904282

RESUMO

Human somatic angiotensin-1-converting enzyme (sACE) is composed of a catalytic N-(nACE) and C-domain (cACE) of similar size with different substrate specificities. It is involved in the regulation of blood pressure by converting angiotensin I to the vasoconstrictor angiotensin II and has been a major focus in the development of therapeutics for hypertension. Bioactive peptides from various sources, including milk, have been identified as natural ACE inhibitors. We report the structural basis for the role of two lacototripeptides, Val-Pro-Pro and Ile-Pro-Pro, in domain-specific inhibition of ACE using X-ray crystallography and kinetic analysis. The lactotripeptides have preference for nACE due to altered polar interactions distal to the catalytic zinc ion. Elucidating the mechanism of binding and domain selectivity of these peptides also provides important insights into the functional roles of ACE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Cinética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Angiotensinas
7.
ACS Chem Biol ; 19(1): 141-152, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085789

RESUMO

The development of effective antiviral compounds is essential for mitigating the effects of the COVID-19 pandemic. Entry of SARS-CoV-2 virions into host cells is mediated by the interaction between the viral spike (S) protein and membrane-bound angiotensin-converting enzyme 2 (ACE2) on the surface of epithelial cells. Inhibition of this viral protein-host protein interaction is an attractive avenue for the development of antiviral molecules with numerous spike-binding molecules generated to date. Herein, we describe an alternative approach to inhibit the spike-ACE2 interaction by targeting the spike-binding interface of human ACE2 via mRNA display. Two consecutive display selections were performed to direct cyclic peptide ligand binding toward the spike binding interface of ACE2. Through this process, potent cyclic peptide binders of human ACE2 (with affinities in the picomolar to nanomolar range) were identified, two of which neutralized SARS-CoV-2 entry. This work demonstrates the potential of targeting ACE2 for the generation of anti-SARS-CoV-2 therapeutics as well as broad spectrum antivirals for the treatment of SARS-like betacoronavirus infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Pandemias , Ligantes , Ligação Proteica , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Antivirais/farmacologia , Antivirais/química
8.
Biomolecules ; 13(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37892134

RESUMO

In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Internalização do Vírus
9.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888457

RESUMO

An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L-1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be -82.7382 kJ·mol-1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Takifugu , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Takifugu/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Cromatografia de Afinidade/métodos , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Angiotensinas
10.
J Agric Food Chem ; 71(33): 12462-12473, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578765

RESUMO

Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.


Assuntos
Lacticaseibacillus paracasei , Lacticaseibacillus , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/química , Peptidil Dipeptidase A/química
11.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446242

RESUMO

Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Sargassum , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Sargassum/química , Peptidil Dipeptidase A/química , Clorofórmio
12.
J Agric Food Chem ; 71(28): 10638-10646, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37406188

RESUMO

This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 µM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Humanos , Suínos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Peptidil Dipeptidase A/química , Cloreto de Sódio , Simulação de Acoplamento Molecular , Células CACO-2 , Células Endoteliais , Peptídeos/farmacologia , Peptídeos/química , Digestão
13.
Food Chem ; 425: 136480, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276669

RESUMO

Angiotensin-I-converting enzyme (ACE) inhibitory activity and salt-reduction properties of umami peptides identified in chicken soup were investigated. The ACE inhibition rate of TPLVDR (91.22%) and AEINKILGN (81.26%) was significantly higher than other umami peptides, and their semi-inhibitory concentration was 0.017 mM and 0.034 mM, respectively. After in vitro digestion, the inhibitory activity of AEINKILGN and TPLVDR decreased, but the original sequences were still detected. The docking results showed that AEINKILGN and TPLVDR mainly interacted with Zn2+ and key sites (His353, Lys511and Glu411) in the active pockets of ACE through hydrogen bonds, which was crucial to the ACE inhibitory activity. Based on response surface methodology and sensory analysis, saltiness and palatability models were established to investigate the salt-reduction effect. The optimal level of AEINKILGN was about 1.16 mg/mL in 0.44% salt solution. And the TPLVDR was applicable to the low salt solution (0.1-0.2%) at a concentration from 0.23 to 0.29 mg/mL.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Galinhas , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Peptídeos/farmacologia , Peptídeos/química , Cloreto de Sódio na Dieta , Cloreto de Sódio
14.
Peptides ; 167: 171046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330111

RESUMO

The pearl garlic (Allium sativum L.) protein (PGP) was digested using pepsin, trypsin, α-chymotrypsin, thermolysin, and simulated gastrointestinal digestion. The α-chymotrypsin hydrolysate showed the highest angiotensin-I-converting enzyme inhibitory (ACEI) activity, with an IC50 value of 190.9 ± 11 µg/mL. A reversed-phase C18 solid-phase extraction (RP-SPE) cartridge was used for the first fractionation, and the S4 fraction from RP-SPE showed the most potent ACEI activity (IC50 =124.1 ± 11 3 µg/mL). The S4 fraction was further fractionated using a hydrophilic interaction liquid chromatography SPE (HILIC-SPE). The H4 fraction from HILIC-SPE showed the highest ACEI activity (IC50 =57.7 ± 3 µg/mL). Four ACEI peptides (DHSTAVW, KLAKVF, KLSTAASF, and KETPEAHVF) were identified from the H4 fraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and their biological activities were appraised in silico. Among the identified α-chymotryptic peptides, DHSTAVW (DW7), derived from I lectin partial protein, exhibited the most potent ACEI activity (IC50 value of 2.8 ± 0.1 µM). DW7 was resistant to simulated gastrointestinal digestion, and it was classified as a prodrug-type inhibitor according to the preincubation experiment. The inhibition kinetics indicated that DW7 was a competitive inhibitor, which was rationalized by the molecular docking simulation. The quantities of DW7 in 1 mg of hydrolysate, S4 fraction, and H4 fraction were quantified using LC-MS/MS to give 3.1 ± 0.1, 4.2 ± 0.1, and 13.2 ± 0.1 µg, respectively. The amount of DW7 was significantly increased by 4.2-fold compared with the hydrolysate, which suggested that this method is efficient for active peptide screening.


Assuntos
Alho , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A/química
15.
Biosensors (Basel) ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37366959

RESUMO

We introduce a magnetic bead-based sample preparation scheme for enabling the Raman spectroscopic differentiation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-positive and -negative samples. The beads were functionalized with the angiotensin-converting enzyme 2 (ACE2) receptor protein, which is used as a recognition element to selectively enrich SARS-CoV-2 on the surface of the magnetic beads. The subsequent Raman measurements directly enable discriminating SARS-CoV-2-positive and -negative samples. The proposed approach is also applicable for other virus species when the specific recognition element is exchanged. A series of Raman spectra were measured on three types of samples, namely SARS-CoV-2, Influenza A H1N1 virus and a negative control. For each sample type, eight independent replicates were considered. All of the spectra are dominated by the magnetic bead substrate and no obvious differences between the sample types are apparent. In order to address the subtle differences in the spectra, we calculated different correlation coefficients, namely the Pearson coefficient and the Normalized cross correlation coefficient. By comparing the correlation with the negative control, differentiating between SARS-CoV-2 and Influenza A virus is possible. This study provides a first step towards the detection and potential classification of different viruses with the use of conventional Raman spectroscopy.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2/metabolismo , COVID-19/diagnóstico , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Análise Espectral Raman , Fenômenos Magnéticos
16.
J Sci Food Agric ; 103(14): 7153-7163, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37338325

RESUMO

BACKGROUND: Marine bacteria secrete a variety of proteases, which are a good source to explore proteases with application value. However, only a few marine bacterial proteases with a potential in bioactive peptides preparation have been reported. RESULTS: The metalloprotease A69 from the marine bacterium Anoxybacillus caldiproteolyticus 1A02591 was successfully expressed in the food safe bacterium Bacillus subtilis as a secreted enzyme. A technique to efficiently produce protease A69 in a 15-L bioreactor was established, with a production of 8988 U mL-1 . Based on optimizing the hydrolysis parameters of A69 on soybean protein, a process for soybean protein peptides (SPs) preparation was set up, in which soybean protein was hydrolyzed by A69 at 4000 U g-1 and 60 °C for 3 h. The prepared SPs had a high content (> 90%) of peptides with a molecular mass less than 3000 Da and contained 18 amino acids. The prepared SPs showed high angiotensin-converting enzyme (ACE)-inhibitory activity, with an IC50 value of 0.135 mg mL-1 . Moreover, three ACE-inhibitory peptides, RPSYT, VLIVP and LAIPVNKP, were identified from the SPs using liquid chromatography-mass spectrometry analysis. CONCLUSION: The marine bacterial metalloprotease A69 has a promising potential for preparing SPs with good nutritional and potential antihypertensive effects, laying a good foundation for its industrial production and application. © 2023 Society of Chemical Industry.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , /química , Inibidores da Enzima Conversora de Angiotensina/química , Proteínas de Soja , Peptídeos/química , Peptídeo Hidrolases/química , Endopeptidases/química , Hidrólise , Metaloproteases , Bacillus subtilis/metabolismo , Angiotensinas , Peptidil Dipeptidase A/química
17.
Cell Commun Signal ; 21(1): 110, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189112

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica
18.
Environ Sci Technol ; 57(46): 18038-18047, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37186679

RESUMO

Despite the fact that coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been disrupting human life and health worldwide since the outbreak in late 2019, the impact of exogenous substance exposure on the viral infection remains unclear. It is well-known that, during viral infection, organism receptors play a significant role in mediating the entry of viruses to enter host cells. A major receptor of SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). This study proposes a deep learning model based on the graph convolutional network (GCN) that enables, for the first time, the prediction of exogenous substances that affect the transcriptional expression of the ACE2 gene. It outperforms other machine learning models, achieving an area under receiver operating characteristic curve (AUROC) of 0.712 and 0.703 on the validation and internal test set, respectively. In addition, quantitative polymerase chain reaction (qPCR) experiments provided additional supporting evidence for indoor air pollutants identified by the GCN model. More broadly, the proposed methodology can be applied to predict the effect of environmental chemicals on the gene transcription of other virus receptors as well. In contrast to typical deep learning models that are of black box nature, we further highlight the interpretability of the proposed GCN model and how it facilitates deeper understanding of gene change at the structural level.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Transcrição Gênica
19.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110571

RESUMO

One of the most striking aspects of the primary structure in the hydrophobic domains of the tropoelastin molecule is the occurrence of the VAPGVG repeating sequence. Since the N-terminal tripeptide VAP of VAPGVG showed a potent ACE inhibitory activity, the ACE inhibitory activity of various derivatives of VAP was examined in vitro. The results showed that VAP derivative peptides VLP, VGP, VSP, GAP, LSP, and TRP exhibited potent ACE inhibitory activities, while the non-derivative peptide APG showed only weak activity. In in silico studies, the docking score S value showed that VAP derivative peptides VLP, VGP, VSP, LSP, and TRP had stronger docking interactions than APG. Molecular docking in the ACE active pocket showed that TRP, the most potent ACE inhibitory peptide among the VAP derivatives, had a larger number of interactions with ACE residues in comparison with APG and that the TRP molecule appeared to spread widely in the ACE pocket, while the APG molecule appeared to spread closely. Differences in molecular spread may be a reason why TRP exhibits more potent ACE inhibitory activity than APG. The results suggest that the number and strength of interactions between the peptide and ACE are important for the ACE- inhibitory potency of the peptide.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Animais , Suínos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Elastina , Peptídeos/farmacologia , Peptídeos/química
20.
Lancet Microbe ; 4(5): e369-e378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934742

RESUMO

Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/química , Anticorpos Antivirais , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...