Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.745
Filtrar
1.
J Sci Food Agric ; 103(1): 349-360, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35892290

RESUMO

BACKGROUND: Compounded ice glazing has been used in large yellow croaker to improve its quality during frozen storage. The ice glazing liquid is prepared by compound use of trehalose and tea polyphenols, and the moisture, protein-related properties and freshness of the fish have been evaluated during 300 days of frozen storage. RESULTS: The results showed that the addition of trehalose effectively reduced the loss of water. At the same time, it was difficult for ice crystals to grow under the action of trehalose, the average diameter could still be maintained at 111.25-119.85 µm. The combination with tea polyphenols could effectively maintain the protein structure and keep the total volatile base nitrogen (TVB-N) and K value within 11.84 mg/100 g and 13.18%, so that the freshness of the fish was always at the first level. CONCLUSION: In a word, the ice glazing with 5% trehalose and 8% tea polyphenols had the best preservation effect, which was recommended for the frozen storage. © 2022 Society of Chemical Industry.


Assuntos
Gelo , Perciformes , Animais , Polifenóis/metabolismo , Trealose/metabolismo , Perciformes/metabolismo , Peixes , Chá/metabolismo
2.
Food Chem ; 403: 134314, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179632

RESUMO

Tropomyosin (TM) is a major shellfish allergen and a minor fish allergen. Different digestion profiles affect potential allergen anaphylaxis of protein. In this study, released peptides of fish-TM, shrimp-TM, and clam-TM by in vitro digestion of simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and gastrointestinal (GI) were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) based proteomics. Results showed that digestion products of shrimp-TM yielded a lot of peptides matched T/B cell epitopes while core regions matched epitopes were distributed along the entire chain. Pepsin or trypsin-based digestion products of shrimp-TM presented many more peptides matched T/B cell epitopes compared with those of fish-TM and clam-TM. Besides, a differentiating peptide of VEKDKALSNAEGEVAAL (72-88) overlapped T/B cell epitopes could be used as a candidate peptide marker to identify tropomyosin allergen. These findings would supply new insight into the different allergenicity of tropomyosin.


Assuntos
Bivalves , Hipersensibilidade Alimentar , Penaeidae , Perciformes , Animais , Tropomiosina/metabolismo , Mapeamento de Epitopos , Epitopos de Linfócito B/metabolismo , Imunoglobulina E/metabolismo , Proteômica , Penaeidae/metabolismo , Alérgenos/metabolismo , Bivalves/genética , Bivalves/metabolismo , Perciformes/metabolismo , Peptídeos/metabolismo , Digestão
3.
Microbiol Res ; 266: 127220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308833

RESUMO

Pseudomonas plecoglossicida is a temperature-dependent opportunistic pathogen mediating visceral granulomas in many piscine species including the large yellow croaker (Larimichthys crocea) but the underlying mechanisms are unclear. RpoE is an alternative sigma (σ) factor involved in regulated intramembrane proteolytic (RIP) cascade, enabling bacterial pathogens to coordinate the expression of genetic traits associated with stress adaptation and virulence determinants in response to diverse stimuli in vitro and in vivo of the hosts. In this study, genes associated to RIP cascade in P. plecoglossicida were identified and characterized to show various sequence similarities to their counterparts in Escherichia coli and P. aeruginosa. The expression of P. plecoglossicida RIP locus was induced by higher temperatures. Moreover, RNA sequencing approach revealed that RpoE regulated the expression of ∼297 and ∼261 genes at virulent (18 °C) and non-virulent (28 °C) temperatures, respectively. RpoE regulon genes are involved in various processes associated with bacterial signal transduction, membrane homeostasis, energy metabolism and virulence. In particular, RpoE positively controlled expression of csrA encoding an RNA binding protein essential for central carbon metabolism. In addition, P. plecoglossicida RpoE was validated to regulate type VI secretion system (T6SS) expression, bacteria competition, biofilm formation and reproduction in macrophages. Collectively, RpoE-centered RIP cascade appeared to play important roles in control of the expression of genes involved in adaptation in vivo and in vitro niches by thermal sensing in P. plecoglossicida. These results facilitates to reveal the pathogenic mechanisms of P. plecoglossicida causing fish diseases and provides new perspectives to control bacterial infection.


Assuntos
Perciformes , Infecções por Pseudomonas , Sistemas de Secreção Tipo VI , Animais , Temperatura , Infecções por Pseudomonas/microbiologia , Perciformes/metabolismo , Perciformes/microbiologia , Fator sigma/genética , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Nutrients ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364770

RESUMO

The early life period is considered an essential period for gut microbial colonization. Manipulating gut microbiota interventions during early life periods has been proven to be a promising method to boost healthy growth. Therefore, the aim of the present study was to investigate the effects of dietary fucoidan (Fuc) on the growth, digestive tract maturation, and gut microbiota of large yellow croaker (Larimichthys crocea) larvae. Four diets were formulated with different levels of Fuc (0.00%, 0.50%, 1.00%, and 2.00%). Results showed that dietary Fuc significantly improved the growth performance of larvae. Meanwhile, dietary Fuc promoted digestive tract maturation. Dietary 1.00% Fuc significantly improved intestinal morphology. Dietary Fuc upregulated the expression of intestinal cell proliferation and differentiation related-genes and intestinal barrier related-genes. Dietary 2.00% Fuc significantly increased the activities of brush border membranes enzymes and lipase while inhibiting α-amylase. Furthermore, dietary Fuc maintained healthy intestinal micro-ecology. In detail, dietary 1.00% and 2.00% Fuc altered the overall structure of the gut microbiota and increased the relative abundance of Bacteroidetes while decreasing the relative abundance of opportunistic pathogens and facultative anaerobe. In conclusion, appropriate dietary Fuc (1.00-2.00%) could improve the growth of large yellow croaker larvae by promoting digestive tract maturation and maintaining an ideal intestinal micro-ecology.


Assuntos
Microbioma Gastrointestinal , Perciformes , Animais , Larva , Perciformes/metabolismo , Intestinos/anatomia & histologia
5.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361591

RESUMO

Metal bioaccumulation and metallothionein (MT) expression were investigated in the gills and liver of the red-blooded Antarctic teleost Trematomus hansoni to evaluate the possibility for this species to face, with adequate physiological responses, an increase of copper and cadmium concentrations in its tissues. Specimens of this Antarctic fish were collected from Terra Nova Bay (Ross Sea) and used for a metal exposure experiment in controlled laboratory conditions. The two treatments led to a significant accumulation of both metals and increased gene transcription only for the MT-1. The biosynthesis of MTs was verified especially in specimens exposed to Cd, but most of these proteins were soon oxidized, probably because they were involved in cell protection against oxidative stress risk by scavenging reactive oxygen species. The obtained data highlighted the phenotypic plasticity of T. hansoni, a species that evolved in an environment characterized by naturally high concentrations of Cu and Cd, and maybe the possibility for the Antarctic fish to face the challenges of a world that is becoming more toxic every day.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Metalotioneína/genética , Metalotioneína/metabolismo , Cádmio/toxicidade , Cádmio/análise , Perciformes/genética , Perciformes/metabolismo , Brânquias/metabolismo , Cobre/toxicidade , Cobre/análise , Metais/toxicidade , Intoxicação por Metais Pesados , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade
6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430187

RESUMO

The amphibious teleost Giant mudskipper (Periophthalmodon schlosseri, Pallas 1770) inhabit muddy plains and Asian mangrove forests. It spends more than 90% of its life outside of the water, using its skin, gills, and buccal-pharyngeal cavity mucosa to breathe in oxygen from the surrounding air. All vertebrates have been found to have mast cells (MCs), which are part of the innate immune system. These cells are mostly found in the mucous membranes of the organs that come in contact with the outside environment. According to their morphology, MCs have distinctive cytoplasmic granules that are released during the degranulation process. Additionally, these cells have antimicrobial peptides (AMPs) that fight a variety of infections. Piscidins, hepcidins, defensins, cathelicidins, and histonic peptides are examples of fish AMPs. Confocal microscopy was used in this study to assess Piscidin1 expression in Giant Mudskipper branchial MCs. Our results demonstrated the presence of MCs in the gills is highly positive for Piscidin1. Additionally, colocalized MCs labeled with TLR2/5-HT and Piscidin1/5-HT supported our data. The expression of Piscidin1 in giant mudskipper MCs highlights the involvement of this peptide in the orchestration of teleost immunity, advancing the knowledge of the defense system of this fish.


Assuntos
Brânquias , Perciformes , Animais , Brânquias/metabolismo , Mastócitos , Serotonina/metabolismo , Perciformes/metabolismo , Peixes/metabolismo , Peptídeos/metabolismo
7.
Braz J Biol ; 82: e262017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36197367

RESUMO

The aim of the current study is to evaluate gene expression patterns of LH (lhr) and estrogen (er) receptors and plasma steroid levels during testicular development in Genyatremus luteus. Males were histologically classified as immature (n=7), maturing (n=7) and mature (n=7), based on the cellular structure of their testes. Plasma 11-KT concentration recorded peak at the final maturation stage. The highest plasma 17α-OHP concentrations were observed at the immature stage; they decreased at the maturation and mature stages. On the other hand, 17ß-estradiol (E2) recorded higher concentrations at the maturation stage. Er expression has significantly increased along the maturational development of animals' testes. The mRNA observed for the LH receptor has decreased from immature to maturing stage; it presented expression peak at the mature stage. There was high association between receptor gene expression and plasma steroid levels, mainly E2. The current study was the first to feature different reproductive maturation stages in male G. luteus specimens, based on cellular, endocrine and molecular aspects. In addition, it has shown that the gene expression profile for er and lhr receptors, as well as plasma 11-KT and E2 concentrations, are directly linked to testicular maturation, although they are not necessarily associated with the gonadosomatic index.


Assuntos
Perciformes , Receptores do LH , Animais , Estradiol , Estrogênios , Peixes , Expressão Gênica , Hormônios Esteroides Gonadais , Masculino , Perciformes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do LH/genética
8.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232658

RESUMO

Toll-like receptor (TLR) is a cluster of type I transmembrane proteins that plays a role in innate immunity. Based on the marbled rockfish (Sebastiscus marmoratus) genome database, this study used bioinformatics methods to identify and analyze its TLR gene family members. The results showed that there were 11 TLR gene family members in Sebastiscus marmoratus (SmaTLR), which could be divided into five different subfamilies. The number of amino acids encoded by the Smatlr genes ranged from 637 to 1206. The physicochemical properties of the encoded proteins of different members were also computed. The results of protein structure prediction, phylogenetic relation, and motif analysis showed that the structure and function of the SmaTLRs were relatively conserved. Quantitative Real-Time PCR (qRT-PCR) analysis revealed the expression patterns of SmaTLRs in the gill, liver, spleen, head kidney, kidney, and intestine. SmaTLRs were widely detected in the tested tissues, and they tended to be expressed higher in immune-related tissues. After polyriboinosinic polyribocytidylic acid (poly(I:C)) challenge, SmaTLR14, SmaTLR3, SmaTLR5S, SmaTLR7, and SmaTLR22 were significantly upregulated in the spleen or liver. The results of this study will help to understand the status of TLR gene family members of marbled rockfish and provide a basis for further study of the functional analysis of this gene family.


Assuntos
Bass , Perciformes , Aminoácidos/metabolismo , Animais , Bass/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata/genética , Perciformes/metabolismo , Filogenia , Poli I-C , Receptores Toll-Like/metabolismo
9.
Zool Res ; 43(6): 952-965, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36208122

RESUMO

Pseudomonas plecoglossicida is the pathogen responsible for visceral white spot disease in large yellow croaker (Larimichthys crocea) and orange-spotted grouper (Epinephelus coioides). Previously, RNA sequencing showed that P. plecoglossicida flgK gene expression was significantly up-regulated in orange-spotted grouper spleens during infection. To explore the role of flgK in P. plecoglossicida pathogenicity, RNA interference (RNAi) was performed to silence the P. plecoglossicida flgK gene, and the mutant (flgK-RNAi strain) with the best silencing efficiency (89.40%) was chosen for further study. Results showed that flgK gene silencing significantly attenuated P. plecoglossicida motility, adhesion, and biofilm formation. Compared to those fish infected with the wild-type strain of P. plecoglossicida, orange-spotted grouper infected with the flgK-RNAi strain showed a 55% increase in the survival rate and a one-day delay in time of first death, with fewer pathogens in the spleen and fewer white spots on the spleen surface. RNAi of flgK significantly affected the transcriptome and metabolome of the spleen in infected orange-spotted grouper. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the C-type lectin receptor signaling pathway was the most significantly changed immune-related pathway and the mitogen-activated protein kinase (MAPK) signaling pathway was related to multiple immune-related pathways. Furthermore, arginine biosynthesis and glycerophospholipid metabolism were the most significantly changed metabolism-related pathways. These findings suggest that flgK is a virulence gene of P. plecoglossicida. Furthermore, flgK appears to be involved in the regulation of motility, adhesion, and biofilm formation in P. plecoglossicida, as well as in the regulation of inflammatory and immune responses of orange-spotted grouper to P. plecoglossicida infection.


Assuntos
Bass , Perciformes , Infecções por Pseudomonas , Animais , Arginina/genética , Proteínas de Bactérias/genética , Bass/genética , Bass/metabolismo , Proteínas de Peixes/genética , Glicerofosfolipídeos , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Perciformes/genética , Perciformes/metabolismo , Pseudomonas , Infecções por Pseudomonas/veterinária , Transcriptoma , Virulência/genética
10.
Fish Physiol Biochem ; 48(5): 1377-1387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36136164

RESUMO

Insulin-like growth factor 3 plays an important role in gonad development in teleost fish. Previous studies found that igf3 was specifically expressed in gonads of silver pomfret (Pampus argenteus). Unlike in other fish, IGF3 is a membrane protein in silver pomfret, and its specific role in gonads is unclear. Herein, we explored the importance of IGF3 in oogenesis and spermatogenesis in silver pomfret by analyzing gene expression and cellular localization. During follicular development, igf3 was detected in ovaries at both mRNA and protein levels during the critical stages of vitellogenesis (IV-VI). Localization analysis detected igf3 mRNA and protein in somatic cells, including theca and granulosa cells around oocytes. Similar to cathepsin L and cathepsin K, igf3 was consistently expressed in ovaries during vitellogenesis, suggesting that it might play a key role in vitellogenesis of oocytes. During spermatogenesis, igf3 mRNA and protein levels were high in stages II, IV, and V, similar to sycp3 and dmc1, and the highest igf3 mRNA and protein levels were reached in stage VI. Furthermore, igf3 mRNA and protein were detected in spermatogonia, spermatocytes, spermatids, and surrounding Sertoli cells, but not in spermatozoon, indicating that IGF3 might be involved in differentiation and meiosis of spermatogonia.


Assuntos
Perciformes , Somatomedinas , Masculino , Feminino , Animais , Catepsina L/metabolismo , Catepsina K/metabolismo , Estações do Ano , Somatomedinas/genética , Somatomedinas/metabolismo , Gônadas/metabolismo , Perciformes/genética , Perciformes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixes/metabolismo , Proteínas de Membrana/metabolismo
11.
J Exp Biol ; 225(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36062522

RESUMO

Phenotypic divergence is a hallmark of adaptive radiation. One example involves differentiation in physiological traits involved in ion regulation among species with contrasting lifestyles and living in distinct environments. Differentiation in ion regulation and its ecological implications among populations within species are, however, less well understood. To address this knowledge gap, we collected prickly sculpin (Cottus asper) from distinct habitat types including coastal rivers connected to estuaries, coastal lakes and interior lakes, all from British Columbia, Canada. We tested for differences in plasma Na+ and Cl-, gill Na+/K+-ATPase and H+-ATPase activity and protein abundance as well as changes in body mass and arterial blood pH in fish sampled from the field and acclimated to two different freshwater conditions in the laboratory: artificial lake water (ALW) and ion-poor water (IPW). We also tested for links between environmental water chemistry and the physiological characteristics associated with ion regulation. Transfer to IPW resulted in upregulation of gill Na+/K+-ATPase and H+-ATPase activity as well as increases in gill H+-ATPase protein expression level in each habitat compared with that in the common ALW treatment. Despite the presence of population-within-habitat-type differences, significant habitat-type effects were revealed in most of the ion regulation characteristics examined under different acclimation conditions. Significantly lower plasma Cl- was detected in fish from coastal rivers than in fish from the other two habitat types during the IPW treatment, which was also significantly lower compared with that in ALW. Similarly, gill Na+/K+-ATPase activity was lower in the coastal river populations in IPW than in fish from coastal and interior lakes, which was not in accordance with the protein expression in the gill. For gill H+-ATPase, fish from interior lake populations had the highest level of activity across all habitat types under all conditions, which was related to the protein levels in the gill. The activity of gill H+-ATPase was positively correlated with the combined effect of water Na+ and pH under the ALW treatment. Our results suggest that variation in habitat may be an important factor driving differences in gill Na+/K+-ATPase and H+-ATPase activity across populations of C. asper. Further, the combined effect of water Na+ and pH may have played a key role in physiological adaptation in C. asper during post-glacial freshwater colonization and dispersal.


Assuntos
Brânquias , Perciformes , Aclimatação/fisiologia , Adaptação Fisiológica , Animais , Peixes/metabolismo , Água Doce , Brânquias/metabolismo , Concentração de Íons de Hidrogênio , Íons/metabolismo , Perciformes/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Água do Mar , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/metabolismo
12.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36124628

RESUMO

Smalleye Pacific opah and swordfish can conserve metabolic heat and maintain specific body regions warmer than ambient water temperature (i.e. regional heterothermy). Consequently, blood O2 uptake at the gills occurs at the environmental temperature at which the individual is found, but O2 offloading will occur at different temperatures in different tissues. While several regionally heterothermic fishes (e.g. billfishes, tunas and sharks) show a reduced temperature effect on haemoglobin (Hb)-O2 affinity, the temperature dependence of Hb-O2 affinity in opah and swordfish is unknown. We hypothesized that the Hb of opah and swordfish would also show a reduced temperature dependence. Opah whole-blood-O2 affinity exhibited a reverse temperature dependence above 50% Hb-O2 saturation (10-20°C, pH 7.2-8.0), while the temperature dependence of swordfish blood-O2 affinity (10-25°C) was saturation and pH dependent, becoming temperature independent below 50% Hb-O2 saturation and pH 7.4. Experiments on stripped haemolysates showed that adding ATP ([ATP]/[Hb]=30) decreased the temperature sensitivity of Hb-O2 affinity, changing the overall oxygenation enthalpy (ΔH') values of opah (10-20°C) and swordfish (10-25°C) Hbs at pH 7.4 from -15 and -42 kJ mol-1 O2, respectively, to +84 and -9 kJ mol-1 O2. Swordfish blood-O2 affinity was high compared with that of other large, pelagic, marine teleosts, which may be the result of unusually low ATP/Hb levels, but might also enable swordfish to forage in the potentially low-oxygenated water of the upper reaches of the oxygen minimum layer. The existence of Hbs with reduced temperature sensitivity in regionally heterothermic fishes may prevent marked changes in Hb-O2 affinity between the cold and warm tissues.


Assuntos
Hemoglobinas , Perciformes , Trifosfato de Adenosina , Animais , Peixes/metabolismo , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Perciformes/metabolismo , Temperatura , Água
13.
PLoS One ; 17(9): e0273779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048785

RESUMO

Sex change occurs as a usual part of the life cycle for many teleost fish and the modifications involved (behavioural, gonadal, morphological) are well studied. However, the mechanism that transduces environmental cues into the molecular cascade that underlies this transformation remains unknown. Cortisol, the main stress hormone in fish, is hypothesised to be a key factor linking environmental stimuli with sex change by initiating gene expression changes that shift steroidogenesis from oestrogens to androgens but this notion remains to be rigorously tested. Therefore, this study aimed to experimentally test the role of cortisol as an initiator of sex change in a protogynous (female-to-male) hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). We also sought to identify potential key regulatory factors within the head kidney that may contribute to the initiation and progression of gonadal sex change. Cortisol pellets were implanted into female spotty wrasses under inhibitory conditions (presence of a male), and outside of the optimal season for natural sex change. Histological analysis of the gonads and sex hormone analyses found no evidence of sex change after 71 days of cortisol treatment. However, expression analyses of sex and stress-associated genes in gonad and head kidney suggested that cortisol administration did have a physiological effect. In the gonad, this included upregulation of amh, a potent masculinising factor, and nr3c1, a glucocorticoid receptor. In the head kidney, hsd11b2, which converts cortisol to inactive cortisone to maintain cortisol balance, was upregulated. Overall, our results suggest cortisol administration outside of the optimal sex change window is unable to initiate gonadal restructuring. However, our expression data imply key sex and stress genes are sensitive to cortisol. This includes genes expressed in both gonad and head kidney that have been previously implicated in early sex change in several sex-changing species.


Assuntos
Hidrocortisona , Perciformes , Androgênios/metabolismo , Animais , Feminino , Peixes/metabolismo , Gônadas/metabolismo , Hidrocortisona/metabolismo , Masculino , Perciformes/metabolismo , Processos de Determinação Sexual
14.
Mar Biotechnol (NY) ; 24(6): 1039-1054, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129638

RESUMO

The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.


Assuntos
Aeromonas hydrophila , Perciformes , Animais , Transcriptoma , Rim Cefálico/metabolismo , Proteínas de Peixes/genética , Perciformes/genética , Perciformes/metabolismo , Perfilação da Expressão Gênica , Hipóxia/genética
15.
Front Immunol ; 13: 984508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059525

RESUMO

In the 21st century, intestinal homeostatic imbalance has emerged as a growing health challenge worldwide. Accumulating evidence reveals that excessive intake of saturated fatty acid (SFA) induces intestinal homeostatic imbalance. However, the potential molecular mechanism is still unclear. In the present study, we found that palm oil or palmitic acid (PA) treatment disturbed lipid metabolism homeostasis and triggered endoplasmic reticulum (ER) stress and inflammation in the intestine or intestinal cells of large yellow croaker (Larimichthys crocea). Interestingly, PA treatment significantly decreased phosphatidylethanolamine (PE) content in the intestinal cells. PE supplementation decreased triglyceride content in the intestinal cells induced by PA treatment by inhibiting fatty acid uptake and lipogenesis. PE supplementation suppressed ER stress. Meanwhile, PE supplementation alleviated inflammatory response through p38 MAPK-p65 pathway, reducing the damage of intestinal cells caused by PA treatment to some extent. Our work revealed that intestinal homeostatic imbalance caused by PA treatment was partly due to the decrease of PE content. PE consumption might be a nutritional strategy to regulate intestinal homeostasis in fish and even human beings.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Perciformes , Animais , Dieta , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Humanos , Inflamação/induzido quimicamente , Intestinos , Metabolismo dos Lipídeos , Ácido Palmítico/efeitos adversos , Perciformes/metabolismo , Fosfatidiletanolaminas/efeitos adversos , Fosfatidiletanolaminas/metabolismo
16.
Dev Comp Immunol ; 136: 104499, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931216

RESUMO

The host response to virus infection is mediated by the interferon system and its workhorse effector proteins like Interferon-stimulated genes (ISGs). Viperin is an interferon-inducible antiviral protein. In the present study, an antiviral radical SAM enzyme, viperin homologue, was cloned and characterised from teleost, Asian seabass (Lates calcarifer). This cloned viperin cDNA encodes 351 amino acid protein with predicted N-terminal amphipathic alpha-helix, conserved radical S-adenosyl l-methionine (SAM) domain with CxxxCxxC motif and a highly conserved C-terminal domain. Lcviperin gene consists of six exons and five introns. The secondary structure contains nine alpha helices and beta sheets. Viperin from Lates is evolutionarily conserved and shares about 89% identity with Seriola dumerili and 70% identity with human orthologue. Poly(I:C) and RGNNV upregulated Lcviperin during in-vivo challenge studies, providing insight into its antiviral properties. Lates antiviral effector genes like viperin could help in elucidating the host-virus protein interactions and allow the development of improved antiviral strategies against pathogens like betanodavirus that devastate aquaculture of the species.


Assuntos
Antivirais , Perciformes , Animais , Humanos , Interferons , Perciformes/genética , Perciformes/metabolismo , Poli I-C , Proteínas/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
17.
Mar Biotechnol (NY) ; 24(5): 927-941, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35971020

RESUMO

Large yellow croaker (Larimichthys crocea) is one of the most economically important fish in China. Recently, global climate change has caused more and more intense and extreme low temperature weathers, resulting in huge losses to the large yellow croaker industry. Therefore, it is essential to understand the mechanisms of low-temperature tolerance in large yellow croaker. Here, we conducted an integrative analysis of genome-wide association study (GWAS) and transcriptome analysis to identify candidate variants and reveal the molecular underpinning of cold-stress response in large yellow croaker. A total of 8 significant single nucleotide polymorphisms (SNPs) loci on 6 chromosomes were identified in the GWAS analysis, and 5764 (gill) and 3588 (liver) differentially expressed genes (DEGs) were detected in cold-stressed large yellow croaker, respectively. Further comparative and functional analysis of the candidate genes and DEGs highlighted the importance of pathways/genes related to immune response, cellular stress response, lipid transport, and metabolism in the cold-stress response of large yellow croaker. Our results provide insights into the cold tolerance of large yellow croaker and contribute to genomic-based selection for low-temperature-resistant large yellow croaker.


Assuntos
Estudo de Associação Genômica Ampla , Perciformes , Animais , Resposta ao Choque Frio/genética , Proteínas de Peixes/genética , Genoma , Lipídeos , Perciformes/genética , Perciformes/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-36031062

RESUMO

Stomach loss has occurred independently multiple times during gnathostome evolution with notable frequency within the Teleostei. Significantly, this loss of acid-peptic digestion has been found to correlate with the secondary genomic loss of the gastric proton pump subunits (atp4a, atp4b) and pepsinogens/pepsins (pga, pgc). Gastric glands produce gastric juice containing the acid and pepsin and thus their presence is a hallmark feature of a digestive system capable of acid-peptic digestion. However, in gobiid fishes although oesogaster and gastric glands have been identified histologically, their functional significance has been questioned. In the present study we address whether the gastric proton pump is present and expressed in gastric glands of the goby Neogobius species (Gobiidae) and in members of the family Oxudercidae, a group of amphibious gobiid fishes commonly known as mudskippers (genera: Periophthalmus, Boleophthalmus, Periophthalmodon and Scartelaos). We confirmed the presence of gastric glands and have immunohistochemically localized gastric proton pump expression to these glands in Neogobius fluviatilis and Periophthalmus novemradiatus, Periophthalmus barbarus and Boleophthalmus boddarti. Genome analysis in Neogobius melanostomus, Periophthalmus magnuspinnatus, Scartelaos histophorus, Boleophthalmus pectinirostris, and Periophthalmodon schlosseri revealed the presence of both atp4a and atp4b subunit orthologues in all species in a conserved genomic loci organization. Moreover, it was possible to deduce that the complete open reading frame and the key functional amino acid residues are present. The conserved expression of the gastric proton pump provides clear evidence of the potential for gastric acid secretion indicating that acid digestion is retained in these gobiid fishes and not lost.


Assuntos
Perciformes , Bombas de Próton , Aminoácidos/metabolismo , Animais , Peixes/genética , Peixes/metabolismo , Pepsina A/metabolismo , Pepsinogênios/metabolismo , Perciformes/metabolismo , Prostaglandinas A/metabolismo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Estômago
19.
Chemosphere ; 307(Pt 3): 135813, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931257

RESUMO

There is clear evidence that different marine species can be impacted by microplastic (MP) ingestion accumulating such MPs mainly in the gastrointestinal tract. However, there is still limited knowledge on the consequences of MPs' accumulation in the gut. The present study aims to assess MPs and their potential immunotoxic effects in the digestive tract of two species showing different ecological traits: the red mullet (Mullus barbatus) and the European hake (Merluccius merluccius). Infrared spectroscopy (FTIR-ATR), micro-Raman and electron scanning microscope (SEM) were used to accurately identify the main plastic polymers detected in gut contents. In addition, we investigated the association between MP uptake and intestinal inflammation by evaluating expression and secretion of proinflammatory cytokines. MP abundance ranged from 1 to 20 items/individual in red mullet and from 2 to 15 items/individual in European hake. The majority of ingested MPs were fibers, while the dominant colors were black and blue in both species. Chemical characterization indicated polyethylene and polypropylene as the most common polymer types. Moreover, it was observed that MP abundance was highly positive correlated to cytokines (i.e. interleukin-1ß, 10, and interferon) and antioxidant enzyme (i.e. catalase and superoxide dismutase) transcript levels suggesting ROS generation and an infiltration of immune cells in the gut. Our findings provide evidence that the induction of cytokine-dependent signaling pathways is one aspect of the complex mechanism by which MPs affect the gut system in fish.


Assuntos
Gadiformes , Perciformes , Poluentes Químicos da Água , Animais , Antioxidantes , Catalase , Monitoramento Ambiental/métodos , Gadiformes/metabolismo , Trato Gastrointestinal/metabolismo , Interferons , Interleucina-1beta , Microplásticos , Perciformes/metabolismo , Plásticos , Polietileno , Polipropilenos , Espécies Reativas de Oxigênio , Superóxido Dismutase , Poluentes Químicos da Água/análise
20.
Food Chem ; 397: 133792, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917785

RESUMO

The active coatings supplemented with epigallocatechin gallate (EGCG) (0.16 %, 0.32 %, and 0.64 %, respectively) combined with superchilling storage (-3 ± 0.2 °C) were used to reduce hydrogen peroxide (H2O2) content, and inhibit lipid and protein oxidations of large yellow croaker during 42 days of superchilling storage. EGCG coatings delayed lipid and protein oxidations by inhibiting the generation of H2O2, malondialdehyde (MDA) and carbonyl groups, and maintaining a higher Ca2+-ATPase activity and sulfhydryl content. We also observed that EGCG treatments maintained myofibrillar organized secondary structure by keeping higher α-helix content, and also stabilized tertiary structure during superchilling storage. Low-field nuclear magnetic resonance (LF-NMR) revealed that EGCG treatments might improve the association of water molecules with protein for fixed water. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scanning electron microscope (SEM) images both showed that these treatments could delay the myofibrillar degradation of fresh fish. Overall, we report that the active coatings containing EGCG treatments protect the lipid and protein of large yellow croaker during superchilling storage.


Assuntos
Catequina , Perciformes , Tragacanto , Alginatos/química , Animais , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Peróxido de Hidrogênio/metabolismo , Lipídeos , Perciformes/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...