Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.494
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 320(4): H1403-H1410, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577432

RESUMO

Excessive vascular permeability occurs in inflammatory disease processes. Vascular endothelial cadherin (VE-cadherin) is an adhesion protein that controls vascular permeability. We identified monoclonal antibodies (mAbs) to human VE-cadherin that activate cell adhesion and inhibit the increased permeability of endothelial cell monolayers induced by thrombin receptor activator peptide-6 (TRAP-6). Two mAbs, 8A12c and 3A5a, reduce permeability, whereas an inhibitory mAb, 2E11d, enhances permeability. Activating mAbs also reduce permeability induced by tumor necrosis factor-α (TNF-α) and vascular endothelial cell growth factor (VEGF). The activating mAbs also stabilize the organization of the adherens junctions that are disrupted by TRAP-6, VEGF, or TNF-α. The activating mAbs act directly on the adhesive function of VE-cadherin because they did not block the accumulation of actin filaments stimulated by TRAP-6 and enhance physical cell-cell adhesion of VE-cadherin-expressing tissue culture cells. Therefore, VE-cadherin function can be regulated at the cell surface to control endothelial permeability.NEW & NOTEWORTHY Excessive vascular permeability is a serious complication of many inflammatory disease conditions. We have developed monoclonal antibodies that inhibit increases in endothelial monolayer permeability induced by several signaling factors by activating VE-cadherin mediated adhesion and stabilizing cell junctions. These antibodies and/or the mechanisms they reveal may lead to important therapeutics to treat vascular leakiness and inflammation.


Assuntos
Junções Aderentes/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Caderinas/agonistas , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Nocodazol/farmacologia , Oligopeptídeos/farmacologia , Receptores de Trombina/agonistas , Receptores de Trombina/metabolismo , Transdução de Sinais , Moduladores de Tubulina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
2.
Yakugaku Zasshi ; 141(1): 41-45, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33390446

RESUMO

Diabetic retinopathy (DR) is a retinal disease representing one of the main causes of vision loss in developed countries. In the early stage of DR, disruption of blood retinal barrier (BRB) is observed, and it will lead to vascular permeability and visual impairment. Therefore, protection against the breakdown of BRB may be useful strategy for prevention of DR. Matrix metalloproteinases (MMPs) plays an important role in the degradation of extracellular matrix proteins. In DR, they attribute to increased vascular permeability by degrading the junction proteins, such as occuldin and cadherin that are important to maintain the BRB junction complex. Müller cells constitute the main glial cells of the retina and are involved in many retinal functions. They are reported to be one of the MMP-producing cells in the retina. In this symposium review, I present the molecular mechanism of MMP expression in retinal Müller cells. In addition, I would like to introduce polymethoxylated flavones, nobiletin and the derivatives isolated from natural resource as novel MMP inhibitors, which may be applicable to prevention of DR.


Assuntos
Retinopatia Diabética/etiologia , Retinopatia Diabética/prevenção & controle , Células Ependimogliais/enzimologia , Flavonas/farmacologia , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/metabolismo , Fitoterapia , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Flavonas/isolamento & purificação , Flavonas/uso terapêutico , Humanos , Camundongos , Relação Estrutura-Atividade
3.
J Trauma Acute Care Surg ; 90(2): 337-345, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502147

RESUMO

BACKGROUND: The endothelial glycocalyx (EG) on the luminal surface of endothelial cells contributes to the permeability barrier of vessels and prevents activation of the coagulation cascade. Endothelial glycocalyx damage, which occurs in the shock state, results in endotheliopathy. Interleukin (IL)-22 is a cytokine with both proinflammatory and anti-inflammatory properties, and how IL-22 affects the EG has not been studied. We hypothesized that IL-22:Fc, a recombinant fusion protein with human IL-22 and the Fc portion of human immunoglobulin G1 (which extends the protein half-life), would not affect EG shedding in endothelium after injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were exposed to 1 µg/mL lipopolysaccharide (LPS). Lipopolysaccharide-injured cells (n = 284) were compared with HUVECs with LPS injury plus 0.375 µg/mL of IL-22:Fc treatment (n = 293) for 12 hours. These two cohorts were compared with control HUVECs (n = 286) and HUVECs exposed to IL-22:Fc alone (n = 269). Cells were fixed and stained with fluorescein isothiocyanate-labeled wheat germ agglutinin to quantify EG. Total RNA was collected, and select messenger RNAs were quantified by real time - quantitative polymerase chain reaction (RT-qPCR) using SYBR green fluorescence. RESULTS: Exposure of HUVECs to LPS resulted in degradation of the EG compared with control (5.86 vs. 6.09 arbitrary unit [AU], p = 0.01). Interleukin-22:Fc alone also resulted in degradation of EG (5.08 vs. 6.09 AU, p = 0.01). Treatment with IL-22:Fc after LPS injury resulted in less degradation of EG compared with LPS injury alone (5.86 vs. 5.08 AU, p = 0.002). Expression of the IL-22Ra1 receptor was not different for IL-22:Fc treated compared with LPS injury only (0.69 vs. 0.86 relative expression, p = 0.10). Treatment with IL-22:Fc after LPS injury resulted in less matrix metalloproteinase 2 (0.79 vs. 1.70 relative expression, p = 0.005) and matrix metalloproteinase 14 (0.94 vs. 2.04 relative expression, p = 0.02). CONCLUSIONS: Interleukin-22:Fc alone induces EG degradation. However, IL-22:Fc treatment after LPS injury appears to mitigate EG degradation. This protective effect appears to be mediated via reduced expression of metalloproteinases.


Assuntos
Células Endoteliais , Glicocálix , Fragmentos Fc das Imunoglobulinas/farmacologia , Interleucinas/metabolismo , Lipopolissacarídeos/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Glicocálix/imunologia , Glicocálix/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G , Metaloproteinase 2 da Matriz/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Neurosci Lett ; 746: 135665, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33497716

RESUMO

During osmotic demyelination syndrome (ODS), myelin and oligodendrocyte are lost according to specific patterns in centro- or extra-pontine regions. In both experimental model of ODS and human cases, brain lesions are locally correlated with the disruption of the blood brain-barrier (BBB). The initiation, the degree and the duration of blood-brain barrier (BBB) opening as well as its contribution to brain damages are still a matter of debate. Using a panel of intravascular tracers from low- to high- molecular weight (from 0.45 kDa 150 kDa), we have assessed the BBB permeability at different timings of ODS induced experimentally in mice. ODS was mimicked according to a protocol of rapid correction of a chronic hyponatremia. We demonstrated that BBB leakage towards smallest tracers Lucifer Yellow (0.45 kDa) and Texas Red-dextran (3 kDa) was delayed by 36 h compared to the first clues of oligodendrocyte loss (occurring 12 h post-correction of hyponatremia). At 48 h post-correction and concomitantly to myelin loss, BBB was massively disrupted as attested by accumulation of Evans Blue (69 kDa) and IgG (150 kDa) in brain parenchyma. Analysis of BBB ultrastructure verified that brain endothelial cells had minimal alterations during chronic hyponatremia and at 12 h post-correction of hyponatremia. However, brain endothelium yielded worsened alterations at 48 h, such as enlarged vesicular to tubular-like cytoplasmic profiles of pinocytosis and/or transcytosis, local basal laminae abnormalities and sub-endothelial cavities. The protein expressions of occludin and claudin-1, involved in inter-endothelial tight junctions, were also downregulated at 48 h post-correction of hyponatremia. Our results revealed that functional BBB opening occured late in pre-established ODS lesions, and therefore was not a primary event initiating oligodendrocyte damages in the mouse model of ODS.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Doenças Desmielinizantes/metabolismo , Corantes Fluorescentes/metabolismo , Osmose/fisiologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Permeabilidade Capilar/efeitos dos fármacos , Doenças Desmielinizantes/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Corantes Fluorescentes/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osmose/efeitos dos fármacos , Síndrome
5.
Methods Mol Biol ; 2223: 151-157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33226593

RESUMO

The regulation of vascular permeability is critical in inflammation. It controls the distribution of water and plasma contents such as immunoglobulins in peripheral tissues. To regulate allergic diseases, it is important to study vascular biology especially in inflammation. Since the vascular permeability changes in minutes upon the exposure to proinflammatory mediators, intravital imaging system is a powerful technique to capture such dynamic responses. We here describe how to evaluate vascular permeability in vivo using multiphoton microscopy. We use various sizes of fluorescence-labeled dextran to visualize how leaky the blood vessels are in the steady state and in inflammation. Using this assay system, we can illustrate the dynamic kinetics of vascular permeability in vivo in real-time. This assay system provides a novel convenient way to study vascular biology that is beneficial in the assessment of various animal models of allergic disease.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Histamina/farmacologia , Hipersensibilidade Imediata/diagnóstico por imagem , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Orelha/irrigação sanguínea , Orelha/diagnóstico por imagem , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Hipersensibilidade Imediata/induzido quimicamente , Injeções Intravenosas , Microscopia Intravital/instrumentação , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Peso Molecular , Imagem com Lapso de Tempo
6.
Microvasc Res ; 133: 104093, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007316

RESUMO

Acute respiratory distress syndrome (ARDS) is a rapidly progressive disease with unknown pathogenesis. Damage of pulmonary microvascular endothelial cells (PMVECs) caused by inflammatory storm caused by cytokines such as TNF-α is the potential pathogenesis of ARDS. In this study, we examined the role of ezrin and Rac1 in TNF-α-related pathways, which regulates the permeability of PMVECs. Primary rat pulmonary microvascular endothelial cells (RPMVECs) were isolated and cultured. RPMVECs were treated with rat TNF-α (0, 1, 10, 100 ng/ml), and the cell activity of each group was measured using a CCK8 kit. The integrity of endothelial barrier was measured by transendothelial resistance (TEER) and FITC-BSA flux across RPMVECs membranes. Pulldown assay and Western blot was used to detect the activity of RAS-associated C3 botulinum toxin substrate 1 (Rac1) and Ezrin phosphorylation. Short hairpin RNA (shRNA) targeting ezrin and Rac1 was utilized to evaluate the effect of RPMVECs permeability and related pathway. The effects of ezrin and Rac1 on cytoskeleton were confirmed by immunofluorescence. Our results revealed that active Rac1 was essential for protecting the RPMVEC barrier stimulated by TNF-α, while active ezrin could partially destroy the PMVEC barrier by reducing Rac1 activity and regulating the subcellular structure of the cytoskeleton. These findings may be used to create new therapeutic strategies for targeting Rac1 in the treatment of ARDS.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Pulmão/irrigação sanguínea , Microvasos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/toxicidade , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Impedância Elétrica , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Microvasos/metabolismo , Microvasos/patologia , Fosforilação , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Microvasc Res ; 133: 104098, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075405

RESUMO

During diabetes mellitus, advanced glycation end-products (AGEs) are major contributors to the development of alterations in cerebral capillaries, leading to the disruption of the blood-brain barrier (BBB). Consequently, this is often associated with an amplified oxidative stress response in microvascular endothelial cells. As a model to mimic brain microvasculature, the bEnd.3 endothelial cell line was used to investigate cell barrier function. Cells were exposed to native bovine serum albumin (BSA) or modified BSA (BSA-AGEs). In the presence or absence of the antioxidant compound, N-acetyl-cysteine, cell permeability was assessed by FITC-dextran exclusion, intracellular free radical formation was monitored with H2DCF-DA probe, and mitochondrial respiratory and redox parameters were analyzed. We report that, in the absence of alterations in cell viability, BSA-AGEs contribute to an increase in endothelial cell barrier permeability and a marked and prolonged oxidative stress response. Decreased mitochondrial oxygen consumption was associated with these alterations and may contribute to reactive oxygen species production. These results suggest the need for further research to explore therapeutic interventions to restore mitochondrial functionality in microvascular endothelial cells to improve brain homeostasis in pathological complications associated with glycation.


Assuntos
Encéfalo/irrigação sanguínea , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada/toxicidade , Microvasos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/toxicidade , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Microvasos/metabolismo , Microvasos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
9.
Life Sci ; 261: 118460, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961234

RESUMO

AIMS: The hyperpermeability of gut-vascular barrier (GVB) plays a role in gut-derived sepsis. The goal of this study was to evaluate if berberine might improve hepatic apolipoprotein M (ApoM) generation and raise plasma ApoM level to protect the compromised GVB. MATERIALS AND METHODS: The compromised GVB was induced by sepsis. Hepatic ApoM mRNA and phosphoenolpyruvate carboxykinase (PEPCK) mRNA and plasma ApoM level were assayed by qRT-PCR and ELISA, respectively. The permeability of intestinal capillary in vivo and of rat intestinal microvascular endothelial cells (RIMECs) in vitro was assayed by FITC-dextran. The blood glucose was detected by a glucometer. Plasma insulin, TNF-α and IL-1ß were assayed by ELISA. The plasmalemma vesicle-associated protein-1 (PV1), ß-catenin and occludin in RIMECs were assayed by Western blot. KEY FINDINGS: Sepsis decreased hepatic ApoM mRNA and plasma ApoM level, but raised hepatic PEPCK mRNA and plasma glucose, insulin, TNF-α, and IL-1ß levels. The increased vascular endothelial permeability was abrogated by recombinant rat ApoM in vivo or ApoM-bound S1P in vitro. ApoM-bound S1P decreased PV1 but increased occludin and ß-catenin expression in LPS-treated RIMECs. Berberine in a dose-dependent manner raised hepatic ApoM mRNA and plasma ApoM level, but decreased septic hyperglycemia, insulin resistance and plasma TNF-α and IL-1ß levels. Berberine reduced sepsis-induced PEPCK and TLR4 mRNA overexpression in the liver. SIGNIFICANCE: This study demonstrated berberine inhibited TLR4-mediated hyperglycemia, insulin resistance and proinflammatory molecule production, thereby increasing ApoM gene expression and plasma ApoM. Berberine protected the damaged GVB via modulation of ApoM/S1P pathway.


Assuntos
Apolipoproteínas M/metabolismo , Berberina/uso terapêutico , Permeabilidade Capilar/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Berberina/farmacologia , Modelos Animais de Doenças , Trato Gastrointestinal/irrigação sanguínea , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiopatologia , Células Hep G2 , Humanos , Masculino , Ratos Wistar , Sepse/metabolismo , Sepse/fisiopatologia , Esfingosina/metabolismo
10.
J Stroke Cerebrovasc Dis ; 29(10): 105029, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912542

RESUMO

BACKGROUND: We investigated whether exogenous lysophosphatidic acid (LPA), a phospholipid extracellular signaling molecule, would increase infarct size and blood-brain barrier (BBB) disruption during the early stage of cerebral ischemia-reperfusion, and whether it works through Akt-mTOR-S6K1 intracellular signaling. MATERIAL AND METHODS: Rats were given either vehicle or LPA 1 mg/kg iv three times during reperfusion after one hour of middle cerebral artery (MCA) occlusion. In another group, prior to administration of LPA, 30 mg/kg of PF-4708671, an S6K1 inhibitor, was injected. After one hour of MCA occlusion and two hours of reperfusion the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid and the volume of 3H-dextran distribution were determined to measure the degree of BBB disruption. At the same time, the size of infarct was determined and western blot analysis was performed to determine the levels of phosphorylated Akt (p-Akt) and phosphorylated S6 (pS6). RESULTS: LPA increased the Ki in the ischemic-reperfused cortex (+43%) when compared with Control rats and PF-4708671 pretreatment prevented the increase of Ki by LPA. LPA increased the percentage of cortical infarct out of total cortical area (+36%) and PF-4708671 pretreatment prevented the increase of the infarct size. Exogenous LPA did not significantly change the levels of p-Akt as well as pS6 in the ischemic-reperfused cortex. CONCLUSION: Our data demonstrate that the increase in BBB disruption could be one of the reasons of the increased infarct size by LPA. S6K1 may not be the major target of LPA. A decrease of LPA during early cerebral ischemia-reperfusion might be beneficial for neuronal survival.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Infarto da Artéria Cerebral Média/terapia , Lisofosfolipídeos/toxicidade , Traumatismo por Reperfusão/induzido quimicamente , Reperfusão , Animais , Barreira Hematoencefálica/fisiopatologia , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos F344 , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Proteínas Quinases S6 Ribossômicas/metabolismo
11.
Life Sci ; 259: 118273, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32800831

RESUMO

AIMS: To explore the mechanisms of erythropoietin (EPO)'s protection on inner blood-retinal barrier (iBRB) in experimental diabetic retinopathy. MATERIAL AND METHODS: Male SD rats were rendered diabetic with streptozotocin, followed by intravitreal injection of EPO. The permeability of iBRB was examined with fluorescein isothiocyanate (FITC)-dextran. Human retinal microvascular endothelial cells (HRMECs) and human umbilical vein endothelial cells (HUVECs) were treated with glyoxal and studied for cell viability and barrier function. The expressions of vascular endothelial (VE)-cadherin, Src kinase, vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR2) were analyzed with Western blot, ELISA, qPCR, or immunofluorescence. KEY FINDINGS: VE-cadherin in rat retinas was down-regulated with diabetes progression. EPO treatment could increase VE-cadherin expression at week 8 and week 16. The expressions of p-Src and p-VE-cadherin were increased at week 2, while decreased at week 8 of diabetes; which were prevented by EPO. The leakage of FITC-dextran in 8-week diabetic rat retinas was ameliorated by EPO. In vitro results showed the expressions of VEGF, p-Src and p-VE-cadherin were increased significantly, accompanied with the decreased barrier function, which were prevented by EPO. Ranibizumab and CGP77675 also inhibited the glyoxal-induced phosphorylation of Src and VE-cadherin. Cellular fractionation showed EPO mitigated the VE-cadherin internalization in glyoxal-treated cells. SIGNIFICANCE: EPO maintained the expression of VE-cadherin in experimental diabetic retinopathy by inhibiting its phosphorylation and internalization through VEGF/VEGFR2/Src pathway, thus improved the integrity of iBRB.


Assuntos
Antígenos CD/biossíntese , Barreira Hematorretiniana/metabolismo , Caderinas/biossíntese , Retinopatia Diabética/metabolismo , Eritropoetina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/patologia , Caderinas/genética , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/patologia , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
12.
Food Chem Toxicol ; 145: 111694, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822775

RESUMO

We investigated the effects of tocilizumab on endothelial glycocalyx, a determinant of vascular permeability, and myocardial function in rheumatoid arthritis (RA). Eighty RA patients were randomized to tocilizumab (n = 40) or conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and glucocorticoids (GC) (n = 40) for 3 months. Forty healthy subjects with similar age and sex served as controls. We measured: (a)perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced glycocalyx thickness), (b)pulse wave velocity (PWV), (c)global LV longitudinal strain (GLS), (d)global work index (GWI) using speckle tracking echocardiography and e)C-reactive protein (CRP), malondialdehyde (MDA) and protein carbonyls (PCs) as oxidative stress markers at baseline and post-treatment. Compared to controls, RA patients had impaired glycocalyx and myocardial deformation markers (P < 0.05). Compared with baseline, tocilizumab reduced PBR(2.14 ± 0.2 versus 1.97 ± 0.2 µm; P < 0.05) while no significant differences were observed post-csDMARDs + GC(P > 0.05). Compared with csDMARDs + GC, tocilizumab achieved a greater increase of GLS, GWI and reduction of MDA, PCs and CRP(P < 0.05). The percent improvement of glycocalyx thickness (PBR) was associated with the percent decrease of PWV, MDA, PCs and the percent improvement of GLS and GWI(P < 0.05). Tocilizumab improves endothelial function leading to a greater increase of effective myocardial work than csDMARDs + GC through a profound reduction of inflammatory burden and oxidative stress. This mechanism may explain the effects of tocilizumab on COVID-19. CLINICAL TRIAL REGISTRATION: url: https://www.clinicaltrials.gov. Unique identifier: NCT03288584.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Endotélio/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Idoso , Betacoronavirus , Permeabilidade Capilar/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Feminino , Coração/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/tratamento farmacológico , Análise de Onda de Pulso
13.
J Stroke Cerebrovasc Dis ; 29(9): 105071, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807473

RESUMO

BACKGROUND: Chinese medicine Tongxinluo capsule (TXL) has been extensively used to treat ischemic stroke in China, and one of its mechanisms is to protect against blood brain barrier (BBB) disruption after stroke. However, the underlying protective mechanisms are not fully illuminated. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP-1) is involved in BBB disruption after brain ischemia. In this study, we explored whether TXL could downregulate LRP-1 expression and subsequently protect against BBB disruption after stroke using permanent middle cerebral artery occlusion (pMCAO) in mice. METHODS: The animal model of ischemic stroke was induced by pMCAO in male adult C57BL/6J mice. The mice were orally administered TXL (3.0 g/kg) at 1, 3 and 21 h after pMCAO. Meanwhile, the LRP-1 antagonist receptor associated protein (RAP) was intracerebroventricularly injected at 1 and 21 h after stroke. We measured the following parameters at 6 and 24 h: LRP-1 protein level, BBB leakage, and the expression of tight junction (TJ) proteins including occludin, claudin-5 and zonula occludens-1 (ZO-1). RESULTS: Our results showed that TXL downregulated LRP-1 level, upregulated these TJ proteins level, and reduced BBB leakage in peri-infarct regions after pMCAO. Further study found that the inhibitor RAP played the same role as did TXL in upregulating these TJ proteins level and reducing BBB leakage after stroke. CONCLUSION: Our study demonstrates that TXL protects against BBB disruption after stroke via inhibiting the LRP-1 pathway.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Administração Oral , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Cápsulas , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
14.
Int J Nanomedicine ; 15: 4825-4845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753868

RESUMO

Background: Nanosized drug delivery systems (NDDSs) have shown excellent prospects in tumor therapy. However, insufficient penetration of NDDSs has significantly impeded their development due to physiological instability and low passive penetration efficiency. Methods: Herein, we prepared a core cross-linked pullulan-modified nanosized system, fabricated by visible-light-induced diselenide bond cross-linked method for transporting ß-Lapachone and doxorubicin prodrug (boronate-DOX, BDOX), to improve the physiological stability of the NDDSs for efficient passive accumulation in tumor blood vessels (ß-Lapachone/BDOX-CCS). Additionally, ultrasound (US) was utilized to transfer ß-Lapachone/BDOX-CCS around the tumor vessel in a relay style to penetrate the tumor interstitium. Subsequently, ß-Lapachone enhanced ROS levels by overexpressing NQO1, resulting in the transformation of BDOX into DOX. DOX, together with abundant levels of ROS, achieved synergistic tumor therapy. Results: In vivo experiments demonstrated that ultrasound (US) + cross-linked nanosized drug delivery systems (ß-Lapachone/BDOX-CCS) group showed ten times higher DOX accumulation in the tumor interstitium than the non-cross-linked (ß-Lapachone/BDOX-NCS) group. Conclusion: Thus, this strategy could be a promising method to achieve deep penetration of NDDSs into the tumor.


Assuntos
Doxorrubicina/uso terapêutico , Nanopartículas/química , Naftoquinonas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Ultrassonografia , Animais , Ácidos Borônicos/química , Permeabilidade Capilar/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Reagentes para Ligações Cruzadas/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Feminino , Glucanos/química , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftoquinonas/farmacocinética , Tamanho da Partícula , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual/efeitos dos fármacos
15.
Am J Respir Cell Mol Biol ; 63(4): 519-530, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32628869

RESUMO

KD025 is a ROCK2 inhibitor currently being tested in clinical trials for the treatment of fibrotic lung diseases. The therapeutic effects of KD025 are partly due to its inhibition of profibrotic pathways and fat metabolism. However, whether KD025 affects pulmonary microvascular endothelial cell (PMVEC) function is unknown, despite evidence that alveolar-capillary membrane disruption constitutes major causes of death in fibrotic lung diseases. We hypothesized that KD025 regulates PMVEC metabolism, pH, migration, and survival, a series of interrelated functional characteristics that determine pulmonary barrier integrity. We used PMVECs isolated from Sprague Dawley rats. KD025 dose-dependently decreased lactate production and glucose consumption. The inhibitory effect of KD025 was more potent compared with other metabolic modifiers, including 2-deoxy-glucose, extracellular acidosis, dichloroacetate, and remogliflozin. Interestingly, KD025 increased oxidative phosphorylation, whereas 2-deoxy-glucose did not. KD025 also decreased intracellular pH and induced a compensatory increase in anion exchanger 2. KD025 inhibited PMVEC migration, but fasudil (nonspecific ROCK inhibitor) did not. We tested endothelial permeability in vivo using Evans Blue dye in the bleomycin pulmonary fibrosis model. Baseline permeability was decreased in KD025-treated animals independent of bleomycin treatment. Under hypoxia, KD025 increased PMVEC necrosis as indicated by increased lactate dehydrogenase release and propidium iodide uptake and decreased ATP; it did not affect Annexin V binding. ROCK2 knockdown had no effect on PMVEC metabolism, pH, and migration, but it increased nonapoptotic caspase-3 activity. Together, we report that KD025 promotes oxidative phosphorylation; decreases glycolysis, intracellular pH, and migration; and strengthens pulmonary barrier integrity in a ROCK2-independent manner.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Pulmão/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Anexina A5/metabolismo , Movimento Celular/efeitos dos fármacos , Desoxiglucose/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Masculino , Fosforilação Oxidativa/efeitos dos fármacos , Propídio/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
16.
J Stroke Cerebrovasc Dis ; 29(8): 104977, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689608

RESUMO

BACKGROUND: Ischemic stroke is a severe neurological disorder that affected millions of people worldwide. Neuro-inflammation and apoptosis play an essential role in the pathogenesis of neuronal death during ischemic stroke. Alpha-pinene is a bicyclic terpenoid with anti-inflammatory and anti-apoptotic activities. Accordingly, the main purpose of this study was to assess the protective effect of α-pinene in ischemic stroke. MATERIALS AND METHODS: To induce ischemic stroke in male Wistar rats, the middle cerebral artery was occluded for 60 min followed by 24 h reperfusion. Alpha-pinene was injected intraperitoneally at the beginning of reperfusion. A day after reperfusion, the neurological deficits, volume of infarct area, and blood-brain barrier (BBB) permeability were evaluated. The mRNA expression of inflammatory cytokines as well as pro- and anti-apoptotic genes was assessed by using reverse transcription-polymerase chain reaction. The protein levels of inflammatory cytokines were also measured by ELISA method. RESULTS: The results showed that α-pinene (50 and 100 mg/kg) significantly improved sensorimotor function and decreased the volume of infarct area in the brain. The high permeability of BBB was also alleviated by α-pinene (50 and 100 mg/kg) in ischemic areas. Besides, α-pinene (100 mg/kg) attenuated neuro-inflammation through decreasing both the gene and protein expression of TNF-α and IL-1ß in the hippocampus, cortex, and striatum. Besides, α-pinene (100 mg/kg) suppressed apoptosis via downregulation of the pro-apoptotic Bax mRNA expression with a concomitant upregulation of anti-apoptotic Bcl-2 gene expression. CONCLUSIONS: Overall, it was concluded that α-pinene exerts neuroprotective effect during ischemic stroke through attenuating neuroinflammation and inhibition of apoptosis.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Monoterpenos Bicíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Permeabilidade Capilar/efeitos dos fármacos , Citocinas/genética , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
PLoS One ; 15(6): e0234001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511268

RESUMO

The cuprizone induced animal model of demyelination is characterized by demyelination in many regions of the brain with high levels of demyelination in the corpus callosum as well as changes in neuronal function by 4-6 weeks of exposure. The model is used as a tool to study demyelination and subsequent degeneration as well as therapeutic interventions on these effects. Historically, the cuprizone model has been shown to contain no alterations to blood-brain barrier integrity, a key feature in many diseases that affect the central nervous system. Cuprizone is generally administered for 4-6 weeks to obtain maximal demyelination and degeneration. However, emerging evidence has shown that the effects of cuprizone on the brain may occur earlier than measurable gross demyelination. This study sought to investigate changes to blood-brain barrier permeability early in cuprizone administration. Results showed an increase in blood-brain barrier permeability and changes in tight junction protein expression as early as 3 days after beginning cuprizone treatment. These changes preceded glial morphological activation and demyelination known to occur during cuprizone administration. Increases in mast cell presence and activity were measured alongside the increased permeability implicating mast cells as a potential source for the blood-brain barrier disruption. These results provide further evidence of blood-brain barrier alterations in the cuprizone model and a target of therapeutic intervention in the prevention of cuprizone-induced pathology. Understanding how mast cells become activated under cuprizone and if they contribute to blood-brain barrier alterations may give further insight into how and when the blood-brain barrier is affected in CNS diseases. In summary, cuprizone administration causes an increase in blood-brain barrier permeability and this permeability coincides with mast cell activation.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Mastócitos/efeitos dos fármacos , Animais , Barreira Hematoencefálica/metabolismo , Cuprizona/administração & dosagem , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L337-L359, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579402

RESUMO

Bromine (Br2) is an organohalide found in nature and is integral to many manufacturing processes. Br2 is toxic to living organisms, and high concentrations can prove fatal. To meet industrial demand, large amounts of purified Br2 are produced, transported, and stored worldwide, providing a multitude of interfaces for potential human exposure through either accidents or terrorism. To identify the key mechanisms associated with acute Br2 exposure, we have surveyed the lung proteomes of C57BL/6 male mice and human lung-derived microvascular endothelial cells (HMECs) at 24 h following exposure to Br2 in concentrations likely to be encountered in the vicinity of industrial accidents. Global discovery proteomics applications combined with systems biology analysis identified robust and highly significant changes in proteins associated with three biological processes: 1) exosome secretion, 2) inflammation, and 3) vascular permeability. We focused on the latter, conducting physiological studies on isolated perfused lungs harvested from mice 24 h after Br2 exposure. These experiments revealed significant increases in the filtration coefficient (Kf) indicating increased permeability of the pulmonary vasculature. Similarly, confluent monolayers of Br2 and Br-lipid-treated HMECs exhibited differential levels of zona occludens-1 that were found to be dissociated from cell wall localization, an increase in phosphorylation and internalization of E-cadherin, as well as increased actin stress fiber formation, all of which are consistent with increased permeability. Taken as a whole, our discovery proteomics and systems analysis workflow, combined with physiological measurements of permeability, revealed both profound and novel biological changes that contribute to our current understanding of Br2 toxicity.


Assuntos
Bromo/toxicidade , Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Animais , Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Proteoma/metabolismo
19.
PLoS One ; 15(6): e0229806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555600

RESUMO

The A2 adenosine receptors play an important role, among others, in the regulation of inflammatory process and glucose homeostasis in diabetes and obesity. Thus, the presented project evaluated of influence of the selective antagonist of A2A adenosine receptor-KD-64 as compared to the known non-selective antagonist-caffeine on these two particular processes. Two different inflammation models were induced namely local and systemic inflammation. Obesity was induced in mice by high-fat diet and the tested compounds (KD-64 and caffeine) were administrated for 21 days. KD-64 showed anti-inflammatory effect in both tested inflammation models and administered at the same dose as ketoprofen exerted stronger effect than this reference compound. Elevated levels of IL-6 and TNF-α observed in obese control mice were significantly lowered by the administration of KD-64 and were similar to the values observed in control non-obese mice. Interestingly, caffeine increased the levels of these parameters. In contrast to caffeine which had no influence on AlaT activity, KD-64 administration significantly lowered AlaT activity in the obese mice. Although, contrary to caffeine, KD-64 did not reduce diet-induced obesity in mice, it improved glucose tolerance. Thus, the activity of the selective adenosine A2A receptor antagonist was quite different from that of the non-selective.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Anti-Inflamatórios/farmacologia , Dieta/efeitos adversos , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Peso Corporal/efeitos dos fármacos , Cafeína/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Interleucina-6/sangue , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Peritônio/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
20.
Am J Pathol ; 190(9): 1971-1981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590003

RESUMO

Leakage of retinal blood vessels, which is an essential element of diabetic retinopathy, is driven by chronic elevation of vascular endothelial growth factor (VEGF). VEGF quickly relaxes the endothelial cell barrier by triggering signaling events that post-translationally modify pre-existing components of intercellular junctions. VEGF also changes expression of genes that are known to regulate barrier function. Our goal was to identify effectors by which VEGF and anti-VEGF control the endothelial cell barrier in cells that were chronically exposed to VEGF (hours instead of minutes). The duration of VEGF exposure influenced both barrier relaxation and anti-VEGF-mediated closure. Most VEGF-induced changes in gene expression were not reversed by anti-VEGF. Those that were constitute VEGF effectors that are targets of anti-VEGF. Pursuit of such candidates revealed that VEGF used multiple, nonredundant effectors to relax the barrier in cells that were chronically exposed to VEGF. One such effector was angiotensin-converting enzyme, which is a member of the renin-angiotensin-aldosterone system (RAAS). Pharmacologically antagonizing either the angiotensin-converting enzyme or the receptor for angiotensin II attenuated VEGF-mediated relaxation of the barrier. Finally, activating the RAAS reduced the efficacy of anti-VEGF. These discoveries provide a plausible mechanistic explanation for the long-standing appreciation that RAAS inhibitors are beneficial for patients with diabetic retinopathy and suggest that antagonizing the RAAS improves patients' responsiveness to anti-VEGF.


Assuntos
Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Sistema Renina-Angiotensina/fisiologia , Retina/metabolismo , Vasos Retinianos/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Humanos , Vasos Retinianos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...