Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.466
Filtrar
1.
Int J Mol Med ; 47(4)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33649797

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). In a previous study, the authors demonstrated that ferritin heavy chain 1 (FTH1) inhibited ferroptosis in a model of 6­hydroxydopamine (6­OHDA)­induced PD. However, whether and how microRNAs (miRNAs/miRs) modulate FTH1 in PD ferroptosis is not yet well understood. In the present study, in vivo and in vitro models of PD induced by 6­OHDA were established. The results in vivo and in vitro revealed that the levels of the ferroptosis marker protein, glutathione peroxidase 4 (GPX4), and the PD marker protein, tyrosine hydroxylase (TH), were decreased in the model group, associated with a decreased FTH1 expression and the upregulation of miR­335. In both the in vivo and in vitro models, miR­335 mimic led to a lower FTH1 expression, exacerbated ferroptosis and an enhanced PD pathology. The luciferase 3'­untranslated region reporter results identified FTH1 as the direct target of miR­335. The silencing of FTH1 in 6­OHDA­stimulated cells enhanced the effects of miR­335 on ferroptosis and promoted PD pathology. Mechanistically, miR­335 enhanced ferroptosis through the degradation of FTH1 to increase iron release, lipid peroxidation and reactive oxygen species (ROS) accumulation, and to decrease mitochondrial membrane potential (MMP). On the whole, the findings of the present study reveal that miR­335 promotes ferroptosis by targeting FTH1 in in vitro and in vivo models of PD, providing a potential therapeutic target for the treatment of PD.


Assuntos
Apoferritinas/metabolismo , Ferroptose/genética , MicroRNAs/genética , Doença de Parkinson/patologia , Animais , Modelos Animais de Doenças , Ferro/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Oxidopamina/toxicidade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/análise , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/análise
2.
Ecotoxicol Environ Saf ; 209: 111800, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33340955

RESUMO

Cell division cycle 37 (Cdc37) is an important cytoplasmic phosphoprotein, which usually functions as a complex with heat shock protein 90 (Hsp90), to effectively reduce the damage caused by heavy metals, such as cadmium (Cd), in aquatic animals. The high toxicity of Cd in aquatic systems generally has a deleterious effect on healthy farming of shrimps. In the present study, a novel Cdc37 gene from Penaeus monodon was identified and designated as PmCdc37. Following exposure to Cd stress, the expression levels of PmCdc37 were upregulated at the transcriptional level in both the hepatopancreas and hemolymph. RNA interference and recombinant protein injection experiments were carried out to determine the function of PmCdc37 in P. monodon following Cd exposure. To clarify the correlations between PmCdc37 and PmHsp90, the respective recombinant proteins were expressed in vitro, and the ATPase activity of PmHsp90, with or without PmCdc37, was assessed. Moreover, a pull-down assay was conducted to detect the correlation between PmCdc37 and PmHsp90. After analyzing the expression patterns of PmHsp90 following Cd challenge, whether PmHsp90 can promote the ability of PmCdc37 to resist Cd stress or not was investigated. The results showed that formation of a PmHsp90/PmCdc37 complex protected shrimp against Cd stress-induced damage. Moreover, we also confirmed that PmSOD is involved in Cd stress, and that the PmHsp90/PmCdc37 complex can regulate SOD enzymatic activity. PmSOD was involved in decreasing the MDA content in shrimp hemolymph caused by Cd stress. We concluded that during exposure to Cd, the PmHsp90/PmCdc37 complex increases SOD enzyme activity, and in turn decreases the MDA content, thereby protecting shrimp against the damage caused by Cd stress. The present studies contribute to understanding the molecular mechanism underlying resistance to Cd stress in shrimp.


Assuntos
Cádmio/toxicidade , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Penaeidae/fisiologia , Animais , Cádmio/metabolismo , Proteínas de Choque Térmico HSP90/genética , Hemolinfa/metabolismo , Hepatopâncreas/metabolismo , Peroxidação de Lipídeos/fisiologia , Penaeidae/metabolismo
3.
Methods Mol Biol ; 2202: 199-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32857357

RESUMO

The assessment of reactive oxygen species has increasing importance in biomedical sciences, due to their biological role in signaling pathways and induction of cell damage at low and high concentrations, respectively. Detection of lipid peroxidation with sensing probes such as some BODIPY dyes has now wide application in studies using fluorescent microplate readers, flow cytometry, and fluorescence microscopy. Two phenylbutadiene derivatives of BODIPY are commonly used as peroxidation probes, non-oxidized probes and oxidized products giving red and green fluorescence, respectively. Peculiar features of lipoperoxidation and BODIPY dye properties make this assessment a rather complex process, not exempt of doubts and troubles. Color changes and fluorescence fading that are not due to lipid peroxidation must be taken into account to avoid misleading results. As a characteristic feature of lipoperoxidation is the propagation of peroxyl radicals, pitfalls and advantages of a delayed detection by BODIPY probes should be considered.


Assuntos
Peroxidação de Lipídeos/fisiologia , Microscopia de Fluorescência/métodos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Boro/farmacologia , Butadienos/farmacologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Peróxidos/análise , Peróxidos/metabolismo , Espécies Reativas de Oxigênio/análise , Espectrometria de Fluorescência/métodos
4.
Nat Cell Biol ; 22(9): 1049-1055, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32868902

RESUMO

Rapid wound detection by distant leukocytes is essential for antimicrobial defence and post-infection survival1. The reactive oxygen species hydrogen peroxide and the polyunsaturated fatty acid arachidonic acid are among the earliest known mediators of this process2-4. It is unknown whether or how these highly conserved cues collaborate to achieve wound detection over distances of several hundreds of micrometres within a few minutes. To investigate this, we locally applied arachidonic acid and skin-permeable peroxide by micropipette perfusion to unwounded zebrafish tail fins. As in wounds, arachidonic acid rapidly attracted leukocytes through dual oxidase (Duox) and 5-lipoxygenase (Alox5a). Peroxide promoted chemotaxis to arachidonic acid without being chemotactic on its own. Intravital biosensor imaging showed that wound peroxide and arachidonic acid converged on half-millimetre-long lipid peroxidation gradients that promoted leukocyte attraction. Our data suggest that lipid peroxidation functions as a spatial redox relay that enables long-range detection of early wound cues by immune cells, outlining a beneficial role for this otherwise toxic process.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Peroxidação de Lipídeos/fisiologia , Ferimentos e Lesões/metabolismo , Peixe-Zebra/metabolismo , Animais , Ácido Araquidônico/metabolismo , Leucócitos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
5.
Food Chem Toxicol ; 145: 111701, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32858131

RESUMO

Obesity and its related metabolic disorders, as well as infectious diseases like covid-19, are important health risks nowadays. It was recently documented that long-term fasting improves metabolic health and enhanced the total antioxidant capacity. The present study investigated the influence of a 10-day fasting on markers of the redox status in 109 subjects. Reducing power, 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation(ABTS) radical scavenging capacity, and hydroxyl radical scavenging capacity increased significantly, and indicated an increase of circulating antioxidant levels. No differences were detected in superoxide scavenging capacity, protein carbonyls, and superoxide dismutase when measured at baseline and after 10 days of fasting. These findings were concomitant to a decrease in blood glucose, insulin, glycated hemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL) and triglycerides as well as an increase in total cholesterol/high-density lipoprotein (HDL) ratio. In addition, the well-being index as well as the subjective energy levels increased, documenting a good tolerability. There was an interplay between redox and metabolic parameters since lipid peroxidation baseline levels (thiobarbituric acid reactive substances [TBARS]) affected the ability of long-term fasting to normalize lipid levels. A machine learning model showed that a combination of antioxidant parameters measured at baseline predicted the efficiency of the fasting regimen to decrease LDL levels. In conclusion, it was demonstrated that long-term fasting enhanced the endogenous production of antioxidant molecules, that act protectively against free radicals, and in parallel improved the metabolic health status. Our results suggest that the outcome of long-term fasting strategies could be depending on the baseline values of the antioxidative and metabolic status of subjects.


Assuntos
Jejum/metabolismo , Depuradores de Radicais Livres/metabolismo , Obesidade/dietoterapia , Estresse Oxidativo/fisiologia , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Infecções por Coronavirus/prevenção & controle , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Peroxidação de Lipídeos/fisiologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Adulto Jovem
6.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R264-R281, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609539

RESUMO

Long-term exposure of Mytilus galloprovincialis to temperatures beyond 26°C triggers mussel mortality. The present study aimed to integratively illustrate the correlation between intermediary metabolism, hsp gene expression, and oxidative stress-related proteins in long-term thermally stressed Mytilus galloprovincialis and whether they are affected by thermal stress magnitude and duration. We accordingly evaluated the gene expression profiles, in the posterior adductor muscle (PAM) and the mantle, concerning heat shock protein 70 and 90 (hsp70 and hsp90), and the antioxidant defense indicators Mn-SOD, Cu/Zn-SOD, catalase, glutathione S-transferase, and the metallothioneins mt-10 and mt-20. Moreover, we determined antioxidant enzyme activities, oxidative stress through lipid peroxidation, and activities of intermediary metabolism enzymes. The pattern of changes in relative mRNA expression levels indicate that mussels are able to sense thermal stress even when exposed to 22°C and before mussel mortality is initiated. Data indicate a close correlation between the magnitude and duration of thermal stress with lipid peroxidation levels and changes in the activity of antioxidant enzymes and the enzymes of intermediary metabolism. The gene expression and increase in the activities of antioxidant enzymes support a scenario, according to which exposure to 24°C might trigger reactive oxygen species (ROS) production, which is closely correlated with anaerobic metabolism under hypometabolic conditions. Increase and maintenance of oxidative stress in conjunction with energy balance disturbance seem to trigger mussel mortality after long-term exposure at temperatures beyond 26°C. Eventually, in the context of preparation for oxidative stress, certain hypotheses and models are suggested, integrating the several steps of cellular stress response.


Assuntos
Proteínas de Choque Térmico/metabolismo , Mytilus/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Expressão Gênica/fisiologia , Peroxidação de Lipídeos/fisiologia , Camundongos , Estresse Fisiológico/fisiologia
7.
Life Sci ; 256: 117848, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585243

RESUMO

AIM: Pulmonary arterial hypertension (PAH) identified by progressive increase in pulmonary vascular resistance and pressure, ultimately leading to right ventricular failure and sudden death. Oxidation resistance 1 (OXR1) and its downstream target genes has a pivotal role for defense against oxidative stress. But its molecular function is unknown in respiratory system disorders. This study designed to determine whether PAH associated with oxidative stress and OXR1 signaling pathway modulation. Also, Crocin co-treatment evaluated to determine the possible role and mechanism in pulmonary arterial hypertension. MAIN METHOD: The PAH model was induced by a single dose of MCT. It was given intraperitoneal administration of Crocin or saline for 21 consecutive days the other groups in this study. In the last day of experiment, hemodynamic parameter and right ventricular hypertrophy was evaluated as PAH index. The expression levels of OXR1, P21 and Nrf2 genes were detected through RT-PCR. Moreover, oxidative stress index and antioxidant capacity were measured and histological examination were used to determine the lung tissue injuries. KEY FINDINGS: Results of the current study demonstrated that the OXR1 and P21 gene expression significantly decrease in PAH which is associated with increase of lipid peroxidation and decrease antioxidant capacity in lung tissue. Crocin co-treatment significantly improved the hemodynamic, oxidative stress biomarkers and histological data of the PAH rats, which associated with increase of OXR1 and its downstream target genes. SIGNIFICANCE: This report reveals the critical role of OXR1 in pathogenesis of oxidative stress-related pulmonary disease. Current experiment also provides evidence that Crocin has a protective effect against MCT-induced pulmonary arterial hypertension by modulation of OXR1 signaling pathway in rats.


Assuntos
Carotenoides/farmacologia , Hipertrofia Ventricular Direita/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Hipertensão Arterial Pulmonar/prevenção & controle , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Peroxidação de Lipídeos/fisiologia , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Monocrotalina/toxicidade , Estresse Oxidativo/fisiologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Arch Biochem Biophys ; 688: 108431, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32461102

RESUMO

Phenylketonuria (PKU) is the most prevalent inborn error of amino acid metabolism. The disease is due to the deficiency of phenylalanine (Phe) hydroxylase activity, which causes the accumulation of Phe. Early diagnosis through neonatal screening is essential for early treatment implementation, avoiding cognitive impairment and other irreversible sequelae. Treatment is based on Phe restriction in the diet that should be maintained throughout life. High dietary restrictions can lead to imbalances in specific nutrients, notably lipids. Previous studies in PKU patients revealed changes in levels of plasma/serum lipoprotein lipids, as well as in fatty acid profile of plasma and red blood cells. Most studies showed a decrease in important polyunsaturated fatty acids, namely DHA (22:6n-3), AA (20:4n-6) and EPA (20:5n-6). Increased oxidative stress and subsequent lipid peroxidation have also been observed in PKU. Despite the evidences that the lipid profile is changed in PKU patients, more studies are needed to understand in detail how lipidome is affected. As highlighted in this review, mass spectrometry-based lipidomics is a promising approach to evaluate the effect of the diet restrictions on lipid metabolism in PKU patients, monitor their outcome, namely concerning the risk for other chronic diseases, and find possible prognosis biomarkers.


Assuntos
Ácidos Graxos/metabolismo , Lipidômica , Lipoproteínas/metabolismo , Fenilcetonúrias/fisiopatologia , Ácidos Graxos/análise , Humanos , Inflamação/complicações , Inflamação/fisiopatologia , Peroxidação de Lipídeos/fisiologia , Lipidômica/métodos , Lipoproteínas/análise , Estresse Oxidativo/fisiologia , Fenilcetonúrias/complicações , Fenilcetonúrias/dietoterapia , Triglicerídeos/análise , Triglicerídeos/metabolismo
9.
Nat Commun ; 11(1): 1775, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286299

RESUMO

The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.


Assuntos
Doença de Crohn/metabolismo , Gorduras na Dieta/efeitos adversos , Enterite/metabolismo , Ácidos Graxos Insaturados/metabolismo , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Adulto , Animais , Morte Celular/genética , Morte Celular/fisiologia , Doença de Crohn/genética , Enterite/etiologia , Enterite/genética , Ácidos Graxos Insaturados/genética , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/genética , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
10.
PLoS One ; 15(3): e0230539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187223

RESUMO

The present work is the first study of Mediterranean scallop (Pecten jacobaeus) biochemical properties, antioxidant defenses, and free radical scavengers during the yearly seasons in the Northern Adriatic, off Istria. Scallop nutrient reserves (glucose, triglyceride, and cholesterol) in four tissues under examination were positively correlated and were predominant in digestive gland and gonad. The muscle energy maxima were in correlation with the maximum fall gonosomatic index (GSI), when diatoms and coccolithophorids thrive. The decrease of GSI in summer might be related to the spawning or resorption of gametes. Summer also revealed elevated levels of glucose in gonad and digestive gland, while muscle glucose and cholesterol significantly varied in spring vs. winter samples. In relation to the diatom seasonal abundance, carotenoids, namely astaxanthin peaks were found in digestive gland, which, being stimulators of calcium transport over cell membranes, could have contributed to the high digestive gland levels of calcium in winter. In winter, total antioxidative status (TAS) of scallop tissues was 3-fold higher than in other seasons, particularly in digestive gland, having a significant correlation with magnesium, a regulatory tool in oxidative processes. The winter maxima of TAS and thiobarbituric acid reactive substances TBARS in relation to summer maxima of glutathione peroxidase and superoxide dismutase in digestive glands indicate to a decrease in antioxidant defense during cold months, and are related to the accumulation of lipid peroxidation products (such as malondialdehyde) in digestive gland of scallops. Although the increased susceptibility to oxidative stress could be attributed to winter temperature, other factors such as the gonad maturation, availability of food supply, and salinity might counteract that effect. The seawater alterations of salinity, temperature and water quality are in relation to the river Po influx, which is very likely to influence the physiological and biochemical responses of scallops in the Northern Adriatic.


Assuntos
Peroxidação de Lipídeos/fisiologia , Pecten/metabolismo , Animais , Antioxidantes/análise , Carotenoides/análise , Eletroquímica , Estresse Oxidativo/fisiologia , RNA Ribossômico 18S/genética , Estações do Ano
11.
Anim Sci J ; 91(1): e13327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219959

RESUMO

Excessive lipid peroxidation negatively affects the physiological response and meat quality of chickens. Delaying post-hatch feeding was previously found to increase lipid peroxidation in the skeletal muscle of finishing broiler chickens. The aims of this study were to investigate the effects of delayed post-hatch feeding on lipid peroxidation and the mRNA expressions of antioxidant enzymes in the pectoralis major muscle of broiler chicks during the post-hatching period. Newly hatched chicks either had immediate free access to feed (freely-fed chicks) or had no access to feed from 0 to 2 days old (delayed-fed chicks), after which both groups were fed ad libitum until 4 or 13 days old. The lipid peroxidation level was higher in the delayed-fed than freely-fed chicks at 2, 4, and 13 days old. At 2 days old, the mRNA expressions of Cu/Zn-SOD, Mn-SOD, and GPX7 were lower in the delayed-fed than freely-fed chicks, while catalase mRNA levels did not differ. Furthermore, at 4 and 13 days old, lower mRNA expressions of Cu/Zn-SOD and Mn-SOD were observed in the delayed-fed than freely-fed chicks. These results suggest that delaying post-hatch feeding reduces the mRNA levels of Cu/Zn-SOD and Mn-SOD, consequently affecting muscle lipid peroxidation in chicks during subsequent growth.


Assuntos
Ração Animal , Galinhas/metabolismo , Métodos de Alimentação/veterinária , Peroxidação de Lipídeos/fisiologia , Músculo Esquelético/metabolismo , Peroxidases/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Expressão Gênica , Peroxidases/genética , RNA Mensageiro/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética , Fatores de Tempo
12.
Sci Rep ; 10(1): 1790, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019966

RESUMO

Paraquat (PQ) is a non-selective herbicide and is exceedingly toxic to humans. The mechanism of PQ toxicity is very complex and has not been clearly defined. There is no specific antidote for PQ poisoning. 5-hydroxy-1-methylhydantoin (HMH) is an intrinsic antioxidant and can protect against renal damage caused by PQ. The mechanism of PQ toxicology and the possible effects of HMH on PQ-induced lung injury were determined in this study. It was found that PQ decreased superoxide dismutase (SOD) activity and elevated the level of malondialdehyde (MDA), while HMH elevated SOD activity and decreased the level of MDA. Based on metabolomics, the citrate cycle, glutathione metabolism, taurine and hypotaurine metabolism, regulation of lipolysis in adipocytes, inflammatory mediator regulation of TRP channels, purine and pyrimidine metabolism, aldosterone synthesis and secretion, and phenylalanine metabolism were changed in the PQ group. Compared with the PQ group, the levels of N-acetyl-l-aspartic acid, L-glutamic acid, L-aspartic acid, mesaconic acid, adenosine 5' monophosphate, methylmalonic acid, cytidine, phosphonoacetic acid, hypotaurine, glutathione (reduced) and cysteinylglycine increased, while the levels of corticosterone, xanthine, citric acid, prostaglandin G2, 4-pyridoxic acid and succinyl proline decreased in the HMH group. These metabolites revealed that HMH can alleviate inflammation caused by PQ and elevate the activity of intrinsic antioxidants. In conclusion, our results revealed PQ toxicology and the pharmacology underlying the protective effect of HMH on lung injury due to PQ. Toxicity caused by PQ results in lipid peroxidation and an increase in reactive oxygen species (ROS), nitric oxide (NO), damage to the biliary system, gastrointestinal system and nervous system, in addition to lungs, kidneys, and the liver. HMH is a good antioxidant and protects against lung injury caused by PQ. In summary, HMH efficiently reduced PQ-induced lung injury in mice.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Herbicidas/toxicidade , Hidantoínas/uso terapêutico , Paraquat/toxicidade , Substâncias Protetoras/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/fisiologia , Malondialdeído/metabolismo , Metabolômica , Superóxido Dismutase/metabolismo , Taurina/metabolismo
13.
Nat Chem Biol ; 16(3): 302-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080622

RESUMO

Ferroptosis is widely involved in degenerative diseases in various tissues including kidney, liver and brain, and is a targetable vulnerability in multiple primary and therapy-resistant cancers. Accumulation of phospholipid hydroperoxides in cellular membranes is the hallmark and rate-limiting step of ferroptosis; however, the enzymes contributing to lipid peroxidation remain poorly characterized. Using genome-wide, CRISPR-Cas9-mediated suppressor screens, we identify cytochrome P450 oxidoreductase (POR) as necessary for ferroptotic cell death in cancer cells exhibiting inherent and induced susceptibility to ferroptosis. By genetic depletion of POR in cancer cells, we reveal that POR contributes to ferroptosis across a wide range of lineages and cell states, and in response to distinct mechanisms of ferroptosis induction. Using systematic lipidomic profiling, we further map POR's activity to the lipid peroxidation step in ferroptosis. Hence, our work suggests that POR is a key mediator of ferroptosis and potential druggable target for developing antiferroptosis therapeutics.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ferroptose/fisiologia , Morte Celular , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glutationa Peroxidase/metabolismo , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Fosfolipídeos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080625

RESUMO

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Assuntos
Ferroptose/fisiologia , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/fisiologia , Morte Celular , Feminino , Ferro/metabolismo , Ferro/fisiologia , Leucotrienos/metabolismo , Peroxidação de Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
15.
Oxid Med Cell Longev ; 2020: 3631272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104531

RESUMO

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.


Assuntos
Peroxidação de Lipídeos/fisiologia , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Animais , Cardiolipinas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia
16.
Proteomics ; 20(2): e1900205, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846556

RESUMO

The free-radical theory of male infertility suggests that reactive oxygen species produced by the spermatozoa themselves are a leading cause of sperm dysfunction, including loss of sperm motility. However, the field is overshadowed on several fronts, primarily because: i) the probes used to measure reactive oxygen species (ROS) are imprecise; and ii) many reports suggesting that oxygen radicals are detrimental to sperm function add an exogenous source of ROS. Herein, a more reliable approach to measure superoxide anion production by human spermatozoa based on MS analysis is used. Furthermore, the formation of the lipid-peroxidation product 4-hydroxynonenal (4-HNE) during in vitro incubation using proteomics is also investigated. The data demonstrate that neither superoxide anion nor other free radicals that cause 4-HNE production are related to the loss of sperm motility during incubation. Interestingly, it appears that many of the 4-HNE adducted proteins, found within spermatozoa, originate from the prostate. A quantitative SWATH analysis demonstrate that these proteins transiently bind to sperm and are then shed during in vitro incubation. These proteomics-based findings propose a revised understanding of oxidative stress within the male reproductive tract.


Assuntos
Ânions/metabolismo , Espectrometria de Massas/métodos , Espermatozoides/metabolismo , Superóxidos/metabolismo , Humanos , Peroxidação de Lipídeos/fisiologia , Masculino , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Motilidade Espermática/fisiologia
17.
Exp Eye Res ; 190: 107867, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705899

RESUMO

The purpose of the current work was to utilize a three dimensional (3D) corneal epithelial tissue model to study dry eye disease and oxidative stress-related corneal epithelial injuries for the advancement of ocular therapeutics. Air-liquid interface cultures of normal human corneal epithelial cells were used to produce 3D corneal epithelial tissues appropriate for physiologically relevant exposure to environmental factors. Oxidative stress was generated by exposing the tissues to non-toxic doses of ultraviolet radiation (UV), hydrogen peroxide, vesicating agent nitrogen mustard, or desiccating conditions that stimulated morphological, cellular, and molecular changes relevant to dry eye disease. Corneal specific responses, including barrier function, tissue viability, reactive oxygen species (ROS) accumulation, lipid peroxidation, cytokine release, histology, and gene expression were evaluated. 3D corneal epithelial tissue model structurally and functionally reproduced key features of molecular responses of various types of oxidative stress-induced ocular damage. The most pronounced effects for different treatments were: UV irradiation - intracellular ROS accumulation; hydrogen peroxide exposure - barrier impairment and IL-8 release; nitrogen mustard exposure - lipid peroxidation and IL-8 release; desiccating conditions - tissue thinning, a decline in mucin expression, increased lipid peroxidation and IL-8 release. Utilizing a PCR gene array, we compared the effects of corneal epithelial damage on the expression of 84 oxidative stress-responsive genes and found specific molecular responses for each type of damage. The topical application of lubricant eye drops improved tissue morphology while decreasing lipid peroxidation and IL-8 release from tissues incubated at desiccating conditions. This model is anticipated to be a valuable tool to study molecular mechanisms of corneal epithelial damage and aid in the development of therapies against dry eye disease, oxidative stress- and vesicant-induced ocular injuries.


Assuntos
Lesões da Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Epitélio Anterior/metabolismo , Imageamento Tridimensional , Modelos Biológicos , Estresse Oxidativo/fisiologia , Alquilantes/toxicidade , Sobrevivência Celular , Lesões da Córnea/etiologia , Citocinas/metabolismo , Síndromes do Olho Seco/etiologia , Impedância Elétrica , Epitélio Anterior/efeitos dos fármacos , Epitélio Anterior/efeitos da radiação , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos/fisiologia , Mecloretamina/toxicidade , Oxidantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Raios Ultravioleta/efeitos adversos
18.
Diabetes Care ; 43(1): 130-136, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653645

RESUMO

OBJECTIVE: Oxidative stress is believed to play an important role in the pathophysiology of type 2 diabetes, but the few cohort studies that have assessed the association of oxidative stress biomarkers with type 2 diabetes incidence were small and reported inconclusive results. RESEARCH DESIGN AND METHODS: We examined the associations of urinary oxidized guanine/guanosine (OxGua) levels (a biomarker of DNA/RNA oxidation) and urinary 8-isoprostane levels (a biomarker of lipid peroxidation) with type 2 diabetes incidence in 7,828 individuals initially without diabetes from a population-based German cohort study with 14 years of follow-up. Hazard ratios (HRs) (95% CIs) per 1 SD were obtained using multivariable-adjusted Cox proportional hazards regression models. RESULTS: In the total population, weak but statistically significant associations with type 2 diabetes incidence were observed for OxGua levels (HR [95% CI] per 1 SD 1.05 [1.01; 1.09]) and 8-isoprostane levels (1.04 [1.00; 1.09]). Stratified analyses showed that associations of both biomarkers with type 2 diabetes incidence were absent in the youngest age-group (50-59 years) and strongest in the oldest age-group (65-75 years) of the cohort, with HR of OxGua levels 1.14 (1.05; 1.23) per 1 SD and of 8-isoprostane levels 1.22 (1.02; 1.45) per 1 SD. CONCLUSIONS: These results from a large cohort study support suggestions that an imbalanced redox system contributes to the development of type 2 diabetes but suggest that this association becomes clinically apparent at older ages only, possibly as a result of reduced cellular repair capacity.


Assuntos
Envelhecimento/fisiologia , Dano ao DNA/fisiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Dinoprosta/análogos & derivados , Estresse Oxidativo/fisiologia , Idade de Início , Idoso , Biomarcadores/metabolismo , Biomarcadores/urina , Estudos de Coortes , DNA/metabolismo , Diabetes Mellitus Tipo 2/urina , Dinoprosta/urina , Feminino , Seguimentos , Alemanha/epidemiologia , Humanos , Incidência , Peroxidação de Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Oxirredução , RNA/metabolismo
19.
Int J Vitam Nutr Res ; 90(3-4): 302-308, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932786

RESUMO

This study aimed to investigate and compare hepatoprotective activity of Coriandrum sativum (Cs) and it is major component linalool (Ln) against experimentally induced hepatotoxicity in rats. Essential oil of Cs was isolated by hydrodistillation method and chemical composition was determined by GS-MS analysis. 42 male Wistar Albino rats were divited into 7 groups each containing 6. The experimental groups were designed as: Normal control group, 1 ml/kg CCl4 administirated group, 25 mg/kg Silymarin and CCl4 administirated group, 100 and 200 mg/kg Cs and CCl4 administirated groups, 100 and 200 mg/kg Ln and CCl4 administered groups. The protective activities were determined according to the results of liver biomarkers (AST, ALT, ALP), antioxidant parameters (GSH, GPx, CAT), lipid peroxidation (MDA) and histopathological examination. Linalool percentage of Cs was 81.6%. The groups treated with linalool (100 and 200 mg/kg) (p < 0.01) and coriander (200 mg/kg) (p < 0.05) had significantly reduced AST (262-375) and ALT (101-290) levels (U/L) compared to the CCl4 (600-622) group. The levels (nmol/g protein) of MDA (11-12) were significantly lower (p < 0.01), the levels of GSH (11-12) and the activities of CAT (23-24) were significantly higher (p < 0.01) in linalool groups (100 and 200 mg/kg) compared to the CCl4 (18-5-10 respectively) group. These results were also supported by histopathological findings and indicate that Cs and Ln shows hepatoprotective activity against liver damage. In this regard, evaluation of activities of major components are needed to compare to medicinal plants in experimental diseases models.


Assuntos
Monoterpenos Acíclicos/química , Antioxidantes/química , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Monoterpenos Acíclicos/metabolismo , Animais , Tetracloreto de Carbono/química , Peroxidação de Lipídeos/fisiologia , Fígado , Masculino , Extratos Vegetais , Ratos , Ratos Wistar
20.
Biochim Biophys Acta Gen Subj ; 1864(3): 129487, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734461

RESUMO

BACKGROUND: Skeletal muscle cells continuously generate reactive oxygen species (ROS). Excessive ROS can affect lipids resulting in lipid peroxidation (LPO). Here we investigated the effects of myotube intracellular calcium-induced signaling eliciting contractions on the LPO induction and the impact of LPO-product 4-hydroxynonenal (4-HNE) on physiology/pathology of myotubes using C2C12 myoblasts. METHODS: C2C12 myoblasts were differentiated into myotubes, stimulated with caffeine and analyzed for the induction of LPO and formation of 4-HNE protein adducts. Further effects of 4-HNE on mitochondrial bioenergetics, NADH level, mitochondrial density and expression of mitochondrial metabolism genes were determined. RESULTS: Short and long-term caffeine stimulation of myotubes promoted superoxide production, LPO and formation of 4-HNE protein adducts. Furthermore, low 4-HNE concentrations had no effect on myotube viability and cellular redox homeostasis, while concentrations from 10 µM and above reduced myotube viability and significantly disrupted homeostasis. A time and dose-dependent 4-HNE effect on superoxide production and mitochondrial NADH-autofluorescence was observed. Finally, 4-HNE had strong impact on maximal respiration, spare respiratory capacity, ATP production, coupling efficiency of mitochondria and mitochondrial density. CONCLUSION: Data presented in this work make evident for the first time that pathological 4-HNE levels elicit damaging effects on skeletal muscle cells while acute exposure to physiological 4-HNE induces transient adaptation. GENERAL SIGNIFICANCE: This work suggests an important role of 4-HNE on the regulation of myotube's mitochondrial metabolism and cellular energy production. It further signifies the importance of skeletal muscle cells hormesis in response to acute stress in order to maintain essential biological functions.


Assuntos
Cálcio/metabolismo , Peroxidação de Lipídeos/fisiologia , Mitocôndrias/metabolismo , Aldeídos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cafeína/farmacologia , Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Metabolismo Energético , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...