RESUMO
Antimicrobial peptides (AMPs) are attracting attention in the fields of medicine, food, and agriculture because of their broad-spectrum antibacterial properties, low resistance, and low-residue in the body. However, the low yield and instability of the prepared AMP drugs limit their application. In this study, we designed a tetramer of the AMP CC34, constructed and transfected two recombinant expression vectors with pGAPZαA containing a haploid CC34 and tetraploid CC34 (CC34-4js) into Pichia pastoris to explore the effect of biosynthesized peptides. The results showed that CC34 and CC34-4js expression levels were 648.2 and 1105.3 mg/L, respectively, in the fermentation supernatant of P. pastoris. The CC34-4js tetramer showed no antibacterial activity, could be cleaved to the monomer using formic acid, and the hemolytic rate of the polyploid was slightly lower than that of monomeric CC34. The average daily gain, average daily feed intake, feed conversion ratio and immune organ index of rats fed CC34 and CC34-4js showed no differences. In conclusion, CC34-4js exhibited a higher yield and lower hemolysis in P. pastoris than those of CC34. Finally, CC34 and CC34-4js enterokinase lysates showed similar antibacterial activity and both expressed peptides potentially improved the growth performance and organ indices of rats.
Assuntos
Peptídeos Antimicrobianos , Pichia , Ratos , Animais , Pichia/genética , Pichia/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos/metabolismo , Sequências de Repetição em Tandem , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismoRESUMO
Antibiotic resistance to pathogenic bacteria is becoming an increasing public health threat, and identifying alternatives to antibiotics would be an effective solution to the problem of drug resistance. Antimicrobial peptides are small peptides produced by various organisms; they are considered to be adequate antibiotic substitutes because they have intense, broad-spectrum antibacterial activity and stability, are widely available, and target strains do not quickly develop resistance. Recent research on antimicrobial peptides has shown that they have broad potential for applications in medicine, agriculture, food, and animal feed. Turgencin A is a potent antimicrobial peptide isolated from the Arctic sea squirt. We established a His-tagged expression system for Pichia pastoris and developed a rTurgencin A using the recombinant expression in Pichia pastoris with nickel column purification. This antimicrobial peptide showed intense antimicrobial activity against Gram-positive and Gram-negative bacteria and a good stability at most temperatures and pHs, as well as in various protease and salt ion concentrations, but underwent a significant decrease in stability in high-temperature and low-pH environments. Turgencin A induced bacterial membrane rupture, resulting in content leakage and subsequent cell death. It was also shown to have low hemolytic activity. This study provides primary data for the industrial production and application of the antimicrobial peptide Turgencin A.
Assuntos
Antibacterianos , Bactérias Gram-Negativas , Animais , Pichia/genética , Pichia/metabolismo , Bactérias Gram-Positivas , Peptídeos Catiônicos Antimicrobianos , Bactérias , Testes de Sensibilidade MicrobianaRESUMO
The methylotrophic yeast Komagataella phaffii (syn. Pichia pastoris) is a widely used host for extracellularly producing heterologous proteins via an expression cassette integrated into the yeast genome. A strong promoter in the expression cassette is not always the most favorable choice for heterologous protein production, especially if the correct folding of the protein and/or post-translational processing is the limiting step. The transcriptional terminator is another regulatory element in the expression cassette that can modify the expression levels of the heterologous gene. In this work, we identified and functionally characterized the promoter (P1033) and transcriptional terminator (T1033) of a constitutive gene (i.e., the 1033 gene) with a weak non-methanol-dependent transcriptional activity. We constructed two K. phaffii strains with two combinations of the regulatory DNA elements from the 1033 and AOX1 genes (i.e., P1033-TAOX1 and P1033-T1033 pairs) and evaluated the impact of the regulatory element combinations on the transcript levels of the heterologous gene and endogenous 1033 and GAPDH genes in cells grown in glucose or glycerol, and on the extracellular product/biomass yield. The results indicate that the P1033 has a 2-3% transcriptional activity of the GAP promoter and it is tunable by cell growth and the carbon source. The combinations of the regulatory elements rendered different transcriptional activity of the heterologous and endogenous genes that were dependent on the carbon source. The promoter-terminator pair and the carbon source affected the heterologous gene translation and/or protein secretion pathway. Moreover, low heterologous gene-transcript levels along with glycerol cultures increased translation and/or protein secretion.
Assuntos
Glicerol , Saccharomycetales , Glicerol/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Regiões Promotoras Genéticas , Carbono/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
l-Lactic acid (l-LA) is a platform chemical obtained via microbial fermentation at a near-neutral pH value. Large amounts of neutralizers are required during this process, which increases the production costs in downstream processing as well as environmental burden. To address this challenge, an acid-tolerant yeast Pichia kudriavzevii E1 was isolated and metabolically engineered to produce l-LA without neutralizers. The genome of strain E1 was sequenced and a CRISPR-Cas9 system was developed in this newly isolated strain. Subsequently, the gene encoding pyruvate decarboxylase (pdc) was knocked out to subdue ethanol formation. Furthermore, the l-lactate dehydrogenase gene from Weizmannia coagulans 2-6 and the codon-optimized L-ldhA gene from Bos taurus were introduced into P. kudriavzevii E1 chromosome to redirect the ethanol fermentation pathway to l-LA production. Deletion of the dld(chr3) gene further increased the optical purity of l-LA. After optimizing fermentation conditions, the maximum titer of l-LA in the 5 L fermenter reached 74.57 g/L without any neutralizers, with an optical purity of 100% and a maximum yield of 0.93 g/g glucose. This is the first report of optically pure l-LA production without neutralizers and the engineered acid-tolerant yeast paves the way for the sustainable production of l-LA via a green route.
Assuntos
Ácido Láctico , Saccharomyces cerevisiae , Animais , Bovinos , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Ácidos/metabolismo , Pichia/genética , Pichia/metabolismo , Fermentação , Etanol/metabolismoRESUMO
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. This review describes the applications of yeast heterologous expression systems in studies of plant membrane proteins. An initial brief description introduces the widely used heterologous expression systems of the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. S. cerevisiae is further considered a convenient model system for functional studies of heterologously expressed proteins, while P. pastoris has the advantage of using these yeast cells as factories for producing large quantities of proteins of interest. The application of both expression systems is described for functional and structural studies of membrane proteins from plants, namely, K+- and Na+-transporters, various ATPases and anion transporters, and other transport proteins.
Assuntos
Proteínas de Membrana , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
The difficulties in purification of VLP-based recombinant hepatitis B surface antigen (rHBsAg) are mainly emerged from inefficient semi-purification step plus proteins physicochemical properties and these issues make the downstream processing (DSP) very lengthy and expensive. In this study, optimization of rHBsAg (recombinantly-expressed in Pichia pastoris) DSP was performed using selection of buffering conditions in the semi-purification step. In the semi-purification optimization step, up to 73% of the protein impurities were eliminated and the utmost increase in rHBsAg purity (ca. 3.6-fold) was achieved using 20 mM sodium acetate, pH 4.5. By using rHBsAg binding and nonbinding situations obtained from the response surface plot in design of experiments (DOE), additional bind-elute and flow-through purification mode experiments were conducted and rHBsAg with high purity (near 100%) and recovery (> 83%) was achieved. Following assessment of critical quality attributes (i.e., purity, particle size distribution, host cell DNA, host cell protein, secondary structures, specific activity and relative potency), it was indicated that the characteristics of rHBsAg purified by the new DSP were similar or superior to the ones obtained from conventional DSP. The purification performance of the resin was constantly retained (97-100%) and no significant resin damage took place after 10 adsorption-elution-cleaning cycles. The new DSP developed for production of rHBsAg in this study can substitute the conventional one with granting satisfactory target protein quality, long-lasting resin efficacy, shorter and less expensive process. This process may be also employable for purification of both non-VLP- and VLP- based target proteins expressed in the yeast.
Assuntos
Antígenos de Superfície da Hepatite B , Pichia , Proteínas Recombinantes/química , Pichia/genética , Pichia/metabolismoRESUMO
Human interferon alpha 2a (IFNα2a) is a secreted glycoprotein that exerts a wide spectrum of biological effects, such as triggering of antiviral, antitumor and immunosuppressive responses. IFNα2a is used as pharmaceutical polypeptide in chronic hepatitis C virus (HCV) infection, chronic myelogenous leukemia, advanced renal cell carcinoma, and metastatic malignant melanoma. So far, the pharmaceutical polypeptide of this cytokine is produced in prokaryotic expression systems (E. coli). Here we report the expression and purification of recombinant human IFNα2a in the methylotrophic yeast Pichia pastoris. The cDNA encoding for human IFNα2a, modified to bear the P. pastoris codon bias, was cloned into the pPinkα-HC vector in order to be expressed as a secreted protein upon induction. Proper expression and secretion of recombinant human IFNα2a (approximately 19 kDa) was confirmed by PCR-sequencing, SDS-PAGE and Western blot analysis following methanol-induced expression in a number of individual transformed strains. Purification of the recombinant protein was performed by affinity chromatography, achieving a robust yield of purified active form. The purified recombinant protein showed an impressive stability to thermal denaturation as observed by Differential Scanning Fluorimetry. The biological activity of the P. pastoris-produced IFNα2a was confirmed in A549 and HT29 cells by monitoring transcriptional up-regulation of a panel of known interferon-stimulated genes (ISGs). Our results document that the P. pastoris expression system is a suitable system for producing biologically functional IFNα2a in a secreted form.
Assuntos
Hepatite C Crônica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologiaRESUMO
Insulin-like growth factor-1 (IGF-1) is a pleiotropic protein hormone and has become an attractive therapeutic target because of its multiple roles in various physiological processes, including growth, development, and metabolism. However, its production is hindered by low heterogenous protein expression levels in various expression systems and hard to meet the needs of clinical and scientific research. Here, we report that human IGF-1 and its analog Long R3 IGF-1 (LR3 IGF-1) are recombinant expressed and produced in the Pichia pastoris (P. pastoris) expression system through being fused with highly expressed xylanase XynCDBFV. Furthermore, purified IGF-1 and LR3 IGF-1 display excellent bioactivity of cell proliferation compared to the standard IGF-1. Moreover, higher heterologous expression levels of the fusion proteins XynCDBFV-IGF-1 and XynCDBFV-LR3 IGF-1 are achieved by fermentation in a 15-L bioreactor, reaching up to about 0.5 g/L XynCDBFV-IGF-1 and 1 g/L XynCDBFV-TEV-LR3 IGF-1. Taken together, high recombinant expression of bioactive IGF-1 and LR3 IGF-1 is acquired with the assistance of xylanase as a fusion partner in P. pastoris, which could be used for both clinical and scientific applications. KEY POINTS: ⢠Human IGF-1 and LR3 IGF-1 are produced in the P. pastoris expression system. ⢠Purified IGF-1 and LR3 IGF-1 show bioactivity comparable to the standard IGF-1. ⢠High heterologous expression of IGF-1 and LR3 IGF-1 is achieved by fermentation in a bioreactor.
Assuntos
Fator de Crescimento Insulin-Like I , Saccharomycetales , Humanos , Proteínas Recombinantes/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/metabolismoRESUMO
COVID-19 is a disease that have affected the entire world, and it continues to spread with new variants. A patient's innate immune system plays a critical role in the mild and severe transition of COVID-19. Antimicrobial peptides (AMPs), which are important components of the innate immune system, are potential molecules to fight pathogenic bacteria, fungi, and viruses. Human ß-defensin 2 (hBD-2), a 41-amino-acid antimicrobial peptide, is one of the defensins inducibly expressed in the skin, lungs, and trachea in humans. In this study, it was aimed to investigate the interaction of hBD-2 produced recombinantly in Pichia pastoris with the human angiotensin-converting enzyme 2 (ACE-2) under in vitro conditions. First, hBD-2 was cloned in P. pastoris X-33 via the pPICZαA vector, a yeast expression platform, and its expression was confirmed by SDS-PAGE, western blotting, and qRT-PCR. Then, the interaction between recombinant hBD-2 and ACE-2 proteins was revealed by a pull-down assay. In light of these preliminary experiments, we suggest that the recombinantly produced hBD-2 may be protective against SARS-CoV-2 and be used as a supplement in treatment. However, current findings need to be supported by cell culture studies, toxicity analyses, and in vivo experiments.
Assuntos
COVID-19 , beta-Defensinas , Humanos , beta-Defensinas/genética , beta-Defensinas/farmacologia , beta-Defensinas/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Pichia/genética , Pichia/metabolismoRESUMO
L-Lactate is an indicator of food quality, so its monitoring is essential. Enzymes of L-Lactate metabolism are promising tools for this aim. We describe here some highly sensitive biosensors for L-Lactate determination which were developed using flavocytochrome b2 (Fcb2) as a bio-recognition element, and electroactive nanoparticles (NPs) for enzyme immobilization. The enzyme was isolated from cells of the thermotolerant yeast Ogataea polymorpha. The possibility of direct electron transfer from the reduced form of Fcb2 to graphite electrodes has been confirmed, and the amplification of the electrochemical communication between the immobilized Fcb2 and the electrode surface was demonstrated to be achieved using redox nanomediators, both bound and freely diffusing. The fabricated biosensors exhibited high sensitivity (up to 1436 A·M-1·m-2), fast responses, and low limits of detection. One of the most effective biosensors, which contained co-immobilized Fcb2 and the hexacyanoferrate of gold, having a sensitivity of 253 A·M-1·m-2 without freely diffusing redox mediators, was used for L-Lactate analysis in samples of yogurts. A high correlation was observed between the values of analyte content determined using the biosensor and referenced enzymatic-chemical photometric methods. The developed biosensors based on Fcb2-mediated electroactive nanoparticles can be promising for applications in laboratories of food control.
Assuntos
Técnicas Biossensoriais , Nanopartículas , Ácido Láctico/análise , Pichia/metabolismo , Técnicas Biossensoriais/métodos , Eletrodos , Enzimas Imobilizadas/metabolismoRESUMO
The loss of mixing efficiency inherent to bioreactor process operated at large-scale yields to the formation of concentration gradient and thus to heterogeneous culture conditions. For processes operated with methanol feeding, P. pastoris faces oscillatory culture conditions that significantly affect the cell ability to produce secretory recombinant proteins at high yield. Extended cell residence time in microenvironments of high methanol concentration and low oxygen availability that are typically found in the upper part of the bioreactor near the feeding point, triggers the unfolded protein response (UPR) and thus impairs proper protein secretion. Methanol co-feeding with sorbitol was shown herein to reduce the UPR response and to restore productivity of secreted protein.
Assuntos
Metanol , Pichia , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Reatores Biológicos , Proteínas Recombinantes/metabolismoRESUMO
Transglutaminase (TG, EC 2.3.2.13) is widely used to modify functional properties in food systems, which can catalyze cross-linking reaction of proteins. In this work, microbial transglutaminase (MTG) from Streptomyces netropsis was heterologously expressed in the methylotrophic yeast Komagataella phaffii (Pichia pastoris). The specific activity of recombinant microbial transglutaminase (RMTG) was 26.17 ± 1.26 U/mg, and the optimum pH and temperature were measured as 7.0 and 50 °C, respectively. Bovine serum albumin (BSA) was used as a substrate to evaluate the effect of cross-linking reaction, and we found that RMTG had significant (p < 0.05) cross-linking effect for more than 30 min reactions. RMTG was further utilized in the investigation of plant-based chicken nuggets. Results showed that the hardness, springiness and chewiness of nuggets increased, and the adhesiveness decreased after RMTG treatment, which can prove that RMTG has the potential to improve the texture properties of plant-based chicken nuggets.
Assuntos
Galinhas , Pichia , Animais , Pichia/genética , Pichia/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo , Proteínas Recombinantes/metabolismoRESUMO
Oxalate oxidase is an enzyme that degrades oxalate and is used in commercial urinary assays to measure oxalate levels. The objective of this study was to establish an enhanced expression system for secretion and purification of oxalate oxidase using Pichia pastoris. A codon optimized synthetic oxalate oxidase gene derived from Hordeum vulgare (barley) was generated and cloned into the pPICZα expression vector downstream of the N-terminal alpha factor secretion signal peptide sequence and used for expression in P. pastoris X-33 strain. A novel chimeric signal peptide consisting of the pre-OST1 sequence fused to pro-αpp8 containing several amino acid substitutions was also generated to enhance secretion. Active enzyme was purified to greater than 90% purity using Q-Sepharose anion exchange chromatography. The purified oxalate oxidase enzyme had an estimated Km value of 256µM, and activity was determined to be 10U/mg. We have developed an enhanced oxalate oxidase expression system and method for purification.
Assuntos
Hordeum , Hordeum/genética , Pichia/genética , Pichia/metabolismo , Sinais Direcionadores de Proteínas , Oxalatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Extracellular protein production is primarily preferred to facilitate the downstream processes in recombinant protein production. Secretion of recombinant proteins is mediated by the processing of signal peptides in their N-terminal portion by the secretory mechanism of host expression systems. These molecular elements involved in secretion are functionally interchangeable between different species and secretion sequence screening is one of the widely used approaches to improve extracellular protein production. In this study, α-mating and protein internal repeats (PIR) secretion sequences isolated from different yeasts (Kluyveromyces lactis, Kluyveromyces marxianus and Hansenula polymorpha) were tested in Pichia pastoris for the production of two different proteins (α-amylase and xylanase) and compared with the well-known secretory signals, S. cerevisiae α-mating factor (Sc-MF) and P. pastoris protein internal repeats PIR (PpPIR). The results obtained showed the potential of signal sequences tested. Among the tested peptides, the highest yields were achieved with H. polymorpha protein internal repeats (HpPIR) and K. lactis α-mating factor (Kl-MF) for xylanase and K. marxianus protein internal repeats (KmPIR) and K. lactis α-mating factor (Kl-MF) for amylase. In further studies, these sequences can be evaluated as alternatives in the production of different proteins in P. pastoris and in the production of recombinant proteins in different expression systems.
Assuntos
Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae , Sinais Direcionadores de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismoRESUMO
Multiple sequence alignments of three lipase isoforms from the filamentous fungus, Cordyceps militaris, have revealed that the deduced protein from their common sequence belongs to the Candida rugosa lipase-like group. To express the protein in its active form, recombinant lipase from C. militaris (rCML) was extra cellularly expressed in Pichia pastoris X-33 after removing its signal peptide. Purified rCML was a stable monomeric protein with a molecular mass of 90 kDa, and was highly N-mannosylated compared to the native protein (69 kDa). The catalytic efficiency (kcat/Km) of rCML was greater than the native protein (1244.35 ± 50.88 and 1067.17 ± 29.07 mM-1·min-1, respectively), yet they had similar optimal pH values and temperatures (40 °C and pH 7.0-7.5), and showed preferences for Tween esters and short-chain triacylglycerols. Despite its monomeric conformation, interfacial activation was not observed for rCML, unlike the classical lipases. From the structural model of rCML, the binding pocket of rCML was predicted as a funnel-like structure consisting of a hollow space and an intramolecular tunnel, which is typical of C. rugosa lipase-like lipases. However, a blockage shortened the tunnel to 12-15 Å, which endows strict short-chain selectivity towards triacylglycerols and a perfect match for tricaproin (C6:0). The limited depth of the tunnel may enable accommodation of triacylglycerols with medium-to-long-chain fatty acids, which differentiates rCML from other C. rugosa lipase-like lipases with broad substrate specificities.
Assuntos
Cordyceps , Lipase , Lipase/genética , Lipase/química , Proteínas Recombinantes/química , Pichia/genética , Pichia/metabolismo , Triglicerídeos/metabolismo , Especificidade por SubstratoRESUMO
Shellfish are a leading cause of allergies worldwide, affecting about one-tenth of the general population. The sarcoplasmic calcium-binding protein, also known as allergen Pen m 4, is an important factor in shrimp allergies. Our objective was to assess the most effective techniques for producing a recombinant Pen m 4 protein as a potential tool for diagnosing shrimp allergies. In this study, for the first time, we produced a functional recombinant Pen m 4 protein in a eukaryotic system, Pichia pastoris, and analyzed it against Escherichia coli-produced equivalents in enzyme-linked immunosorbent and reverse-phase protein microarray assays. A dual tag system based on the maltose-binding protein was successfully used to increase the yield of Pen m 4 by 1.3-2.3-fold in both bacteria and yeast, respectively. Immunological characterization showed that N-glycosylation is neither crucial for the folding of Pen m 4 nor its recognition by specific IgE. However, the Ca2+-depletion assay indicated a dependence on calcium ion presence in blood samples. Results demonstrate how a comparative analysis can elucidate essential allergen manufacturing points. In conclusion, E. coli-produced Pen m 4 protein fused with the maltose-binding protein should be the preferred option for further studies in Penaeus monodon allergy diagnostics.
Assuntos
Escherichia coli , Hipersensibilidade , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/metabolismo , Imunoglobulina E , Proteínas Recombinantes/química , Alérgenos/genética , Alérgenos/química , Pichia/genética , Pichia/metabolismoRESUMO
Pichia pastoris (Komagataella phaffii) is widely used for industrial production of heterologous proteins due to high secretory capabilities but selection of highly productive engineered strains remains a limiting step. Despite availability of a comprehensive molecular toolbox for construct design and gene integration, there is high clonal variability among transformants due to frequent multi-copy and off-target random integration. Therefore, functional screening of several hundreds of transformant clones is essential to identify the best protein production strains. Screening methods are commonly based on deep-well plate cultures with analysis by immunoblotting or enzyme activity assays of post-induction samples, and each heterologous protein produced may require development of bespoke assays with multiple sample processing steps. In this work, we developed a generic system based on a P. pastoris strain that uses a protein-based biosensor to identify highly productive protein secretion clones from a heterogeneous set of transformants. The biosensor uses a split green fluorescent protein where the large GFP fragment (GFP1-10) is fused to a sequence-specific protease from Tobacco Etch Virus (TEV) and is targeted to the endoplasmic reticulum. Recombinant proteins targeted for secretion are tagged with the small fragment of the split GFP (GFP11). Recombinant protein production can be measured by monitoring GFP fluorescence, which is dependent on interaction between the large and small GFP fragments. The reconstituted GFP is cleaved from the target protein by TEV protease, allowing for secretion of the untagged protein of interest and intracellular retention of the mature GFP. We demonstrate this technology with four recombinant proteins (phytase, laccase, ß-casein and ß-lactoglobulin) and show that the biosensor directly reports protein production levels that correlate with traditional assays. Our results confirm that the split GFP biosensor can be used for facile, generic, and rapid screening of P. pastoris clones to identify those with the highest production levels.
Assuntos
Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismoRESUMO
Recombinant type III collagen plays an important role in cosmetics, wound healing, and tissue engineering. Thus, increasing its production is necessary. After an initial increase in output by modifying the signal peptide, we showed that adding 1% maltose directly to the medium increased the yield and reduced the degradation of recombinant type III collagen. We initially verified that Pichia pastoris GS115 can metabolize and utilize maltose. Interestingly, maltose metabolism-associated proteins in Pichia pastoris GS115 have not yet been identified. RNA sequencing and transmission electron microscopy were performed to clarify the specific mechanism of maltose influence. The results showed that maltose significantly improved the metabolism of methanol, thiamine, riboflavin, arginine, and proline. After adding maltose, the cell microstructures tended more toward the normal. Adding maltose also contributed to yeast homeostasis and methanol tolerance. Finally, adding maltose resulted in the downregulation of aspartic protease YPS1 and a decrease in yeast mortality, thereby slowing down recombinant type III collagen degradation. KEY POINTS: ⢠Co-feeding of maltose improves recombinant type III collagen production. ⢠Maltose incorporation enhances methanol metabolism and antioxidant capacity. ⢠Maltose addition contributes to Pichia pastoris GS115 homeostasis.
Assuntos
Colágeno Tipo III , Proteínas de Saccharomyces cerevisiae , Proteínas Recombinantes/metabolismo , Colágeno Tipo III/química , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Maltose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sinais Direcionadores de Proteínas/genética , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Membrane proteins (MPs) play vital roles across various cellular functions, biological processes, physiological signaling pathways, and human-related disorders. Considering the clinical relevance of MPs and their application as therapeutic targets, it is crucial to explore highly effective production platforms and purification approaches to ultimately obtain a high-resolution structure of the target. Therefore, it would be possible to gather detailed knowledge on their mechanism of action which will be the basis for the rational design of novel and stronger drugs. Unfortunately, when compared to their soluble counterparts, 3D structures of MPs are really scarce (<2%), mainly due to poorly natural abundance, challenges associated with protein solubility and stability, and difficulties in producing bioactive and properly structural folded targets. These drawbacks could significantly impair the use of MPs as therapeutic targeting and demand efforts to develop tailor-made strategies for their appropriate handling. Therefore, this chapter is focused on describing a detailed and high-throughput procedure for the biosynthesis of MPs using Komagataella pastoris cell cultures as expression system in a mini-bioreactor platform. Additionally, insights on a purification strategy that combines immobilized-metal affinity and ion-exchange chromatography are described to further obtain the target protein with a significant degree of purity.
Assuntos
Proteínas de Membrana , Saccharomycetales , Humanos , Proteínas de Membrana/metabolismo , Pichia/metabolismo , Reatores Biológicos , Proteínas Recombinantes/metabolismoRESUMO
Catalase, which catalyzes the decomposition of H2O2 to H2O and O2, is widely used to reduce H2O2 in industrial applications, such as in food processing, textile dyeing and wastewater treatment. In this study, the catalase (KatA) from Bacillus subtilis was cloned and expressed in the yeast Pichia pastoris X-33. The effect of the promoter in the expression plasmid on the activity level of the secreted KatA protein was also studied. First, the gene encoding KatA was cloned and inserted into a plasmid containing an inducible alcohol oxidase 1 promoter (pAOX1) or a constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP). The recombinant plasmids were validated by colony PCR and sequencing and then linearized and transformed into the yeast P. pastoris X-33 for expression. With the promoter pAOX1, the maximum yield of KatA in the culture medium reached 338.8 ± 9.6 U/mL in 2 days of shake flask cultivation, which was approximately 2.1-fold greater than the maximum yield obtained with the promoter pGAP. The expressed KatA was then purified from the culture medium by anion exchange chromatography, and its specific activity was determined to be 14826.58 U/mg. Finally, the purified KatA exhibited optimum activity at 25 °C and pH 11.0. Its Km for hydrogen peroxide was 10.9 ± 0.5 mM, and its kcat/Km was 5788.1 ± 25.6 s-1 mM-1. Through the work presented in this article, we have therefore demonstrated efficient expression and purification of KatA in P. pastoris, which might be advantageous for scaling up the production of KatA for use in a variety of biotechnological applications.