Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.407
Filtrar
1.
Vet Parasitol Reg Stud Reports ; 39: 100838, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36878623

RESUMO

The southern cattle tick (Rhipicephalus microplus) represents one of the ectoparasites with the greatest distribution worldwide. Infestations by this arthropod can cause a decrease in the production of meat and milk, as well as anaemia and the transmission of bacterial and parasitic agents. For this reason, several active molecules have been developed to control these arthropods. A widely used group of ixodicides are pyrethroids, especially cypermethrin, which have knockdown effects on ticks. Resistance to cypermethrin has been reported in ticks since the 2000s; it was registered for the first time in Mexico in 2009. Even though multiple studies have evaluated resistance with conventional tests, there are few studies in Mexico that have identified the presence of single nucleotide polymorphisms (SNPs) associated with resistance. Hence, the aim of this work was to monitor three mutations associated with resistance in the sodium/chlorine channel in eight populations of ticks from northern Veracruz. Engorged adult females were collected from which genomic DNA was extracted. Subsequently, three mutations in domains II and III of para­sodium channel gene were detected by conventional PCR and sequencing. Global alignments were done with the reference sequences deposited in GenBank. A total of 116 engorged females were analysed, of which 10 tested positive for G184C and C190A of domain II of the para­sodium channel gene. T2134A was present in domain III in a single production unit. This is the first work where molecular monitoring of cypermethrin resistance has been carried out in the northern zone of the state of Veracruz.


Assuntos
Artrópodes , Piretrinas , Rhipicephalus , Animais , Feminino , Rhipicephalus/genética , México , Mutação , Piretrinas/farmacologia
2.
Malar J ; 22(1): 94, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915131

RESUMO

BACKGROUND: Insecticide resistance in malaria vectors can be spatially highly heterogeneous, yet population structure analyses frequently find relatively high levels of gene flow among mosquito populations. Few studies have contemporaneously assessed phenotypic, genotypic and population structure analysis on mosquito populations and none at fine geographical scales. In this study, genetic diversity, population structure, and insecticide resistance profiles of Anopheles funestus and Anopheles arabiensis were examined across mosquito populations from and within neighbouring villages. METHODS: Mosquitoes were collected from 11 towns in southern Mozambique, as well as from different neighbourhoods within the town of Palmeira, during the peak malaria transmission season in 2016. CDC bottle bioassay and PCR assays were performed with Anopheles mosquitoes at each site to determine phenotypic and molecular insecticide resistance profiles, respectively. Microsatellite analysis was conducted on a subsample of mosquitoes to estimate genetic diversity and population structure. RESULTS: Phenotypic insecticide resistance to deltamethrin was observed in An. funestus sensu stricto (s.s.) throughout the area, though a high level of mortality variation was seen. However, 98% of An. funestus s.s. were CYP6P9a homozygous resistant. An. arabiensis was phenotypically susceptible to deltamethrin and 99% were kdr homozygous susceptible. Both Anopheles species exhibited high allelic richness and heterozygosity. Significant deviations from Hardy-Weinberg equilibrium were observed, and high linkage disequilibrium was seen for An. funestus s.s., supporting population subdivision. However, the FST values were low for both anophelines (- 0.00457 to 0.04213), Nm values were high (9.4-71.8 migrants per generation), AMOVA results showed almost 100% genetic variation among and within individuals, and Structure analysis showed no clustering of An. funestus s.s. and An. arabiensis populations. These results suggest high gene flow among mosquito populations. CONCLUSION: Despite a relatively high level of phenotypic variation in the An. funestus population, molecular analysis shows the population is admixed. These data indicate that CYP6P9a resistance markers do not capture all phenotypic variation in the area, but also that resistance genes of high impact are likely to easily spread in the area. Conversely, other strategies, such as transgenic mosquito release programmes will likely not face challenges in this locality.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Humanos , Animais , Inseticidas/farmacologia , Anopheles/genética , Moçambique , Mosquitos Vetores/genética , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Malária/epidemiologia
3.
Malar J ; 22(1): 36, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726160

RESUMO

BACKGROUND: Due to the rapid expansion of pyrethroid-resistance in malaria vectors in Africa, Global Plan for Insecticide Resistance Management (GPIRM) has recommended the development of long-lasting insecticidal nets (LLINs), containing insecticide mixtures of active ingredients with different modes of action to mitigate resistance and improve LLIN efficacy. This good laboratory practice (GLP) study evaluated the efficacy of the chlorfenapyr and deltamethrin-coated PermaNet® Dual, in comparison with the deltamethrin and synergist piperonyl butoxide (PBO)-treated PermaNet® 3.0 and the deltamethrin-coated PermaNet® 2.0, against wild free-flying pyrethroid-resistant Anopheles gambiae sensu lato (s.l.), in experimental huts in Tiassalé, Côte d'Ivoire (West Africa). METHODS: PermaNet® Dual, PermaNet® 3.0 and PermaNet® 2.0, unwashed and washed (20 washes), were tested against free-flying pyrethroid-resistant An. gambiae s.l. in the experimental huts in Tiassalé, Côte d'Ivoire from March to August 2020. Complementary laboratory cone bioassays (daytime and 3-min exposure) and tunnel tests (nightly and 15-h exposure) were performed against pyrethroid-susceptible An. gambiae sensu stricto (s.s.) (Kisumu strain) and pyrethroid-resistant An. gambiae s.l. (Tiassalé strain). RESULTS: PermaNet® Dual demonstrated significantly improved efficacy, compared to PermaNet® 3.0 and PermaNet® 2.0, against the pyrethroid-resistant An. gambiae s.l. Indeed, the experimental hut trial data showed that the mortality and blood-feeding inhibition in the wild pyrethroid-resistant An. gambiae s.l. were overall significantly higher with PermaNet® Dual compared with PermaNet® 3.0 and PermaNet® 2.0, for both unwashed and washed samples. The mortality with unwashed and washed samples were 93.6 ± 0.2% and 83.2 ± 0.9% for PermaNet® Dual, 37.5 ± 2.9% and 14.4 ± 3.9% for PermaNet® 3.0, and 7.4 ± 5.1% and 11.7 ± 3.4% for PermaNet® 2.0, respectively. Moreover, unwashed and washed samples produced the respective percentage blood-feeding inhibition of 41.4 ± 6.9% and 43.7 ± 4.8% with PermaNet® Dual, 51.0 ± 5.7% and 9.8 ± 3.6% with PermaNet® 3.0, and 12.8 ± 4.3% and - 13.0 ± 3.6% with PermaNet® 2.0. Overall, PermaNet® Dual also induced higher or similar deterrence, exophily and personal protection when compared with the standard PermaNet® 3.0 and PermaNet® 2.0 reference nets, with both unwashed and washed net samples. In contrast to cone bioassays, tunnel tests predicted the efficacy of PermaNet® Dual seen in the current experimental hut trial. CONCLUSION: The deltamethrin-chlorfenapyr-coated PermaNet® Dual induced a high efficacy and performed better than the deltamethrin-PBO PermaNet® 3.0 and the deltamethrin-only PermaNet® 2.0, testing both unwashed and 20 times washed samples against the pyrethroid-susceptible and resistant strains of An. gambiae s.l. The inclusion of chlorfenapyr with deltamethrin in PermaNet® Dual net greatly improved protection and control of pyrethroid-resistant An. gambiae populations. PermaNet® Dual thus represents a promising tool, with a high potential to reduce malaria transmission and provide community protection in areas compromised by mosquito vector resistance to pyrethroids.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Humanos , Anopheles/fisiologia , Côte d'Ivoire , Controle de Mosquitos , Piretrinas/farmacologia , Inseticidas/farmacologia , Resistência a Inseticidas , Malária/prevenção & controle
4.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835548

RESUMO

As a proxy for pollutants that may be simultaneously present in urban wastewater streams, the effects of two microplastics-polystyrene (PS; 10, 80 and 230 µm diameter) and polymethylmethacrylate (PMMA; 10 and 50 µm diameter)-on fertilisation and embryogenesis in the sea urchin Arbacia lixula with co-exposure to the pyrethroid insecticide cypermethrin were investigated. Synergistic or additive effects were not seen for plastic microparticles (50 mg L-1) in combination with cypermethrin (10 and 1000 µg L-1) based on evaluation of skeletal abnormalities or arrested development and death of significant numbers of larvae during the embryotoxicity assay. This behaviour was also apparent for male gametes pretreated with PS and PMMA microplastics and cypermethrin, where a reduction in sperm fertilisation ability was not evidenced. However, a modest reduction in the quality of the offspring was noted, suggesting that there may be some transmissible damage to the zygotes. PMMA microparticles were more readily taken up than PS microparticles, which could suggest surface chemical identity as potentially modulating the affinity of larvae for specific plastics. In contrast, significantly reduced toxicity was noted for the combination of PMMA microparticles and cypermethrin (100 µg L-1), and may be related to less ready desorption of the pyrethroid than PS, as well as cypermethrin activating mechanisms that result in reduced feeding and hence decreased ingestion of microparticles.


Assuntos
Arbacia , Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Masculino , Microplásticos/toxicidade , Plásticos , Inseticidas/farmacologia , Polímeros/farmacologia , Polimetil Metacrilato/farmacologia , Poluentes Químicos da Água/toxicidade , Sêmen , Ouriços-do-Mar , Desenvolvimento Embrionário , Piretrinas/farmacologia
5.
Parasit Vectors ; 16(1): 57, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747269

RESUMO

BACKGROUND: Head louse infestation is an important public health problem, and expanding resistance to permethrin is a major challenge to its control. The mapping and detection of pyrethroid resistance are essential to the development of appropriate treatments and ensure the effectiveness of current measures. The aim of this study was to present the phenotypic and genotypic basis of permethrin resistance and identify knockdown resistance (kdr) mutations in head louse populations in northwestern Iran. METHODS: Adult head lice were collected from 1059 infested girls in Ardebil, East Azerbaijan, West Azerbaijan and Zanjan Provinces, northwestern Iran. The toxicity of permethrin and the possible synergistic effect of piperonyl butoxide (PBO) on this toxicity were assessed using bioassays. Fragments of voltage-sensitive sodium channels (vssc) and cytochrome b (cytb) genes were amplified and analyzed for the detection of knockdown resistance (kdr) mutations and mitochondrial groups. Moreover, genotypes of the two hot spot regions of the vssc gene were determined by melting curve analysis of amplicons. RESULTS: A total of 1450 adult head lice were collected during 2016-2021. Live lice were exposed to a dose of 1% permethrin for 12 h, and the median lethal time (LT50) and time to achieve 90% mortality (LT90) were determined to be 6 and 14.8 h, respectively. Topical application of 2 and 16 ng permethrin per louse resulted in 25% and 42.11% mortality, respectively. Pre-exposure of samples to 3% piperonyl butoxide had no synergistic effect on the effects of permethrin. Analysis of the 774-bp vssc gene fragment showed the presence of the M815I, T917I and L920F mutations, wild-type and T917I mutation, in 91.6%, 4.2% and 4.2% of samples, respectively. Investigation of the mitochondrial cytb gene demonstrated the predominance of clade B. The frequency of domain II segment 4 (S4)-S5 kdr genotypes in mitochondrial groups was identical, and heterozygotes were present in 93.5% of samples. A significant difference was detected in the frequency of domain IIS1-S3 kdr genotypes, and the frequency of resistant alleles and heterozygotes was higher in clade B than in clade A. CONCLUSIONS: The presence of kdr mutations in the vssc gene and the non-synergist effect of PBO indicate that pyrethroid target site insensitivity is the main resistance mechanism. This phenomenon and the high frequency of resistant alleles necessitate that new pediculosis management programs be developed. Further studies need to be conducted to identify all factors contributing this resistance and to develop alternative pediculicides.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Piretrinas , Animais , Adulto , Feminino , Humanos , Permetrina/farmacologia , Pediculus/genética , Alelos , Butóxido de Piperonila/farmacologia , Irã (Geográfico) , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Inseticidas/farmacologia
6.
Am J Trop Med Hyg ; 108(3): 609-618, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746656

RESUMO

The extensive use of chemical insecticides for public health and agricultural purposes has increased the occurrence and development of insecticide resistance. This study used transcriptome sequencing to screen 10 upregulated metabolic detoxification enzyme genes from Aedes albopictus resistant strains. Of these, CYP6A14 and CYP6N6 were found to be substantially overexpressed in the deltamethrin-induced expression test, indicating their role in deltamethrin resistance in Ae. albopictus. Furthermore, the corresponding 60-kDa recombinant proteins, CYP6A14 and CYP6N6, were successfully expressed using the Escherichia coli expression system. Enzyme activity studies revealed that CYP6A14 (5.84 U/L) and CYP6N6 (6.3 U/L) have cytochrome P450 (CYP450) enzyme activity. In vitro, the metabolic analysis revealed that the recombinant proteins degraded deltamethrin into 1-oleoyl-sn-glycero-3-phosphoethanolamine and 2',2'-dibromo-2'-deoxyguanosine. Subsequently, the CYP450 genes in larvae of Ae. albopictus were silenced by RNA interference technology to study deltamethrin resistance in vivo. The silencing of CYP6A14 and CYP6N6 increased the mortality rate of mosquitoes without affecting their survival time, spawning quantity, hatching rate, and other normal life activities. Altogether, CYP6A14 and CYP6N6 belong to the CYP6 family and mutually increase deltamethrin resistance in Ae. albopictus.


Assuntos
Aedes , Inseticidas , Piretrinas , Humanos , Animais , Aedes/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Nitrilas/farmacologia , Resistência a Inseticidas
7.
Sci Rep ; 13(1): 2363, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759650

RESUMO

New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Resistência a Inseticidas/genética , Malária/prevenção & controle , Mosquitos Vetores/genética , República Democrática do Congo , Piretrinas/farmacologia , Controle de Mosquitos
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769219

RESUMO

Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.


Assuntos
Inseticidas , Microbiota , Piretrinas , Permetrina/farmacologia , Inseticidas/farmacologia , Solo/química , Piretrinas/farmacologia , Plantas , Bactérias , Fungos , Microbiologia do Solo , Rizosfera
9.
Ecotoxicol Environ Saf ; 251: 114547, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680990

RESUMO

Cypermethrin (CYP), a synthetic type II pyrethroid pesticide, is extensively used to control pests in industrial, domestic, and agricultural environments. However, its indiscriminate use leads to a potential threat to aquatic organisms. Although several reports focussed on developmental toxicity effects, a concise study combining cardiotoxicity along with Na+/K+-ATPase activity and molecular docking of developmental proteins with CYP was lacking. This present study was designed to address this gap to comprehend the impact of CYP exposure (0, 25, 100 and 200 µg/L) on embryonic zebrafish. As a result, CYP delayed the hatching rate, reduced heart rate, increased mortality rate and induced numerous morphological abnormalities. Subsequently, CYP induced oxidative stress in treated zebrafish embryos with the concomitant increase in antioxidant enzymes (SOD and CAT) and malondialdehyde production. In addition, an alteration in AChE, NO content and Na+/K+-ATPase activity was observed, suggesting a disruption in cardiac development and ion regulation. Furthermore, AO staining showed notable apoptotic cells which are supported by alteration in apoptosis-related gene expressions. Moreover, to explore the putative targets of CYP, computational docking with developmental proteins (WNT3A, WNT8A, GATA-4, Nkx 2-5 and ZHE1) showed strong interactions and binding. Taken together, our findings provide a better understanding of assessing the ecotoxicological risk information and the mode of action underlying the development of teleost fishes following CYP exposure. Meanwhile, the pioneering nature of this study is to emphasize the future use of Na+/K+-ATPase activity as a potential toxicity biomarker and in silico molecular docking studies to complement developmental toxicity findings.


Assuntos
Piretrinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular , Piretrinas/farmacologia , Estresse Oxidativo , Adenosina Trifosfatases/metabolismo , Embrião não Mamífero
10.
J Agric Food Chem ; 71(6): 2734-2744, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701428

RESUMO

The effectiveness of pyrethroid insecticides is seriously threatened by knockdown resistance (kdr), which is induced in insects by inherited single-nucleotide polymorphisms in the voltage-gated sodium channel (VGSC) gene. VGSC's L1014F substitution results in the classic kdr mutation, which is found in many pest species. Other substitutions of the L1014 locus, such as L1014S, L1014C, L1014W, and L1014H, were also reported. In 2022, a new amino acid substitute L1014S of Blattella germanica was first discovered in China. We modified the BgNav1-1 sodium channel from cockroaches with the L1014S mutation to study how pyrethroid sensitivity and channel gating were affected in Xenopus oocytes. The L1014S mutation reduced the half-maximal activation voltage (V1/2,act) from -19.0 (wild type) to -15.5 mV while maintaining the voltage dependency of activation. Moreover, the voltage dependence of inactivation in the hyperpolarizing shifts from -48.3 (wild type) to -50.9 mV. However, compared with wild type, the mutation L1014S did not cause a significant shift in the half activation voltage (V1/2,act). Notably, the voltage dependency of activation was unaffected greatly by the L1014S mutation. Tail currents are induced by two types of pyrethroids (1 µM): type I (permethrin, bifenthrin) and type II (deltamethrin, λ-cyhalothrin). All four pyrethroids produced tail currents, and significant differences were found in the percentages of channel modifications between variants and wild types. Further computer modeling showed that the L1014S mutation allosterically modifies pyrethroid binding and action on B. germanica VGSC, with some residues playing a critical role in pyrethroid binding. This study elucidated the pyrethroid resistance mechanism of B. germanica and predicted the residues that may confer the risk of pyrethroid resistance, providing a molecular basis for understanding the resistance mechanisms conferred by mutations at the 1014 site in VGSC.


Assuntos
Blattellidae , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Blattellidae/genética , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Mutação
11.
J Agric Food Chem ; 71(3): 1360-1368, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36622209

RESUMO

Chemosensory proteins (CSPs) are a type of efficient transporters that can bind various hydrophobic compounds. Previous research has shown that the expression levels of some insect CSPs were significantly increased after insecticide treatment. However, the role of CSPs in response to insecticide challenge is unclear. Conopomorpha sinensis is the most destructive borer pest of litchi (Litchi chinensis) and longan (Euphoria longan) in the Asia-Pacific region. Here, we studied the expression patterns and potential functions of 12 CSP genes (CsCSPs) from C. sinensis in response to λ-cyhalothrin exposure. The spatiotemporal distribution of CsCSPs suggested that they were predominantly expressed in the female abdomen, female legs, and male legs. The expression levels of CsCSPs were affected in a time-dependent manner after λ-cyhalothrin treatment in both sexes of C. sinensis adults. Compared to the control group, the expression levels of CsCSP1, CsCSP2, CsCSP9, and CsCSP12 in females were significantly increased by 2-4 times, while only one CsCSP, three CsCSPs, and two CsCSPs were significantly upregulated in males at three time points post-treatment. The sex-biased variance of CSP expression may be related to sex-specific detoxification enzymatic activities and survival rates of C. sinensis in response to insecticide challenge. Homology modeling and molecular docking analyses showed that the binding energy value of CsCSP1-12 to λ-cyhalothrin was negative and the binding energy between CsCSP9 and λ-cyhalothrin was the lowest (-11.35 kJ/mol). Combined with expression alterations of CsCSP1-12, the results indicate that CsCSP1, CsCSP2, CsCSP9, and CsCSP12 were involved in binding and ferrying of λ-cyhalothrin in C. sinensis.


Assuntos
Inseticidas , Lepidópteros , Piretrinas , Feminino , Masculino , Animais , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Piretrinas/farmacologia , Nitrilas/farmacologia
12.
Malar J ; 22(1): 30, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707886

RESUMO

BACKGROUND: Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS: A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION: This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Butóxido de Piperonila , Piretrinas , Animais , Humanos , Côte d'Ivoire , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Estudos Prospectivos , Piretrinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
13.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670470

RESUMO

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Inseticidas/farmacologia , Mosquitos Vetores , Saúde Pública , Teorema de Bayes , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Resistência a Inseticidas , Bioensaio , Organização Mundial da Saúde
14.
Lancet ; 401(10375): 435-446, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36706778

RESUMO

BACKGROUND: New classes of long-lasting insecticidal nets (LLINs) combining mixtures of insecticides with different modes of action could put malaria control back on track after rebounds in transmission across sub-Saharan Africa. We evaluated the relative efficacy of pyriproxyfen-pyrethroid LLINs and chlorfenapyr-pyrethroid LLINs compared with standard LLINs against malaria transmission in an area of high pyrethroid resistance in Benin. METHODS: We conducted a cluster-randomised, superiority trial in Zou Department, Benin. Clusters were villages or groups of villages with a minimum of 100 houses. We used restricted randomisation to randomly assign 60 clusters to one of three LLIN groups (1:1:1): to receive nets containing either pyriproxyfen and alpha-cypermethrin (pyrethroid), chlorfenapyr and alpha-cypermethrin, or alpha-cypermethrin only (reference). Households received one LLIN for every two people. The field team, laboratory staff, analyses team, and community members were masked to the group allocation. The primary outcome was malaria case incidence measured over 2 years after net distribution in a cohort of children aged 6 months-10 years, in the intention-to-treat population. This study is ongoing and is registered with ClinicalTrials.gov, NCT03931473. FINDINGS: Between May 23 and June 24, 2019, 53 854 households and 216 289 inhabitants were accounted for in the initial census and included in the study. Between March 19 and 22, 2020, 115 323 LLINs were distributed to 54 030 households in an updated census. A cross-sectional survey showed that study LLIN usage was highest at 9 months after distribution (5532 [76·8%] of 7206 participants), but decreased by 24 months (4032 [60·6%] of 6654). Mean malaria incidence over 2 years after LLIN distribution was 1·03 cases per child-year (95% CI 0·96-1·09) in the pyrethroid-only LLIN reference group, 0·84 cases per child-year (0·78-0·90) in the pyriproxyfen-pyrethroid LLIN group (hazard ratio [HR] 0·86, 95% CI 0·65-1·14; p=0·28), and 0·56 cases per child-year (0·51-0·61) in the chlorfenapyr-pyrethroid LLIN group (HR 0·54, 95% CI 0·42-0·70; p<0·0001). INTERPRETATION: Over 2 years, chlorfenapyr-pyrethroid LLINs provided greater protection from malaria than pyrethroid-only LLINs in an area with pyrethroid-resistant mosquitoes. Pyriproxyfen-pyrethroid LLINs conferred protection similar to pyrethroid-only LLINs. These findings provide crucial second-trial evidence to enable WHO to make policy recommendations on these new LLIN classes. This study confirms the importance of chlorfenapyr as an LLIN treatment to control malaria in areas with pyrethroid-resistant vectors. However, an arsenal of new active ingredients is required for successful long-term resistance management, and additional innovations, including pyriproxyfen, need to be further investigated for effective vector control strategies. FUNDING: UNITAID, The Global Fund.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Humanos , Benin/epidemiologia , Estudos Transversais , Piretrinas/farmacologia , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos
15.
Ecotoxicol Environ Saf ; 252: 114579, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706527

RESUMO

Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), ß-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in ß-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and ß-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and ß-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.


Assuntos
Aedes , Inseticidas , Microbiota , Piretrinas , Animais , Inseticidas/farmacologia , Permetrina/toxicidade , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas/genética
16.
Am J Trop Med Hyg ; 108(2): 424-427, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535248

RESUMO

Anopheles darlingi is the main vector of malaria in South America. In French Guiana, malaria transmission occurs inland and along the rivers with a regular reemergence in the lower Oyapock area. Control against malaria vectors includes indoor residual spraying of deltamethrin and the distribution of long-lasting impregnated bednets. In this context, the level of resistance to pyrethroids was monitored for 4 years using CDC bottle tests in An. darlingi populations. A loss of susceptibility to pyrethroids was recorded with 30-minute knock-down measured as low as 81%. However, no pyrethroid molecular resistance was found by sequencing a 170 base pair fragment of the S6 segment of domain II of the voltage-gated sodium channel gene. Fluctuation of resistance phenotypes may be influenced by the reintroduction of susceptible alleles from sylvatic populations or by other mechanisms of metabolic resistance.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Guiana Francesa , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Malária/prevenção & controle , Piretrinas/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos
17.
Insect Sci ; 29(3): 817-826, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34547832

RESUMO

Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Mutations in sodium channel confer knockdown resistance (kdr) to pyrethroids in various arthropod pests. Haedoxan A (HA) is the major insecticidal component from Phryma leptostachya. It has been shown that HA alters electrical responses at the Drosophila neuromuscular junction and modifies the gating properties of cockroach sodium channels expressed in Xenopus oocytes. However, whether sodium channel mutations that confer pyrethroid resistance also affect the action of HA is unknown. In this study, we conducted bioassays using HA and permethrin in two Drosophila melanogaster strains: w1118 , an insecticide-susceptible strain, and parats1 , a pyrethroid-resistant strain due to a I265N mutation in the sodium channel, and identified a new case of negative cross-resistance (NCR) between permethrin and HA. Both parats1 larvae and adults were more resistant to permethrin, as expected. However, both parats1 larvae and adults were more sensitive to HA compared to w1118 . We confirmed that the I265N mutation reduced the sensitivity to permethrin of a Drosophila sodium channel variant, DmNav 22, expressed in Xenopus oocytes. Interestingly, the I265N mutation also abolished the effect of HA on sodium channels. Further characterization showed that I265 on the sodium channels is critical for the action of both pyrethroids and HA on sodium channels, pointing to an overlapping mode of action between pyrethroids and HA on the sodium channel. Overall, our results suggest an I265N-independnt mechanism(s) in parats1 flies that is responsible for the NCR between permethrin and HA at the whole insect level.


Assuntos
Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Benzodioxóis , Drosophila , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Lignanas , Mutação , Permetrina/farmacologia , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética
18.
Parasit Vectors ; 15(1): 488, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572943

RESUMO

BACKGROUND: Widespread vector control has been essential in reducing the global incidence and prevalence of malaria, despite now stalled progress. Long-lasting insecticide-treated nets (LLINs) have historically been, and remain, one of the most commonly used vector control tools in the campaign against malaria. LLINs are effective only with proper use, adherence, retention and community adoption, which historically have relied on the successful control of secondary pests, including bed bugs. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities and failure to control infestations have been suggested to interfere with the effective use of LLINs. Therefore, the behavioral interactions of bed bugs with commonly used bed nets should be better understood. METHODS: To investigate the interactions between bed bugs (Cimex lectularius L.) and LLINs, insecticide-susceptible and pyrethroid-resistant bed bugs were challenged to pass through two commonly used LLINs in two behavioral assays, namely host (blood meal)-seeking and aggregation-seeking assays. The proportions blood-fed and aggregated bed bugs, aggregation time and mortality were quantified and analyzed in different bed bug life stages. RESULTS: Overall, both the insecticide-susceptible bed bugs and highly resistant bed bugs showed a varying ability to pass through LLINs based on treatment status and net design. Deltamethrin-treated nets significantly impeded both feeding and aggregation by the susceptible bed bugs. While none of the tested LLINs significantly impeded feeding (passage of unfed bed bugs through the nets) of the pyrethroid-resistant bed bugs, the untreated bed net, which has small mesh holes, impeded passage of fed bed bugs. Mortality was only seen in the susceptible bed bugs, with significantly higher mortality on deltamethrin-treated nets (63.5 ± 10.7%) than on permethrin-treated nets (2.0 ± 0.9%). CONCLUSIONS: Commonly used new LLINs failed to prevent the passage of susceptible and pyrethroid-resistant bed bugs in host- and aggregation-seeking bioassays. The overall low and variable mortality observed in susceptible bed bugs during both assays highlighted the potential of LLINs to impose strong selection pressure for the evolution of pyrethroid resistance. Already, the failure to control bed bug infestations has been implicated as a contributing factor to the abandonment or misuse of LLINs. For the first time to our knowledge, we have shown the potential of LLINs in selecting for resistant secondary pest populations and so their potential role in stalling malaria control programs should be further investigated. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities may interfere with the effective use of pyrethroid-impregnated bed nets. We assessed the interactions of two bed bug strains with commonly used bed nets using two behavioral assays, namely host (blood meal)-seeking by unfed bed bugs and aggregation-seeking by freshly fed bed bugs. These assays assessed the passage of bed bugs through various bed nets in response to host cues and aggregation stimuli, respectively. Conditioned paper is a section of file folder paper that has been exposed to bed bugs and has been impregnated with feces and aggregation pheromone; it is attractive to aggregation-seeking fed bed bugs. An unconditioned ramp is a similar section of file folder paper that allows bed bugs to traverse the bed net and gain access to a blood-meal source.


Assuntos
Anopheles , Percevejos-de-Cama , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Humanos , Inseticidas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos , Anopheles/fisiologia , Mosquitos Vetores , Piretrinas/farmacologia
19.
Parasit Vectors ; 15(1): 476, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539831

RESUMO

BACKGROUND: Insecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. METHODS: We compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose-response against deltamethrin (DM) using the DM-resistant Aedes aegypti strain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose-response curve and assess variation around model predictions. In addition, 10 replicates of 20-25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. RESULTS: The topical application bioassay exhibited the lowest amount of variation in the dose-response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. CONCLUSION: These data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Estados Unidos , Inseticidas/farmacologia , Mosquitos Vetores , Resistência a Inseticidas , Bioensaio/métodos , Centers for Disease Control and Prevention, U.S. , Organização Mundial da Saúde , Piretrinas/farmacologia
20.
PLoS Negl Trop Dis ; 16(12): e0010935, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36512510

RESUMO

Aedes mosquito vectors transmit many viruses of global health concern, including dengue, chikungunya and Zika. These vector-borne viral diseases have a limited number of treatment options, and vaccines vary in their effectiveness. Consequently, integrated vector management is a primary strategy for disease control. However, the increasing emergence and spread of insecticide resistance is threatening the efficacy of vector control methods. Identifying mutations associated with resistance in vector populations is important to monitor the occurrence and evolution of insecticide resistance and inform control strategies. Rapid and cost-effective genome sequencing approaches are urgently needed. Here we present an adaptable targeted amplicon approach for cost-effective implementation within next generation sequencing platforms. This approach can identify single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) in genes involved in insecticide resistance in Aedes aegypti mosquitoes. We designed and tested eleven amplicons, which included segments of the ace-1 (carbamate target), the Voltage-Gated Sodium Channel (vgsc; pyrethroids, DDT and organochlorines), and rdl (dieldrin) genes; thereby covering established knockdown resistance (kdr) mutations (e.g., S989P, I1011M/V, V1016G/I and F1534C), with the potential to identify novel ones. The amplicon assays were designed with internal barcodes, to facilitate multiplexing of large numbers of mosquitoes at low cost, and were sequenced using an Illumina platform. Our approach was evaluated on 152 Ae. aegypti mosquitoes collected in Cabo Verde, an archipelago with a history of arbovirus outbreaks. The amplicon sequence data revealed 146 SNPs, including four non-synonymous polymorphisms in the vgsc gene, one in ace-1 and the 296S rdl mutation previously associated with resistance to organochlorines. The 296S rdl mutation was identified in 98% of mosquitoes screened, consistent with the past use of an organochlorine compound (e.g., DDT). Overall, our work shows that targeted amplicon sequencing is a rapid, robust, and cost-effective tool that can be used to perform high throughput monitoring of insecticide resistance.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Infecção por Zika virus , Zika virus , Animais , Resistência a Inseticidas/genética , Aedes/genética , DDT , Cabo Verde , Inseticidas/farmacologia , Piretrinas/farmacologia , Mosquitos Vetores/genética , Canais de Sódio Disparados por Voltagem/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...