Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.905
Filtrar
1.
Food Chem ; 334: 127520, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693332

RESUMO

CaCl2, Ca2+ chelator (EGTA) and Ca2+ channel blocker (verapamil) were used to investigate mechanism of glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. CaCl2 treatment promoted sprout growth, reduced MDA (malonaldehyde) content and electrolyte leakage in sprouts under ZnSO4 stress. The highest MDA content and electrolyte leakage were obtained in ZnSO4 plus verapamil-treated sprouts. In addition, ZnSO4 plus CaCl2 treatment significantly enhanced glucoraphanin content and sulforaphane formation, while an opposite result was observed after ZnSO4 plus EGTA treatment; which were further supported by expression of glucoraphanin biosynthetic and hydrolytic genes as well as myrosinase (MYR) and epithiospecifier protein (ESP) activities. These results indicated that exogenous and endogenous calcium promoted glucoraphanin biosynthesis and the conversion rate of glucoraphanin into sulforaphane. Verapamil treatment also stimulated glucoraphanin biosynthesis, but exerted an adverse influence on sulforaphane formation from the hydrolysis of glucoraphanin because of much higher ESP expression and ESP activity than ZnSO4 treatment.


Assuntos
Brassica/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Glucosinolatos/metabolismo , Imidoésteres/metabolismo , Sulfato de Zinco/farmacologia , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Ácido Egtázico/farmacologia , Glicosídeo Hidrolases/metabolismo , Hidrólise , Isotiocianatos/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico
2.
Chemosphere ; 262: 127831, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32791367

RESUMO

The study was conducted to investigate the influence of the culture pattern on plant uptake and translocation of an organic chemical and the resultant acute response of plants, and to further reveal the interconnection. Plant exposure experiments were performed using a conventional rice seedling (Oryza sativa L. subsp. indica) under two kinds of culture patterns (viz., hydroponics and soil-based culture) with various culture matrices for a period of 7 days. The exposure concentration of lindane was ∼450 µg L-1 in the aqueous-phase matrices, and 200.1-756.0 µg kg-1 in the solid matrices. Lindane accumulation and its distribution in plant tissues were quantified, as well as the tissue biomass. The results showed the accumulation of lindane in all exposure groups were comparatively close over the period, confirming that the soil-bound lindane was scarcely available to plants. Similar trend of lindane uptake and translocation in seedlings was found among the groups under the same kind of cultivation pattern. In the hydroponic groups, lindane was mostly distributed in roots (about 60% at the end of exposure), whereas more lindane was translocated to shoots (approximate 70%) under the soil-based culture pattern. Allometric analysis demonstrated that the tissue part (root or shoot) with more lindane accumulation had a relatively higher growth rate over 7 days. Correspondingly, biomass allocation presented a slight trend of mutual proximity to lindane distribution. It was inferred that plants altered their allometric growth pattern to realize biomass re-allocation in response to the short-term lindane exposure, which could be considered as a plant defense strategy.


Assuntos
Hexaclorocicloexano/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Biomassa , Hidroponia , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Solo , Poluentes do Solo/análise
3.
Sci Total Environ ; 751: 141723, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32892078

RESUMO

Estuarine ecosystems are characterized by a wide physical-chemical variation that in the context of global change scenarios may be exacerbated in the future. The fitness of resident organisms is expected to be influenced by such variation and, hence, its study is a priority. Some of that variation relates to water vertical stratification, which may create "environmental refuges" or distinct layers of water with conditions favoring the fitness of some individuals and species. This study explored the performance of juvenile mussels (M. chilensis) settled in two distinctive water depths (1 m and 4 m) of the Reloncaví fjord (southern Chile) by conducting a reciprocal transplants experiment. Salinity, saturation state and the contents of CO3 in seawater were among the factors that best explained the differences between the two layers. In such environmental conditions, the mussel traits that responded to such variation were growth and calcification rates, with significantly higher values at 4 m deep, whereas the opposite, increased metabolic stress, was higher in mussels raised and transplanted to the surface waters (1 m). Such differences support the notion of an environmental refuge, where species like mussels can find better growth conditions and achieve higher performance levels. These results are relevant considering the importance of M. chilensis as a shellfish resource for aquaculture and a habitat forming species. In addition, these results shed light on the variable responses exhibited by estuarine organisms to small-scale changes in the characteristics of the water column, which in turn will help to better understand the responses of the organisms to the projected scenarios of climate global change.


Assuntos
Mytilus , Animais , Chile , Ecossistema , Humanos , Água do Mar , Plântula
4.
Chemosphere ; 262: 128384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182105

RESUMO

Arsenic (As) polluted food chain has become a serious issue for the growth and development of humans, animals and plants. Nitric oxide (NO) or silicon (Si) may mitigate As toxicity. However, the combined application of NO and Si in mitigating As uptake and phytotoxicity in Brassica juncea is unknown. Hence, the collegial effect of sodium nitroprusside (SNP), a NO donor and Si application on B. juncea growth, gas exchange parameters, antioxidant system and As uptake was examined in a greenhouse experiment. Arsenic toxicity injured cell membrane as signposted by the elevated level of malondialdehyde (MDA) and hydrogen peroxide (H2O2), thus decreasing the growth of stressed plants. Moreover, As stress negatively affected gas exchange parameters and antioxidative system of plants. However, NO or/and Si alleviated As induced oxidative stress through increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), along with thiol and proline synthesis. Furthermore, plants treated with co-application of NO and Si showed improved growth, gas attributes and decreased As uptake under As regimes. The current study highlights that NO and Si synergistically interact to mitigate detrimental effects of As stress through reducing As uptake. Our findings recommend combined NO and Si application in As spiked soils for improvement of plant growth and stress alleviation.


Assuntos
Arsênico/metabolismo , Mostardeira/fisiologia , Óxido Nítrico/química , Silício/química , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Arsênico/toxicidade , Ascorbato Peroxidases/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Mostardeira/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismo
5.
Chemosphere ; 262: 127826, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182120

RESUMO

The present manuscript investigates the roles of silicon nanoparticles (SiNPs) in ameliorating fluoride toxicity in the susceptible rice cultivar, IR-64. Fluoride toxicity reduced overall growth and yield by suppressing grain development. Fluoride stress alarmingly increased the accumulation of cobalt, which together with fluoride triggered electrolyte leakage, malondialdehyde, methylglyoxal and hydrogen peroxide accumulation and NADPH oxidase activity. The overall photosynthesis was compromised due to chlorosis and inhibited Hill activity. Nano-Si-priming efficiently ameliorated molecular injuries and restored yield by reducing fluoride bioaccumulation particularly in the grains. The level of non-enzymatic antioxidants like anthocyanins, flavonoids, phenolics and glutathione was stimulated upon SiNP-priming. Nano-Si-pulsing removed fluoride-mediated inhibition of glutathione synthesis by activating glutathione reductase. Glutathione was utilized to activate glyoxalases and associated enzymes like glutathione-S-transferase and glutathione peroxidase. Uptake of nutrients like silicon, potassium, zinc, copper, iron, nickel, manganese, selenium and vanadium improved seedling health even during prolonged fluoride stress. Nano-Si-pulsing produced a nanozymatic effect, since high level of crucial co-factors like copper, zinc and iron stimulated the activity of superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase, which synergistically with other enzymatic and non-enzymatic antioxidants scavenged reactive oxygen species and promoted fluoride tolerance. Overall, the study supported by statistical modelling using principal component analysis, t-distributed stochastic neighbour embedding and multidimensional scaling, established the potential of SiNP to promote safe rice cultivation and precision farming even in fluoride-infested environments.


Assuntos
Fluoretos/toxicidade , Oryza/fisiologia , Silício/química , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Ascorbato Peroxidases , Catalase , Glutationa/metabolismo , Glutationa Peroxidase , Peróxido de Hidrogênio/metabolismo , Malondialdeído , Oryza/efeitos dos fármacos , Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Superóxido Dismutase
6.
Phytochemistry ; 179: 112496, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33070076

RESUMO

Elicited soybean (Glycine max (L.) Merrill, Leguminosae) seedlings can produce prenylated isoflavonoids from different subclasses, namely pterocarpans (glyceollins), isoflavones and coumestans. These prenylated isoflavonoids serve as defence compounds and can possess antimicrobial activity. Recently, we showed that priming with reactive oxygen species (ROS) specifically stimulated the production of glyceollins in Rhizopus spp.-elicited soybean seedlings (ROS + R). In this study, we achieved diversification of the inducible subclasses of prenylated isoflavonoids in soybean, by additional stimulation of two prenylated isoflavones and one prenylated coumestan. This was achieved by using a combination of the relatively long-lived ROS representative, H2O2, with AgNO3 prior to microbial elicitation. Microbial elicitation was performed with a live preparation of either a phytopathogenic fungus, Rhizopus spp. or a symbiotic bacterium, Bacillus subtilis. B. subtilis induced 30% more prenylated isoflavones than Rhizopus spp. in (H2O2 + AgNO3)-treated seedlings, without significantly compromising the total levels of glyceollins, compared to (ROS + R)-treated seedlings. The most abundant prenylated isoflavone induced was 6-prenyl daidzein, which constituted 60% of the total isoflavones. The prenylated coumestan, phaseol, was also induced in the (H2O2 + AgNO3)-treated and microbially elicited seedlings. Based on previously developed quantitative structure-activity relationship (QSAR) models, 6-prenyl daidzein and phaseol were predicted to be promising antibacterials. Overall, we show that treatment with H2O2 and AgNO3 prior to microbial elicitation leads to the production of promising antibacterial isoflavonoids from different subclasses. Extracts rich in prenylated isoflavonoids may potentially be applied as natural antimicrobial agents.


Assuntos
Fabaceae , Isoflavonas , Antibacterianos/farmacologia , Peróxido de Hidrogênio , Isoflavonas/farmacologia , Plântula , Soja
7.
Mycorrhiza ; 30(6): 715-723, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33079241

RESUMO

Arbutus unedo (the strawberry tree) is a Mediterranean shrub which forms arbutoid mycorrhizae with a variety of Asco- and Basidiomycetes. After the discovery of the mycorrhizal symbiosis between A. unedo and Tuber borchii, in this study, arbutoid mycorrhizae were synthetized in greenhouse with Tuber aestivum and Tuber melanosporum. Six months after inoculation, both species colonized the roots of all inoculated A. unedo seedlings, but mature mycorrhizae were only observed after 12 months. Ultrastructure analysis of Tuber arbutoid mycorrhizae was described for the first time, showing, as observed in typical endosymbiosis, a rearrangement of host cells and the creation of an interface compartment with both truffle species. Immunolabelling experiments suggested that pectins are not present in the interface matrix surrounding the intracellular hyphae. Thus, the ability to establish symbiosis with A. unedo seems to be a common feature in the genus Tuber, opening up the possibility to use this plant for mycorrhization with valuable truffles. This could represent an important economic opportunity in Mediterranean areas by combining the production of truffles, edible fruits and valued honey.


Assuntos
Ascomicetos , Ericaceae , Micorrizas , Plântula , Simbiose
8.
J Environ Qual ; 49(5): 1359-1369, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016446

RESUMO

Cadmium concentrations in cacao (Theobroma cacao L.) beans from South America often exceed trade limits. Liming soil is advocated as a remediation option, but amendments cannot be incorporated into the entire root zone without harming the trees. An experiment was set up to identify how Cd uptake varies within the root zone when surface and subsurface soil layers are either limed or not. The experiment used 22-cm-height pots with top and bottom layers using surface and subsurface soil samples from a cacao field. The potted soils were either surface limed or not or fully limed and layers spiked with stable 108 Cd isotope in various combinations to trace the plant Cd provenance. The root distribution was neither affected by liming nor by soil source; 70% of the root biomass was present in the top layer. Plants grown on the fully limed surface soil had 1.7 times lower Cd concentrations in leaves than the unlimed treatments, whereas this concentration was 1.2 times lower when only the top layer was limed (surface soil used in both layers). The isotope dilution data showed that surface soil liming enhanced Cd uptake from the unlimed bottom layer compared with the unlimed soil, suggesting compensating mechanisms. The pots containing surface soil over subsurface soil also showed that compensating effect but, due to lower phytoavailable Cd in the subsurface soil, surface liming still effectively reduced foliar Cd. We conclude that liming might be a feasible mitigation strategy, but its effectiveness is limited when Cd phytoavailability remains untreated in the subsurface layer.


Assuntos
Cacau , Poluentes do Solo/análise , Cádmio/análise , Plântula/química , Solo
9.
BMC Ecol ; 20(1): 49, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867734

RESUMO

BACKGROUND: Vertebrate-mediated seed dispersal is probably the main long distance dispersal mode. Through endozoochory, large mammals act as mobile links between habitats within and among forest patches. Along with other factors, their feeding regimes do affect their contribution as dispersal vectors. We conducted a cross-species comparative experiment involving two herbivores, red deer and roe deer; and two opportunistic omnivores, wild boar and brown bear, all occurring in the forest and steppe-forest ecotone habitats of the south-eastern Caspian region. We compared their role as endozoochorous seed dispersal agents by monitoring seedling emergence in their dungs under greenhouse and natural conditions. RESULTS: In total, 3078 seedlings, corresponding to 136 plant taxa sprouted from 445 paired dung sub-samples, under greenhouse and natural conditions. Only 336 seedlings, corresponding to 36 plant taxa, emerged under natural conditions, among which five taxa did not appear under greenhouse conditions. Graminoids and forbs composed 91% of the seedlings in the greenhouse whereas shrubs were more abundant under natural conditions, representing 55% of the emerged seedlings. Under greenhouse conditions, first red deer and then wild boar dispersed more species than the other two mammals, while under natural conditions brown bear was the most effective vector. We observed remarkably higher species richness and seedling abundance per dung sub-sample under buffered greenhouse conditions than we did under natural conditions. CONCLUSIONS: The four sympatric mammals studied provided different seed dispersal services, both in terms of seedling abundance and species richness and may therefore be regarded as complementary. Our results highlight a positive bias when only considering germination under buffered greenhouse conditions. This must be taken into account when planning management options to benefit plant biodiversity based on the dispersal services concluded from greenhouse experiments.


Assuntos
Cervos , Dispersão de Sementes , Animais , Germinação , Herbivoria , Plântula , Sementes
10.
Pestic Biochem Physiol ; 170: 104681, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980063

RESUMO

Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.


Assuntos
Quitosana , Oryza/genética , Clorofila A , Regulação da Expressão Gênica de Plantas , Oligossacarídeos , Proteínas de Plantas/genética , Proteômica , Plântula/genética
11.
Plant Physiol ; 184(1): 4-5, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900970
12.
Mar Environ Res ; 160: 105012, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907731

RESUMO

Seagrasses are marine flowering plants that developed several adaptive traits for living in submerged waters. Among this group, Posidonia oceanica (L.) Delile is the dominant species of the Mediterranean Sea, forming persistent meadows that provide valuable ecosystem services to human communities. P. oceanica seedlings can anchor to rocky substrates through adhesive root hairs. Here we investigate, for the first time, the bioadhesion process in seagrasses. Seedlings were grown on substrates provided with different roughness in order to identify mechanisms involved in the adhesion process. Root anchorage strength was measured through a peel test and hair morphology at different micro-roughness was analysed by electron and fluorescence microscopy. Maximum anchorage strength was recorded at roughness levels between 3 and 26 µm, while on finer (0.3) and coarser (52, 162 µm) roughness attachment was weaker. No attachment was obtained on smooth surfaces. Accordingly, root hair tip morphology strongly responded to the substrate. Morphological adaptation of the root hairs to surface topography and mechanical interlocking into the micro-roughness of the substrate appear the main mechanisms responsible for bioadhesion in the system under study. Substrate roughness at the scale of microns and tens of microns is pivotal for P. oceanica seedling attachment to take place. These findings contribute to identification of features of optimal microsite for P. oceanica seedling settlement and to the development of novel approaches to seagrass restoration that take advantage of species' key life history traits.


Assuntos
Alismatales , Plântula , Adesivos , Alismatales/crescimento & desenvolvimento , Ecossistema , Mar Mediterrâneo
13.
PLoS One ; 15(9): e0239075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941470

RESUMO

Iron (Fe) deficiency is a common challenge in crop production. Screening and research of Fe-efficient cultivars could alleviate plant stress and increase crop yields in Fe-deficient soils. In the present study, we conducted two hydroponic culture experiments with a control (100 µmol/L Fe3+-EDTA) and low Fe treatment (10 µmol/L Fe3+-EDTA) to study the morphological and physiological mechanisms of response to low Fe stress in maize hybrids seedlings. In the first experiment, we investigated 32 major maize hybrids in Southwest China. We found that six of them, including Zhenghong 2 (ZH 2), were Fe-efficient. Fifteen other cultivars, such as Chuandan 418 (CD 418), were Fe-inefficient. In the second experiment, we investigated the Fe-efficient ZH 2 and Fe-inefficient CD 418 cultivars and found that low Fe stress resulted in significant decreases in root volume, root length, number of root tips, root surface area, and root dry weight, and increased root to shoot ratio, average root diameter, and Fe-dissolution ability per mass of roots in both maize cultivars. However, the increase in Fe-dissolution ability per mass of roots in ZH 2 was higher than that in CD 418, whereas for the other measurements, the low Fe stress-induced changes in ZH 2 were less pronounced than in CD 418. Therefore, under low Fe stress, the above-mentioned growth factors in ZH 2 were higher by 54.84%, 121.46%, 107.67%, 83.96%, 140.00%, and 18.16%, respectively, than those in CD 418. In addition, leaf area, chlorophyll content, net photosynthetic rate, soluble protein content, and Catalase (CAT) and Peroxidase (POD) activities in ZH 2 were higher by 274.95%, 113.95%, 223.60%, 56.04%, 17.01% and 21.13% than those in CD 418. Therefore, compared with the Fe-inefficient cultivar (CD 418), the Fe-efficient cultivar (ZH 2) had a more developed root system and greater Fe absorption capacity per mass of roots under low iron stress, promoted the efficient absorption of Fe, maintained a higher photosynthetic area and photosynthetic rate, thereby facilitating the accumulation of photosynthetic products. Moreover, higher soluble protein content and activities of CAT and POD permitted high osmotic regulation and scavenging ability, which is an important physiological mechanism for ZH 2 adaptation to low Fe stress.


Assuntos
Raízes de Plantas/fisiologia , Plântula/fisiologia , Zea mays/fisiologia , Ferro/metabolismo , Fotossíntese , Raízes de Plantas/anatomia & histologia , Plântula/anatomia & histologia , Estresse Fisiológico , Zea mays/anatomia & histologia
14.
Ecotoxicol Environ Saf ; 203: 111054, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888616

RESUMO

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid, QNC) is a highly selective auxin herbicide that is typically applied to paddy rice fields. Its residue is a serious problem in crop rotations. In this study, Oryza sativa L. seedlings was used as a model plant to explore its biochemical response to abiotic stress caused by QNC and nZVI coexposure, as well as the interactions between QNC and nZVI treatments. Exposure to 5 and 10 mg/L QNC reduced the fresh biomass by 26.6% and 33.9%, respectively, compared to the control. The presence of 50 and 250 mg/L nZVI alleviated the QNC toxicity, but the nZVI toxicity was aggravated by the coexist of QNC. Root length was enhanced upon exposure to low or medium doses of both QNC and nZVI, whereas root length was inhibited under high-dose coexposure. Both nZVI and QNC, either alone or in combination, significantly inhibited the biosynthesis of chlorophyll, and the inhibition rate increased with elevated nZVI and QNC concentration. It was indicated that nZVI or QNC can affect the plant photosynthesis, and there was a significant interaction between the two treatments. Effects of QNC on the antioxidant response of Oryza sativa L. differed in the shoots and roots; generally, the introduction of 50 and 250 mg/L nZVI alleviated the oxidative stress (POD in shoots, SOD and MDA in roots) induced by QNC. However, 750 mg/kg nZVI seriously damaged Oryza sativa L. seedlings, which likely resulted from active iron deficiency. QNC could be removed from the culture solution by nZVI; as a result, nZVI suppressed QNC uptake by 20%-30%.


Assuntos
Antioxidantes/metabolismo , Ferro/toxicidade , Nanopartículas/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/toxicidade , Poluentes do Solo/toxicidade , Transporte Biológico , Biomassa , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
15.
Bull Environ Contam Toxicol ; 105(4): 553-558, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32918155

RESUMO

The aim of this study was to evaluate, through nonlinear regression models, the initial development of soybean (Glycine max L. Merr. cv. BRS 257) in soil supplemented with different copper levels. The experiment was performed in a greenhouse under natural light and temperature conditions. The seeds were sowed in soil containing different copper levels (11.20, 32.28, 52.31, 64.51, 79.42, 117.70, 133.53, 144.32, or 164.00 mg kg- 1). Germination percentage was not affected by the increase of copper content in the soil, but there was a delay in the germination process. There was no influence of copper levels on the seedling emergence speed index until 98.42 mg kg- 1; however, higher copper amounts reduced this parameter. Low copper concentrations increased plant development, but higher concentrations compromised mainly root growth. Overall, these results suggest that copper supplementation in the soil exerted dose-dependent dual effects on soybean seedlings.


Assuntos
Cobre/efeitos adversos , Germinação/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Soja/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dinâmica não Linear , Análise de Regressão , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Solo/química , Soja/crescimento & desenvolvimento
16.
Chemosphere ; 254: 126918, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957302

RESUMO

The increasing application of various surfactants nowadays, may lead to the contamination of the natural environment and represent potential threat to terrestrial higher plants. In this article, the effect of 13 surfactants, with dodecyl alkyl chain and various aromatic (imidazolium, pyridinium, thiazolium) and aliphatic (guanidinium, ammonium, thiosemicarbazidium) polar heads, on germination, development and growth of wheat and cucumber was investigated. The study aimed to prove how changes in lipophilicity of surfactants and their various structural modifications (existence of the aliphatic or aromatic polar group, the introduction of oxygen and sulfur) influence toxicity towards investigated plants. The calculated lipophilic parameter (AlogP) is shown to be a useful parameter for predicting potential toxicity of the compound. The strategy of using surfactants with aliphatic polar heads instead of aromatic prove to be a promising strategy in reducing harmful effect, as well as the introduction of polar groups in the structure of cation. From all investigated compounds, surfactants with imidazolium polar head displayed the most harmful effect towards wheat and cucumber. The cucumber seeds were more sensitive to the addition of surfactants comparing to wheat. All obtained experimental results were additionally investigated using computational methods, simulating the transport of surfactants through a lipid bilayer. The influence of cation tendency to fit in lipid bilayer structure was correlated with toxicity. For the first time, it is concluded that cation ability to mimic the structure of bilayer have less harmful effect on plant development.


Assuntos
Cucumis sativus/efeitos dos fármacos , Imidazóis/toxicidade , Compostos de Piridínio/toxicidade , Tensoativos/toxicidade , Triticum/efeitos dos fármacos , Cátions , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Imidazóis/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tensoativos/química , Triticum/crescimento & desenvolvimento
17.
Ecotoxicol Environ Saf ; 205: 111293, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949840

RESUMO

Wastewater from printing and dyeing processes often contains aniline and high salinity, which are hazardous to aquatic species. Glycophytic plants cannot survive under high-salinity conditions, whereas halophytes grow well in such an environment. In this study, we investigated the influence of NaCl on the antioxidant level in Suaeda salsa affected by aniline stress. The seedlings showed various growth toxicity effects under different concentrations of aniline. The results showed that the effect of the aniline was more severe for the root growth compared to that for the shoot growth. Aniline exposure significantly increased the total free radicals and ·OH radicals in the plants. Suaeda salsa exposure to aniline caused oxidative stress by altering the superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity, which resulted in the overproduction of H2O2 and the inducement of lipid peroxidation. Analysis revealed that the malondialdehyde (MDA) content was enhanced after aniline exposure and that the chlorophyll content was significantly decreased. The results showed that aniline induced the production of free radicals and reactive oxygen species (ROS), and changed the antioxidant defense system. This ultimately resulted in oxidative damage in S. salsa; however, it was found that moderate salinity could mitigate the effects. In conclusion, salinity may alleviate the growth inhibition caused by aniline by regulating the antioxidant capacity of S. salsa.


Assuntos
Compostos de Anilina/toxicidade , Antioxidantes/metabolismo , Chenopodiaceae/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Poluentes Químicos da Água/toxicidade , Catalase/metabolismo , Chenopodiaceae/enzimologia , Chenopodiaceae/crescimento & desenvolvimento , Clorofila/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
18.
Ecotoxicol Environ Saf ; 203: 111007, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888586

RESUMO

Soil acidification is one of the crucial global environmental problems, affecting sustainable land use, crop yield, and ecosystem stability. Previous research reported the tolerance of crops to acid soil stress. However, the molecular response of woody plant to acid conditions remains largely unclear. Rhododendron L. is a widely distributed woody plant genus and prefers to grow in acidic soils. Herein, weighted gene coexpression network analysis was performed on R. protistum var. giganteum seedlings subjected to five pH treatments (3.5, 4.5, 5.5, 6.0, 7.0), and their ecophysiological characteristics were determined for the identification of their molecular responses to acidic environments. Through pairwise comparison, 855 differentially expressed genes (DEGs) associated with photosynthesis, cell wall, and phenylpropanoid metabolism were identified. Most of the DEGs related to photosynthesis and cell wall were up-regulated after pH 4.5 treatment. Results implied that the species improves its photosynthetic abilities and changes its cell wall characteristics to adapt to acidic conditions. Weighted gene co-expression network analyses showed that most of the hub genes were annotated to the biosynthetic pathways of ribosomal proteins and photosynthesis. Expression pattern analysis showed that genes encoding subunit ribosomal proteins decreased at pH 7.0 treatment, suggesting that pH 7.0 treatment led to cell injury in the seedlings. The species regulates protein synthesis in response to high pH stress (pH 7.0). The present study revealed the molecular response mechanism of woody plant R. protistum var. giganteum to acid environments. These findings can be useful in enriching current knowledge of how woody species adapt to soil acidification under global environmental changes.


Assuntos
Ácidos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Madeira/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Madeira/genética , Madeira/metabolismo
19.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888590

RESUMO

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Assuntos
Antioxidantes/metabolismo , Coffea/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Coffea/genética , Coffea/metabolismo , Coffea/fisiologia , Genótipo , Oxirredução , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Selênio/análise , Selênio/metabolismo , Especificidade da Espécie
20.
J Environ Manage ; 276: 111268, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889500

RESUMO

Biotic and abiotic drivers of seedling establishment and survival are fundamental not only for elucidating processes occurring at plant early life stages, but also for assisting species natural regeneration. Keystone, multipurpose and economically important tree species such as Afzelia africana Sm. are reportedly facing recruitment constraints, yet little is known about how abiotic and biotic factors shape the species seedling dynamics. Here, we monitored the species seedlings over one year across three seasons in West Africa savannahs to determine how conspecific and heterospecific biotic neighborhood and habitat heterogeneity correlate with initial seedling density, leaves' fungal infection and herbivory and how all these factors combined, influence the species seedling survival. Seedling densities increased with increasing conspecific adult densities, and were highest in tree savannahs and on sandy-silt soils. Leaves' fungal infection and herbivory were also positively associated with conspecific adult density, but were more abundantly observed in tree savannahs than in shrub savannahs. Seedling survival was constrained on higher slope, and negatively affected by conspecific adult density, especially in shrub savannahs. There was a strong evidence for negative density-dependence effects of conspecific adults on seedling survival, which operated through negative effects of herbivory and fungal infection. Habitat heterogeneity was also an important driver, which modulated biotic factors' effects on seedling survival: tree savannahs promote positive conspecific density-dependence of seedling fungal infection and herbivory more than shrub savannahs. Nonetheless, seedlings were more sensitive to natural enemies in shrub savannahs, suggesting increased negative conspecific density-dependence effects on seedling survival in less dense vegetation, possibly as a result of enhanced specialization of predators and pathogens on a limited set of species. The study brings important insights into the mechanisms that drive the establishment and survival of the species seedling, which should be considered in the design of management activities aiming at the conservation of this endangered species.


Assuntos
Plântula , Árvores , África Ocidental , Ecossistema , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA