Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.153
Filtrar
1.
Ecotoxicol Environ Saf ; 203: 111054, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888616

RESUMO

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid, QNC) is a highly selective auxin herbicide that is typically applied to paddy rice fields. Its residue is a serious problem in crop rotations. In this study, Oryza sativa L. seedlings was used as a model plant to explore its biochemical response to abiotic stress caused by QNC and nZVI coexposure, as well as the interactions between QNC and nZVI treatments. Exposure to 5 and 10 mg/L QNC reduced the fresh biomass by 26.6% and 33.9%, respectively, compared to the control. The presence of 50 and 250 mg/L nZVI alleviated the QNC toxicity, but the nZVI toxicity was aggravated by the coexist of QNC. Root length was enhanced upon exposure to low or medium doses of both QNC and nZVI, whereas root length was inhibited under high-dose coexposure. Both nZVI and QNC, either alone or in combination, significantly inhibited the biosynthesis of chlorophyll, and the inhibition rate increased with elevated nZVI and QNC concentration. It was indicated that nZVI or QNC can affect the plant photosynthesis, and there was a significant interaction between the two treatments. Effects of QNC on the antioxidant response of Oryza sativa L. differed in the shoots and roots; generally, the introduction of 50 and 250 mg/L nZVI alleviated the oxidative stress (POD in shoots, SOD and MDA in roots) induced by QNC. However, 750 mg/kg nZVI seriously damaged Oryza sativa L. seedlings, which likely resulted from active iron deficiency. QNC could be removed from the culture solution by nZVI; as a result, nZVI suppressed QNC uptake by 20%-30%.


Assuntos
Antioxidantes/metabolismo , Ferro/toxicidade , Nanopartículas/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/toxicidade , Poluentes do Solo/toxicidade , Transporte Biológico , Biomassa , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
2.
Ecotoxicol Environ Saf ; 203: 111007, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888586

RESUMO

Soil acidification is one of the crucial global environmental problems, affecting sustainable land use, crop yield, and ecosystem stability. Previous research reported the tolerance of crops to acid soil stress. However, the molecular response of woody plant to acid conditions remains largely unclear. Rhododendron L. is a widely distributed woody plant genus and prefers to grow in acidic soils. Herein, weighted gene coexpression network analysis was performed on R. protistum var. giganteum seedlings subjected to five pH treatments (3.5, 4.5, 5.5, 6.0, 7.0), and their ecophysiological characteristics were determined for the identification of their molecular responses to acidic environments. Through pairwise comparison, 855 differentially expressed genes (DEGs) associated with photosynthesis, cell wall, and phenylpropanoid metabolism were identified. Most of the DEGs related to photosynthesis and cell wall were up-regulated after pH 4.5 treatment. Results implied that the species improves its photosynthetic abilities and changes its cell wall characteristics to adapt to acidic conditions. Weighted gene co-expression network analyses showed that most of the hub genes were annotated to the biosynthetic pathways of ribosomal proteins and photosynthesis. Expression pattern analysis showed that genes encoding subunit ribosomal proteins decreased at pH 7.0 treatment, suggesting that pH 7.0 treatment led to cell injury in the seedlings. The species regulates protein synthesis in response to high pH stress (pH 7.0). The present study revealed the molecular response mechanism of woody plant R. protistum var. giganteum to acid environments. These findings can be useful in enriching current knowledge of how woody species adapt to soil acidification under global environmental changes.


Assuntos
Ácidos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Madeira/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Madeira/genética , Madeira/metabolismo
3.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888590

RESUMO

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Assuntos
Antioxidantes/metabolismo , Coffea/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Coffea/genética , Coffea/metabolismo , Coffea/fisiologia , Genótipo , Oxirredução , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Selênio/análise , Selênio/metabolismo , Especificidade da Espécie
4.
Ecotoxicol Environ Saf ; 204: 111098, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798749

RESUMO

Cadmium (Cd) is a detrimental element that can be toxic to plants. The physiological and biochemical responses of plants to Cd stress have been extensively studied, but the molecular mechanisms remain unclear. The present study showed that Cd severely inhibited the growth of roots and shoots and reduced plant biomass of mung bean seedlings. To further investigate the gene profiles and molecular processes in response Cd stress, transcriptome analyses of mung bean roots exposed to 100 µM Cd for 1, 5, and 9 days were performed. Cd treatment significantly decreased global gene expression levels at 5 and 9 d compared with the control. A total of 6737, 10279, and 9672 differentially expressed genes (DEGs) were identified in the 1-, 5-, and 9-day Cd-treated root tissues compared with the controls, respectively. Based on the analysis of DEG function annotation and enrichment, a pattern of mung bean roots response to Cd stress was proposed. The processes detoxification and antioxidative defense were involved in the early response of mung bean roots to Cd. Cd stress downregulated the expressions of a series of genes involved in cell wall biosynthesis, cell division, DNA replication and repair, and photosynthesis, while genes involved in signal transduction and regulation, transporters, secondary metabolisms, defense systems, and mitochondrial processes were upregulated in response to Cd, which might be contributed to the improvement of plant tolerance. Our results provide some novel insights into the molecular processes for growth and adaption of mung bean roots in response to Cd and many candidate genes for further biotechnological manipulations to improve plant tolerance to heavy metals.


Assuntos
Cádmio/toxicidade , Poluentes do Solo/toxicidade , Aclimatação , Adaptação Fisiológica , Antioxidantes/metabolismo , Cádmio/metabolismo , Poluição Ambiental , Fabaceae/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Poluentes do Solo/metabolismo , Transcriptoma , Vigna/metabolismo
5.
PLoS One ; 15(8): e0238173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853293

RESUMO

Damage to grasses and cereals by phloem-feeding herbivores is manifest as nutrient and chlorophyll loss, desiccation, and a gradual decline in host vigour. Chlorophyll loss in particular leads to a succession of colour changes before eventual host death. Depending on the attacking herbivore species, colour changes can be difficult to detect with the human eye. This study used digital images to examine colour changes of rice seedlings during feeding by the brown planthopper, Nilaparvata lugens (Stål) and whitebacked planthopper, Sogatella furcifera (Horváth). Values for red (580 nm), green (540 nm) and blue (550 nm) reflectance for 39 rice varieties during seedling seed-box tests were derived from images captured with a digital camera. Red and blue reflectance gradually increased as herbivore damage progressed until final plant death. Red reflectance was greater from plants attacked by the brown planthopper than plants attacked by the whitebacked planthopper, which had proportionately more green and blue reflectance, indicating distinct impacts by the two planthoppers on their hosts. Analysis of digital images was used to discriminate variety responses to the two planthoppers. Ordination methods based on red-green-blue reflectance and vegetation indices such as the Green Leaf Index (GLI) that included blue reflectance were more successful than two-colour indices or indices based on hue, saturation and brightness in discriminating between damage responses among varieties. We make recommendations to advance seed-box screening methods for cereal resistance to phloem feeders and demonstrate how images from digital cameras can be used to improve the quality of data captured during high-throughput phenotyping.


Assuntos
Oryza/fisiologia , Oryza/parasitologia , Plântula/fisiologia , Plântula/parasitologia , Animais , Clorofila/metabolismo , Hemípteros/patogenicidade , Oryza/metabolismo , Fenótipo , Floema/metabolismo , Floema/parasitologia , Floema/fisiologia , Plântula/metabolismo
6.
Nat Commun ; 11(1): 3439, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651385

RESUMO

Various stress conditions induce the nuclear translocation of cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), but its nuclear function in plant stress responses remains elusive. Here we show that GAPC interacts with a transcription factor to promote the expression of heat-inducible genes and heat tolerance in Arabidopsis. GAPC accumulates in the nucleus under heat stress. Overexpression of GAPC enhances heat tolerance of seedlings and the expression of heat-inducible genes whereas knockout of GAPCs has opposite effects. Screening of Arabidopsis transcription factors identifies nuclear factor Y subunit C10 (NF-YC10) as a GAPC-binding protein. The effects of GAPC overexpression are abolished when NF-YC10 is deficient, the heat-induced nuclear accumulation of GAPC is suppressed, or the GAPC-NF-YC10 interaction is disrupted. GAPC overexpression also enhances the binding ability of NF-YC10 to its target promoter. The results reveal a cellular and molecular mechanism for the nuclear moonlighting of a glycolytic enzyme in plant response to environmental changes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Citosol/metabolismo , Citosol/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Ecotoxicol Environ Saf ; 203: 110978, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678757

RESUMO

In this study, hydroponic experiments were conducted to elucidate mechanism(s) that are associated with differential effects of low (5 µM) and high (25 µM) dose of cadmium (Cd) stress in tomato. Furthermore, emphasis has also been focused on any involvement of endogenous hydrogen sulfide (H2S) in differential behaviour of low and high doses of Cd stress. At low dose of Cd, root growth i.e. root fresh weight, length and fitness did not significantly alter when compared to the control seedlings. Though at low dose of Cd, cellular accumulation of Cd was slightly increased but this was accompanied by higher endogenous H2S and phytochelatins, L-cysteine desulfhydrase (DES) activity, activities of glutathione biosynthetic and AsA-GSH cycle enzymes, and maintained redox status of ascorbate and glutathione. However, addition of hypotaurine (HT, a scavenger of H2S) resulted in greater toxicity, even at low dose of Cd, and these responses resembled with higher dose of Cd stress such as greater decline in root growth, endogenous H2S and phytochelatins, activities of DES, glutathione biosynthesis and AsA-GSH cycle enzymes, disturbed redox status of ascorbate and glutathione which collectively led to higher oxidative stress in tomato roots. Moreover, addition of HT with higher dose of Cd also further enhanced its toxicity. Collectively, the results showed that differential behaviour of low and high dose of Cd stress is mediated by differential regulation of biochemical attributes in which endogenous H2S has a crucial role.


Assuntos
Cádmio/toxicidade , Sulfeto de Hidrogênio/metabolismo , Lycopersicon esculentum/efeitos dos fármacos , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
8.
Ecotoxicol Environ Saf ; 201: 110853, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563160

RESUMO

The phytotoxicity caused by 500 µM ZnSO4.7H2O and its detoxifying by co-application of 100 µM of MT melatonin (MT) and glutathione (GSH) in 6-week-old safflower plants have been investigated. Reduced biomass production and total chlorophyll content on the one hand and increased content of hydrogen peroxide (H2O2), malondialdehyde (MDA) with increase in lipoxygenase activity, on the other hand, showed Zn- induced oxidative damage in safflower seedlings. When MT, GSH and especially MT + GSH exogenously were applied to Zn-stressed seedlings, the content of H2O2, MDA and the activity of lipoxygenase considerably decreased. In Zn- treated seedlings, the application of these signaling molecules led to a considerable increment in ascorbate (ASC), GSH and phytochelatin (PC) contents along with the induction of activity of antioxidant enzymes including ascorbate-glutathione cycle enzymes when compared with the plants stressed with Zn only. In Zn-stressed safflower seedlings treated with MT, GSH and MT + GSH, decreased activity of enzymes involved in glyoxalase system may be associated with the role of MT and GSH in reducing Zn uptake and reducing Zn-induced toxicity and subsequently, lower plant's defense responses. The data showed that the effects of MT and GSH, in particular, the combination of these two molecules in reducing Zn uptake and diminishing its accumulation in the shoots of safflower seedlings, and also the participation of MT and GSH on increasing plant ability to tolerate high amount of Zn through stimulation of various antioxidant defense systems suggest them as suitable candidates to better the survival of safflower in soils contaminated with Zn excess.


Assuntos
Antioxidantes/farmacologia , Carthamus tinctorius/efeitos dos fármacos , Glutationa/farmacologia , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Zinco/toxicidade , Ácido Ascórbico/metabolismo , Carthamus tinctorius/crescimento & desenvolvimento , Carthamus tinctorius/metabolismo , Clorofila/metabolismo , Sinergismo Farmacológico , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oxirredução , Fitoquelatinas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
9.
Plant Mol Biol ; 104(1-2): 39-53, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564178

RESUMO

Plants are exposed to various environmental cues that lead to reactive oxygen species (ROS) accumulation. ROS production and detoxification are tightly regulated to maintain balance. Although studies of glucose (Glc) are always accompanied by ROS in animals, the role of Glc in respect of ROS in plants is unclear. We isolated gsm2 (Glc-hypersensitive mutant 2), a mutant with a notably chlorotic-cotyledon phenotype. The chloroplast-localized GSM2 was characterized as a transaldolase in the pentose phosphate pathway. With 3% Glc treatment, fewer or no thylakoids were observed in gsm2 cotyledon chloroplasts than in wild-type cotyledon chloroplasts, suggesting that GSM2 is required for chloroplast protection under stress. gsm2 also showed evaluated accumulation of ROS with 3% Glc treatment and was more sensitive to exogenous H2O2 than the wild type. Gene expression analysis of the antioxidant enzymes in gsm2 revealed that chloroplast damage to gsm2 cotyledons results from the accumulation of excessive ROS in response to Glc. Moreover, the addition of diphenyleneiodonium chloride or phenylalanine can rescue Glc-induced chlorosis in gsm2 cotyledons. This work suggests that GSM2 functions to maintain ROS balance in response to Glc during early seedling growth and sheds light on the relationship between Glc, the pentose phosphate pathway and ROS.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , RNA Helicases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transaldolase/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Glucuronidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/fisiologia , Fenótipo , RNA Helicases/genética , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Plântula/genética , Plântula/metabolismo , Transaldolase/genética
10.
PLoS One ; 15(6): e0220598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579545

RESUMO

Roof greening is an important national policy for maintaining the hydrological balance in China; however, plant growth is limited by drought stress. This study aims to identify strong drought resistant plant species for roof greening from ten common species: Paeonia lactiflora, Hemerocallis dumortieri, Meehania urticifolia, Iris lactea var. chinensis, Hylotelephium erythrostictum, Sedum lineare, Iris germanica, Cosmos bipinnata, Hosta plantaginea, and Dianthus barbatus. By controlling the soil relative water content (RWC), we designed three treatments: moderate drought stress (40±2% < RWC < 45±2%), severe drought stress (RWC < 30±2%) and well-watered control (RWC > 75±2%). After the seedlings were provided different levels of water, their membrane permeability (MP), chlorophyll concentration (Chl), and superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) activity were measured. Finally, the membership function method was used to assess the drought resistance of these species. The results showed that C. bipinnata and M. urticifolia were not suitable for moderate or severe drought stress and did not survive. The other species presented variations in physiological and biochemical parameters. The MP of He. dumortieri, I. lactea and Ho. plantaginea showed minor changes between the well-watered control and drought stress. Most of the species showed reduced SOD activity under moderate drought stress but increased activity under severe stress. All of the plant species showed decreases in the protective enzymes POD and APX with increasing drought stress. The membership function method was applied to calculate the plant species' drought resistance, and the following order of priority of the roof-greening plant species was suggested: He. dumortieri > I. germanica > I. lactea > D. barbatus > Hy. erythrostictum > S. lineare > Ho. plantaginea > P. lactiflora.


Assuntos
Secas , Fenômenos Fisiológicos Vegetais , Plântula/fisiologia , Estresse Fisiológico , Ascorbato Peroxidases/metabolismo , Permeabilidade da Membrana Celular , Clorofila/metabolismo , Peroxidases/metabolismo , Plântula/metabolismo , Solo/química , Superóxido Dismutase/metabolismo , Análise de Sobrevida , Água/análise
11.
Nat Commun ; 11(1): 3238, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591540

RESUMO

The challenge of monitoring in planta dynamic changes of NADP(H) and NAD(H) redox states at the subcellular level is considered a major obstacle in plant bioenergetics studies. Here, we introduced two circularly permuted yellow fluorescent protein sensors, iNAP and SoNar, into Arabidopsis thaliana to monitor the dynamic changes in NADPH and the NADH/NAD+ ratio. In the light, photosynthesis and photorespiration are linked to the redox states of NAD(P)H and NAD(P) pools in several subcellular compartments connected by the malate-OAA shuttles. We show that the photosynthetic increases in stromal NADPH and NADH/NAD+ ratio, but not ATP, disappear when glycine decarboxylation is inhibited. These observations highlight the complex interplay between chloroplasts and mitochondria during photosynthesis and support the suggestions that, under normal conditions, photorespiration supplies a large amount of NADH to mitochondria, exceeding its NADH-dissipating capacity, and the surplus NADH is exported from the mitochondria to the cytosol through the malate-OAA shuttle.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Proteínas Luminescentes/metabolismo , NADP/metabolismo , NAD/metabolismo , Fotossíntese/efeitos da radiação , Respiração Celular/efeitos da radiação , Cloroplastos/metabolismo , Citosol/metabolismo , Transporte de Elétrons/efeitos da radiação , Malatos/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Oxirredução , Peroxissomos/metabolismo , Plântula/metabolismo , Plântula/efeitos da radiação
12.
Chemosphere ; 259: 127258, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32585458

RESUMO

This is the first study to investigate the reduction mechanism of Tl (III) to Tl(I) in the presence of plants, especially rice. Smaller plant density could effectively reduce the content of organic acids in the hydroponic system to keep the stability of Tl(III). As the plant density was reduced from 40 seedlings to 10 seedlings in 100 mL Tl(III) solution, the content of oxalate was declined to one-third of the original, and the ratio of Tl(III)/total Tl was increased from 39.6% to 81.0% in the first 2 h treatment. Then the differences in antioxidant capacity of rice exposed to the two Tl species were studied. The contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2˙-) of rice roots exposed to Tl(III) were all higher than those to Tl(I). Meanwhile, the catalase (CAT) activity was significantly depressed and peroxidase (POD) was increased by Tl(III), whereas superoxide dismutase (SOD) showed a rise in both Tl(I) and Tl(III) with no significant difference between them. The expression of metallothionein gene OsMT1a to Tl(I) was upregulated to 255.5 times of Tl(III) though OsMT2c was downregulated to 0.39 times of Tl(III). Overall, the different responses in metallothionein gene expression and antioxidative enzyme activation might result in more ROS accumulation to rice roots by Tl(III) treatment than those by Tl(I).


Assuntos
Metalotioneína/genética , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Tálio/toxicidade , Antioxidantes/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroponia , Malondialdeído/metabolismo , Metalotioneína/metabolismo , Oryza/genética , Oryza/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
13.
Ecotoxicol Environ Saf ; 201: 110735, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480163

RESUMO

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice. The arsenite (AsIII; 25 µM) stress hampered the overall growth and development of the rice seedling. However, the co-application (25 µM AsIII+0.25 µM Me-JA) resulted in increased biomass, chlorophyll content, enhanced antioxidant enzyme activities as compared to AsIII treated plants. The co-application also demonstrated a marked decrease in malondialdehyde content, electrolyte leakage and accumulation of total AsIII content (root + shoot) as compared to AsIII treated plants. The co-application also modulated the expression of genes involved in downstream JA signaling pathway (OsCOI, OsJAZ3, OsMYC2), AsIII uptake (OsLsi1, OsLsi2, OsNIP1;1, OsNIP3;1), translocation (OsLsi6, and OsINT5) and detoxification (OsNRAMP1, OsPCS2, and OsABCC2) which revealed the probable adaptive response of the rice plant to cope up arsenic stress. Our findings reveal that Me-JA alleviates AsIII toxicity by modulating signaling components involved in As uptake, translocation, and detoxification and JA signaling in rice. This study augments our knowledge for the future use of Me-JA in improving tolerance against AsIII stress.


Assuntos
Acetatos/farmacologia , Arsênico/toxicidade , Ciclopentanos/farmacologia , Oryza/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Acetatos/metabolismo , Arsênico/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Transporte Biológico , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
14.
Food Chem ; 331: 127282, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32559597

RESUMO

Phenolics are important secondary metabolites in plants with strong antioxidant effects. Seeds germination and exogenous stimulation could activate endogenous enzymes to enhance the content of phenolic acids and flavonoids. Barley seeds geminated under NaCl (1-20 mM) treatment to evaluate the accumulation of phenolics in this study. Results showed that NaCl treatment significantly enhanced the growth of seedlings, especially bud length. NaCl treatment up-regulated genes and proteins expression of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), resulting in the enhancement of their activities. As a result, phenolic acids and flavonoids contents increased by 11.19% and 32.54%, respectively, in which gallic acid, protocatechuic, fisetin, myricetin and quercetin were affected mostly. Moreover, NaCl treatment enhanced 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging capacity. Hence, NaCl stimulated the synthesis of phenolic components via enhancing gene, protein expression and the activity of key enzymes.


Assuntos
Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Fenóis/metabolismo , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/análise , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Fenóis/análise , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
15.
Chemosphere ; 258: 127353, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32554014

RESUMO

Extensive use of antibiotic results in significant antibiotics pollution in the environment. Main objective of this study was to gain insight into potential impacts of antibiotics on plant physiological growth and nutritional composition, and stress alleviation through application of different organic amendments. Effects of five antibiotics (ciprofloxacin, levofloxacin, ofloxacin, amoxicillin and ampicillin) were observed in the presence of three organic amendments (rice husk, farmyard manure and poultry litter) with rice (Oryza sativa L.) as a model plant. Organic amendments were mixed with soil (@ 5 g kg-1) and after three weeks, antibiotics were applied (@10 mg kg-1) and plants were allowed to grow for four months. After which plants were harvested and physical growth parameters (root/shoot length, biomass) and nutritional composition (grain protein content, carbohydrates, phosphorous and iron) were monitored. It was observed that germination rate, seedling root/shoot length, seedling biomass and vigor index were negatively impacted. The application of organic amendments alleviated antibiotic stress on seedling dry biomass, length and vigor index by 1.8-, 3.1- and 2.5-folds, respectively as compared to the antibiotic controls. Concentrations of phosphorous, iron, carbohydrates and proteins were decreased by 5.3-, 1.3-, 1.4- and 1.6-folds upon application of antibiotics. Rice husk was the most effective treatment in case of physical growth parameters and alleviating antibiotics' induced genotoxicity. Whereas, poultry litter had the highest positive effect on nutritional composition of plants. In general, the application of organic amendments alleviated the phytotoxicity as well as genotoxicity in plants under antibiotics stress.


Assuntos
Antibacterianos/toxicidade , Oryza/fisiologia , Poluentes do Solo/toxicidade , Antibacterianos/metabolismo , Biomassa , Poluição Ambiental , Germinação , Esterco , Oryza/metabolismo , Plântula/metabolismo , Solo , Poluentes do Solo/análise
16.
Ecotoxicol Environ Saf ; 201: 110822, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534334

RESUMO

Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Boro/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
17.
PLoS One ; 15(4): e0232294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353025

RESUMO

Spring maize sowing occurs during a period of low temperature (LT) in Northeast China, and the LT suppresses nitrogen (N) metabolism and photosynthesis, further reducing dry matter accumulation. Diethyl aminoethyl hexanoate (DA-6) improves N metabolism; hence, we studied the effects of DA-6 on maize seedlings under LT conditions. The shoot and root fresh weight and dry weight decreased by 17.70%~20.82% in the LT treatment, and decreased by 5.81%~13.57% in the LT + DA-6 treatment on the 7th day, respectively. Exogenous DA-6 suppressed the increases in ammonium (NH4+) content and glutamate dehydrogenase (GDH) activity, and suppressed the decreases in nitrate (NO3-) and nitrite (NO2-) contents, and activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) and transaminase activities. NiR activity was most affected by DA-6 under LT conditions. Additionally, exogenous DA-6 suppressed the net photosynthetic rate (Pn) decrease, and the suppressed the increases of superoxide anion radical (O2·-) generation rate and hydrogen peroxide (H2O2) content. Taken together, our results suggest that exogenous DA-6 mitigated the repressive effects of LT on N metabolism by improving photosynthesis and modulating oxygen metabolism, and subsequently enhanced the LT tolerance of maize seedlings.


Assuntos
Caproatos/farmacologia , Nitrogênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Compostos de Amônio/metabolismo , China , Temperatura Baixa , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
18.
PLoS One ; 15(4): e0232228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353077

RESUMO

Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.


Assuntos
Bacillus cereus/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Termotolerância/fisiologia , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa/metabolismo , Resposta ao Choque Térmico/fisiologia , Substâncias Húmicas , Estresse Fisiológico/fisiologia , Superóxido Dismutase/metabolismo
19.
Chemosphere ; 256: 127157, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32470740

RESUMO

Microcystins released by cyanobacteria affect crop growth and productivity, and even food safety. Plant hormones play a vital role in regulating growth, development and stress response in plants. Therefore, we studied the response of hormones including abscisic acid (ABA), indole-3-acetic acid (IAA), Zeatin (ZT) and gibberellin (GA3) as well as hormone balances (IAA/ABA, ZT/ABA and GA/ABA) to cyanobacterial extract containing microcystins (1, 10, 100 and 1000 µg/L) during stress and recovery periods. Low concentration microcystins (1 µg/L) promoted growth of rice seedlings by increasing levels of IAA, ZT and GA3 and maintaining hormone balances. In addition, the up-regulation of OsYUCCA1 increased IAA level in rice roots by promoting IAA biosynthesis. High concentrations microcystins (10, 100 or1000 µg/L) inhibited growth of rice seedlings by reducing levels of IAA, ZT and GA3 and ratios of IAA/ABA, ZT/ABA and GA/ABA due to increased ABA level. The increase in ABA in rice seedlings induced by high concentrations MCs was resulted from up-regulation of OsNCED1, OsNCED3, OsNCED4 and OsZEP to enhance ABA biosynthesis, and was controlled by up-regulating expression levels of OsABAox1-3 for enhancing ABA catabolism as negative feedback. The highest concentration of MCs (1000 µg/L) caused irreversible damage to metabolisms of IAA and ABA, partly resulting in unrecoverable inhibition on rice growth. All results demonstrate that "low-concentration promotion and high-concentration inhibition" of microcystins was associated with changes in hormone levels and balances by affecting their metabolisms, and could be helpful for guiding agricultural irrigation with microcystin contaminated water.


Assuntos
Cianobactérias/metabolismo , Microcistinas/toxicidade , Oryza/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Plântula/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Extratos Vegetais , Raízes de Plantas/metabolismo , Zeatina/metabolismo
20.
PLoS One ; 15(5): e0233130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469892

RESUMO

Low temperature is one of the abiotic factors limiting germination, growth and distribution of the plant in current plant-products industry, especially for the tropical vegetables in non-tropical area or other fields under cold temperature. Screening the plant with ability against cold temperature captured worldwide attention and exerted great importance. In our previous work, the anti-cold specie of Momordica Charantia L. seedlings was screened out. Yet, the molecular and physiological mechanisms underlying this adaptive process still remain unknown. This study was aimed to investigate adaption mechanism of anti-cold species of Momordica Charantia L. seedlings in genetical and metabolomics levels. Two species, cold-susceptible group (Y17) and cold-resistant group (Y54), were evaluated containing the indexes of malondialdehyde (MDA), hydrogen peroxide (H2O2), proline content, activities of antioxidant enzymes, metabolites changes and genes differentiation in plant tissues after cold treatment. It found that low temperature stress resulted in increased accumulation of MDA, H2O2 and proline content in two species, but less expressions in cold-resistant species Y54. As compared to Y17, cold-resistant species Y54 presented significantly enhanced antioxidant enzyme activities of POD (peroxidase), CAT (cataalase) and SOD (superoxide dismutase). Meanwhile, higher expressed genes encoded antioxidant enzymes and transcription factors when exposure to the low temperature were found in cold-resistant species Y54, and core genes were explored by Q-PCR validation, including McSOD1, McPDC1 and McCHS1. Moreover, plant metabolites containing amino acid, sugar, fatty acid and organic acid in Y54 were higher than Y17, indicating their important roles in cold acclimation. Meanwhile, initial metabolites, including amimo acids, polypeptides, sugars, organic acids and nucleobases, were apparently increased in cold resistant species Y54 than cold susceptible species Y17. Our results demonstrated that the Momordica Charantia L. seedlings achieved cold tolerance might be went through mobilization of antioxidant systems, adjustment of the transcription factors and accumulation of osmoregulation substance. This work presented meaning information for revealing the anti-cold mechanism of the Momordica Charantia L. seedlings and newsight for further screening of anti-cold species in other plant.


Assuntos
Resposta ao Choque Frio , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Momordica charantia/metabolismo , Oxirredutases/biossíntese , Proteínas de Plantas/biossíntese , Plântula/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA