Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.139
Filtrar
1.
J Agric Food Chem ; 67(40): 11262-11276, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509416

RESUMO

Tartary buckwheat (Fagopyrum tataricum) seeds are rich in flavonoids. However, the detailed flavonoid compositions and the molecular basis of flavonoid biosynthesis in tartary buckwheat seeds remain largely unclear. Here, we performed a combined metabolite profiling and transcriptome analysis to identify flavonoid compositions and characterize genes involved in flavonoid biosynthesis in the developing tartary buckwheat seeds. In total, 234 flavonoids, including 10 isoflavones, were identified. Of these, 80 flavonoids were significantly differential accumulation during seed development. Transcriptome analysis indicated that most structural genes and some potential regulatory genes of flavonoid biosynthesis were significantly differentially expressed in the course of seed development. Correlation analysis between transcriptome and metabolite profiling shown that the expression patterns of some differentially expressed structural genes and regulatory genes were more consistent with the changes in flavonoids profiles during seed development and promoted one SG7 subgroup R2R3-MYB transcription factors (FtPinG0009153900.01) was identified as the key regulatory gene of flavonoid biosynthesis. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in tartary buckwheat seeds and the further development of tartary buckwheat health products.


Assuntos
Fagopyrum/metabolismo , Flavonoides/biossíntese , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo
2.
Life Sci ; 232: 116636, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295471

RESUMO

Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome editing approach into a more expedient and competent way, thus facilitating proficient genome editing through embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effectively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The execution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be addressed, the employment of CRISPR-Cas9-based genome engineering technologies will increase our understanding to disease processes and their treatment in the near future. In this review we have discussed the history of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites. Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been detailed here.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/tendências , Genoma , Humanos , Plantas/genética
3.
BMC Plant Biol ; 19(1): 307, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299897

RESUMO

BACKGROUND: DNA methylation is a crucial epigenetic modification, which is involved in many biological processes, including gene expression regulation, embryonic development, cell differentiation and genomic imprinting etc. And it also involves many key regulatory genes in eukaryotes. By tracing the evolutionary history of methylation-related genes, we can understand the origin and expansion time of these genes, which helps to understand the evolutionary history of plants, and we can also understand the changes of DNA methylation patterns in different species. However, most studies on the evolution of methylation-related genes failed to be carried out for the whole DNA methylation pathway. RESULTS: In this study, we conducted a comprehensive identification of 33 methylation-related genes in 77 species, and investigated gene origin and evolution throughout the plant kingdom. We found that the origin of genes responsible for methylation maintenance and demethylation evolved early, while most de novo methylation-related genes appeared late. The methylation-related genes were expanded by whole genome duplication and tandem replication, but were also accompanied by a large number of gene absence events in different species. The gene length and intron length varied a lot in different species, but exon structure and functional domains were relatively conserved. The phylogenetic relationships of methylation-related genes were traced to reveal the evolution history of DNA methylation in different species. The expression patterns of methylation-related genes have changed during the evolution of species, and the expression patterns of these genes in different species can be clustered into four categories. CONCLUSIONS: The study describes a global characterization of DNA methylation-related genes in the plant kingdom. The similarities and differences in origin time, gene structure and phylogenetic relationship of these genes lead us to understand the evolutionary conservation and dynamics of DNA methylation in plants.


Assuntos
Metilação de DNA , Epigênese Genética , Impressão Genômica , Plantas/genética , Evolução Molecular , Éxons/genética , Íntrons/genética , Filogenia
4.
Yi Chuan ; 41(6): 469-485, 2019 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-31257196

RESUMO

The field of circular non-coding RNAs have been gradually attracted wide attention with the developments of high-throughput sequencing. In this review, we systematically summarize three driving models for circRNAs biogenesis: intron-pairing-driven, RNA binding protein-driven and lariat-driven. In addition, we also briefly introduce the current research methods of circRNAs, which include high-throughput library construction methods, identification through bioinformatics and common experimental verification. Here, we also systematically summarize the functions of circRNAs, including microRNA (miRNA) or protein sponges, regulating the alternative splicing (AS) and expression of host genes, and extensive translation. Finally, we provide a systematic characterization and the latest research progress of circRNAs, which provide a new perspective for further studies of circRNAs in plants.


Assuntos
Processamento Alternativo , RNA/genética , Íntrons , MicroRNAs , Modelos Genéticos , Plantas/genética , Proteínas de Ligação a RNA
5.
Plant Physiol Biochem ; 141: 332-342, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207494

RESUMO

Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/patogenicidade , Raízes de Plantas/parasitologia , Plantas/parasitologia , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Feminino , Genoma de Planta , Masculino , Doenças das Plantas/parasitologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/genética , Plantas/genética , Plantas Geneticamente Modificadas/parasitologia , Locos de Características Quantitativas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transcriptoma , Virulência/genética
6.
J Agric Food Chem ; 67(27): 7561-7568, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246021

RESUMO

The development of botanical applications of nanomaterials has produced a new generation of technologies that can profoundly impact botanical research. Semiconductor quantum dots (QDs) are an archetype nanomaterial and have received significant interest from diverse research communities, owing to their unique and optimizable optical properties. In this review, we describe the most recent progress on QD-based botanical research and discuss the uptake, translocation, and effects of QDs on plants and the potential applications of QDs in botany. A critical evaluation of the current limitations of QD technologies is discussed, along with the future prospects in QD-based botanical research.


Assuntos
Botânica/tendências , Pontos Quânticos , Semicondutores/tendências , Parede Celular/metabolismo , Hidroponia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/genética , Plantas/metabolismo , Solo
7.
Plant Cell Rep ; 38(9): 1031-1038, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31065780

RESUMO

Plants have developed diverse molecular mechanisms to resist viruses. RNA silencing plays a dominant role in antiviral defense. Recent studies have correlated plant antiviral silencing to epigenetic modification in genomic DNA and protein by remodeling the expression levels of coding genes. The plant host methylation level is reprogrammed in response to viral challenge. Genomes of some viruses have been implicated in the epigenetic modification via small RNA-mediated transcriptional gene silencing and post-transcriptional gene silencing. These mechanisms can be primed prior to a virus attack through methylation changes for antiviral defense. This review highlights the findings concerning the methylation changes in plant-virus interactions and demonstrates a possible direction to improve the understanding of plant host methylation regulation in response to viral infection.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Vírus de Plantas/fisiologia , Plantas/genética , RNA Interferente Pequeno/genética , Metilação de DNA , Epigenômica , Inativação Gênica , Doenças das Plantas/virologia , Plantas/imunologia , Plantas/virologia , Interferência de RNA
8.
Plant Sci ; 284: 37-47, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084877

RESUMO

Machine learning (ML) is a field of artificial intelligence that has rapidly emerged in molecular biology, thus allowing the exploitation of Big Data concepts in plant genomics. In this context, the main challenges are given in terms of how to analyze massive datasets and extract new knowledge in all levels of cellular systems research. In summary, ML techniques allow complex interactions to be inferred in several biological systems. Despite its potential, ML has been underused due to complex computational algorithms and definition terms. Therefore, a systematic review to disentangle ML approaches is relevant for plant scientists and has been considered in this study. We presented the main steps for ML development (from data selection to evaluation of classification/prediction models) with a respective discussion approaching functional genomics mainly in terms of pathogen effector genes in plant immunity. Additionally, we also considered how to access public source databases under an ML framework towards advancing plant molecular biology and introduced novel powerful tools, such as deep learning.


Assuntos
Aprendizado de Máquina , Biologia Molecular/métodos , Plantas/genética , Bases de Dados Genéticas , Plantas/metabolismo
9.
Nat Commun ; 10(1): 2203, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101818

RESUMO

The root economics spectrum (RES), a common hypothesis postulating a tradeoff between resource acquisition and conservation traits, is being challenged by conflicting relationships between root diameter, tissue density (RTD) and root nitrogen concentration (RN). Here, we analyze a global trait dataset of absorptive roots for over 800 plant species. For woody species (but not for non-woody species), we find nonlinear relationships between root diameter and RTD and RN, which stem from the allometric relationship between stele and cortical tissues. These nonlinear relationships explain how sampling bias from different ends of the nonlinear curves can result in conflicting trait relationships. Further, the shape of the relationships varies depending on evolutionary context and mycorrhizal affiliation. Importantly, the observed nonlinear trait relationships do not support the RES predictions. Allometry-based nonlinearity of root trait relationships improves our understanding of the ecology, physiology and evolution of absorptive roots.


Assuntos
Evolução Biológica , Raízes de Plantas/genética , Plantas/genética , Característica Quantitativa Herdável , Conjuntos de Dados como Assunto , Dinâmica não Linear , Fenótipo , Filogenia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Plantas/anatomia & histologia , Plantas/metabolismo
10.
Chimia (Aarau) ; 73(6): 362-367, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31118117

RESUMO

Small RNAs gene regulation was first discovered about 20 years ago. It represents a conserve gene regulation mechanism across eukaryotes and is associated to key regulatory processes. In plants, small RNAs tightly regulate development, but also maintain genome stability and protect the plant against pathogens. Small RNA gene regulation in plants can be divided in two canonical pathways: Post-transcriptional Gene Silencing (PTGS) that results in transcript degradation and/or translational inhibition or Transcriptional Gene Silencing (TGS) that results in DNA methylation. In this review, we will focus on the model plant Arabidopsis thaliana. We will provide a brief overview of the molecular mechanisms involved in canonical small RNA pathways as well as introducing more atypical pathways recently discovered.


Assuntos
Metilação de DNA , Inativação Gênica , Plantas/genética , RNA de Plantas
13.
Genetics ; 212(1): 1-12, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31053614

RESUMO

Progress in genetics and evolutionary biology in the young Union of Soviet Socialist Republics (USSR) was hindered in the 1930s by the agronomist Trofim Lysenko, who believed that acquired traits are inherited, claimed that heredity can be changed by "educating" plants, and denied the existence of genes. Lysenko was supported by Communist Party elites. Lysenko termed his set of ideas and agricultural techniques "Michurinism," after the name of the plant breeder Ivan Michurin, but they are currently known as Lysenkoism. Although Michurinism opposed biological science, Lysenko took up one academic position after another. In 1929, Nikolai Vavilov founded the Lenin All-Union Academy of Agricultural Sciences and became its head; it directed the development of sciences underpinning plant and animal breeding in the Soviet Union. Vavilov was dismissed in 1935 and later died in prison, while Lysenko occupied his position. The triumph of Lysenkoism became complete and genetics was fully defeated in August 1948 at a session of the academy headed by Lysenko. The session was personally directed by Joseph Stalin and marked the USSR's commitment to developing a national science, separated from the global scientific community. As a result, substantial losses occurred in Soviet agriculture, genetics, evolutionary theory, and molecular biology, and the transmission of scientific values and traditions between generations was interrupted. This article reviews the ideological, political, economic, social, cultural, personal, moral, and ethical factors that influenced the August 1948 session, and its immediate and later consequences. We also outline current attempts to revise the role of the August session and whitewash Lysenko.


Assuntos
Evolução Biológica , Genética/história , Animais , Hereditariedade , História do Século XX , Plantas/genética , U.R.S.S.
14.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075826

RESUMO

The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.


Assuntos
Genes de Plantas , Plantas/genética , Sequência de Aminoácidos , Gravitropismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/anatomia & histologia
15.
Ecol Lett ; 22(7): 1163-1173, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31087604

RESUMO

Most of the world's land surface is currently under human use and natural habitats remain as fragmented samples of the original landscapes. Measuring the quality of plant progeny sired in these pervasive environments represents a fundamental endeavour for predicting the evolutionary potential of plant populations remaining in fragmented habitats and thus their ability to adapt to changing environments. By means of hierarchical and phylogenetically independent meta-analyses we reviewed habitat fragmentation effects on the genetic and biological characteristics of progenies across 179 plant species. Progeny sired in fragmented habitats showed overall genetic erosion in contrast with progeny sired in continuous habitats, with the exception of plants pollinated by vertebrates. Similarly, plant progeny in fragmented habitats showed reduced germination, survival and growth. Habitat fragmentation had stronger negative effects on the progeny vigour of outcrossing- than mixed-mating plant species, except for vertebrate-pollinated species. Finally, we observed that increased inbreeding coefficients due to fragmentation correlated negatively with progeny vigour. Our findings reveal a gloomy future for angiosperms remaining in fragmented habitats as fewer sired progeny of lower quality may decrease recruitment of plant populations, thereby increasing their probability of extinction.


Assuntos
Variação Genética , Plantas , Reprodução , Animais , Ecossistema , Endogamia , Plantas/genética
16.
Microb Pathog ; 133: 103551, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125685

RESUMO

RNA viruses are the most diverse phytopathogens which cause severe epidemics in important agricultural crops and threaten the global food security. Being obligatory intracellular pathogens, these viruses have developed fine-tuned evading mechanisms and are non-responsive to most of the prophylactic treatments. Additionally, their sprint ability to overcome host defense demands a broad-spectrum and durable mechanism of resistance. In context of CRISPR-Cas discoveries, some variants of Cas effectors have been characterized as programmable RNA-guided RNases in the microbial genomes and could be reprogramed in mammalian and plant cells with guided RNase activity. Recently, the RNA variants of CRISPR-Cas systems have been successfully employed in plants to engineer resistance against RNA viruses. Some variants of CRISPR-Cas9 have been tamed either for directly targeting plant RNA viruses' genome or through targeting the host genes/factors assisting in viral proliferation. The new frontiers in CRISPR-Cas discoveries, and more importantly shifting towards RNA targeting will pyramid the opportunities in plant virus research. The current review highlights the probable implications of CRISPR-Cas system to confer the pathogen-derived or host-mediated resistance against phytopathogenic RNA viruses. Furthermore, a multiplexed CRISPR-Cas13a methodology is proposed here to combat Potato virus Y (PVY); a globally diverse phytopathogen infecting multiple crops.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Doenças das Plantas/genética , Vírus de Plantas/genética , Potyvirus/genética , Vírus de RNA/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas , Edição de Genes/métodos , Marcação de Genes , Genes de Plantas/genética , Genoma Viral , Modelos Teóricos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Vírus de Plantas/imunologia , Vírus de Plantas/patogenicidade , Plantas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Potyvirus/patogenicidade , Vírus de RNA/imunologia , Ribonucleases/genética
17.
Theor Appl Genet ; 132(7): 1911-1929, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31049631

RESUMO

KEY MESSAGE: The efficiency of phenotype-based assessments of plant variety protection and registration could be improved by the integration of DNA-based testing. We review the current and proposed models in the era of next-generation breeding. The current plant variety protection system relies on morphological description of plant varieties. Distinctness, uniformity, and stability (DUS) assessments determine whether a new variety is distinguishable from common knowledge varieties and exhibits sufficient phenotypic uniformity and stability during two independent growing cycles. However, DUS assessment can be costly, time-consuming and often restricted to a relatively small number of traits that can be influenced by environmental conditions. This calls for the adoption of a DNA-based system which is endorsed by the International Union for the Protection of New Varieties of Plants (UPOV). This could enable examiners to deploy trait-specific DNA markers in DUS testing as well as using such genetic markers to manage reference collections. Within UPOV's system, breeders can freely use protected varieties in breeding programs. However, breeders of protected varieties may seek sharing in ownership of essentially derived varieties once it is proven that they, with the exception of a few distinctive DUS trait(s), conform to parental varieties in essential characteristics. As well as their complementary role in DUS testing, DNA markers have been known as a good replacement of morphological traits in defining boundaries between independently and essentially derived varieties. With the advent of new breeding technologies that allow minor modification in varieties with outcomes of specific merit or utility, detecting distinctness between varieties may become increasingly challenging. This, together with the ever-increasing number of varieties with which to compare new candidate varieties, supports the potential utility of using DNA-based approaches in variety description.


Assuntos
Produtos Agrícolas/genética , DNA de Plantas/genética , Marcadores Genéticos , Melhoramento Vegetal , Plantas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Repetições de Microssatélites , Fenótipo
18.
Methods Mol Biol ; 1933: 1-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945176

RESUMO

The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Transcrição Genética
20.
Plant Sci ; 282: 14-22, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003607

RESUMO

Progress in remote sensing and robotic technologies decreases the hardware costs of phenotyping. Here, we first review cost-effective imaging devices and environmental sensors, and present a trade-off between investment and manpower costs. We then discuss the structure of costs in various real-world scenarios. Hand-held low-cost sensors are suitable for quick and infrequent plant diagnostic measurements. In experiments for genetic or agronomic analyses, (i) major costs arise from plant handling and manpower; (ii) the total costs per plant/microplot are similar in robotized platform or field experiments with drones, hand-held or robotized ground vehicles; (iii) the cost of vehicles carrying sensors represents only 5-26% of the total costs. These conclusions depend on the context, in particular for labor cost, the quantitative demand of phenotyping and the number of days available for phenotypic measurements due to climatic constraints. Data analysis represents 10-20% of total cost if pipelines have already been developed. A trade-off exists between the initial high cost of pipeline development and labor cost of manual operations. Overall, depending on the context and objsectives, "cost-effective" phenotyping may involve either low investment ("affordable phenotyping"), or initial high investments in sensors, vehicles and pipelines that result in higher quality and lower operational costs.


Assuntos
Análise Custo-Benefício/métodos , Plantas/genética , Sistemas de Informação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA