Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.372
Filtrar
1.
Biosci Biotechnol Biochem ; 84(1): 126-133, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31538545

RESUMO

Insects must intake sterol compounds because of their inability to synthesize cholesterol de novo. In phytophagous insects, enzymatic conversion of phytosterols to cholesterol involving 24-dehydrocholesterol reductase (DHCR24) exerts to acquire cholesterol. Here, we reported the presence of two DHCR24 homologs in the silkworm Bombyx mori, BmDHCR24-1 and -2, with several transcript variants. Consistent with the data of spatial expression analyses by RT-PCR, predominant enzymatic activity of DHCR24 was observed in B. mori larval midgut whereas weak activity was observed in the other tissues examined. In addition, BmDHCR24-1 expression in HEK293 cells showed an enzymatic activity, but BmDHCR24-2 did not, although both BmDHCR24s were localized in the endoplasmic reticulum, where the mammalian DHCR24s are located to exert their enzymatic activities. The present data indicated that BmDHCR24-1 but not BmDHCR24-2 contributes to conversion of phytosterols to cholesterol mainly in the midgut of the phytophagous lepidopteran larvae.


Assuntos
Bombyx/enzimologia , Colesterol/biossíntese , Proteínas de Insetos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Células HEK293 , Humanos , Proteínas de Insetos/genética , Larva/enzimologia , Túbulos de Malpighi/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fitosteróis/metabolismo , Plantas/química , Plasmídeos/genética , Homologia de Sequência do Ácido Nucleico , Distribuição Tecidual , Transcrição Genética , Transfecção
2.
Pol J Microbiol ; 68(4): 439-447, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31880888

RESUMO

Salmonella infection is most common in patients with infected aortic aneurysm, especially in Asia. When the aortic wall is heavily atherosclerotic, the intima is vulnerable to invasion by Salmonella, leading to the development of infected aortic aneurysm. By using THP-1 macrophage-derived foam cells to mimic atherosclerosis, we investigated the role of three Salmonella enterica serotypes - Typhimurium, Enteritidis, and Choleraesuis - in foam cell autophagy and inflammasome formation. Herein, we provide possible pathogenesis of Salmonella-associated infected aortic aneurysms. Three S. enterica serotypes with or without virulence plasmid were studied. Through Western blotting, we investigated cell autophagy induction and inflammasome formation in Salmonella-infected THP-1 macrophage-derived foam cells, detected CD36 expression after Salmonella infection through flow cytometry, and measured interleukin (IL)-1ß, IL-12, and interferon (IFN)-α levels through enzyme-linked immunosorbent assay. At 0.5 h after infection, plasmid-bearing S. Enteritidis OU7130 induced the highest foam cell autophagy - significantly higher than that induced by plasmid-less OU7067. However, plasmid-bearing S. Choleraesuis induced less foam cell autophagy than did its plasmid-less strain. In foam cells, plasmid-less Salmonella infection (particularly S. Choleraesuis OU7266 infection) led to higher CD36 expression than did plasmid-bearing strains infection. OU7130 and OU7266 infection induced the highest IL-1ß secretion. OU7067-infected foam cells secreted the highest IL-12p35 level. Plasmid-bearing S. Typhimurium OU5045 induced a higher IFN-α level than did other Salmonella serotypes. Salmonella serotypes are correlated with foam cell autophagy and IL-1ß secretion. Salmonella may affect the course of foam cells formation, or even aortic aneurysm, through autophagy.Salmonella infection is most common in patients with infected aortic aneurysm, especially in Asia. When the aortic wall is heavily atherosclerotic, the intima is vulnerable to invasion by Salmonella, leading to the development of infected aortic aneurysm. By using THP-1 macrophage-derived foam cells to mimic atherosclerosis, we investigated the role of three Salmonella enterica serotypes ­ Typhimurium, Enteritidis, and Choleraesuis ­ in foam cell autophagy and inflammasome formation. Herein, we provide possible pathogenesis of Salmonella-associated infected aortic aneurysms. Three S. enterica serotypes with or without virulence plasmid were studied. Through Western blotting, we investigated cell autophagy induction and inflammasome formation in Salmonella-infected THP-1 macrophage-derived foam cells, detected CD36 expression after Salmonella infection through flow cytometry, and measured interleukin (IL)-1ß, IL-12, and interferon (IFN)-α levels through enzyme-linked immunosorbent assay. At 0.5 h after infection, plasmid-bearing S. Enteritidis OU7130 induced the highest foam cell autophagy ­ significantly higher than that induced by plasmid-less OU7067. However, plasmid-bearing S. Choleraesuis induced less foam cell autophagy than did its plasmid-less strain. In foam cells, plasmid-less Salmonella infection (particularly S. Choleraesuis OU7266 infection) led to higher CD36 expression than did plasmid-bearing strains infection. OU7130 and OU7266 infection induced the highest IL-1ß secretion. OU7067-infected foam cells secreted the highest IL-12p35 level. Plasmid-bearing S. Typhimurium OU5045 induced a higher IFN-α level than did other Salmonella serotypes. Salmonella serotypes are correlated with foam cell autophagy and IL-1ß secretion. Salmonella may affect the course of foam cells formation, or even aortic aneurysm, through autophagy.


Assuntos
Aneurisma Aórtico/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Animais , Aneurisma Aórtico/genética , Aneurisma Aórtico/imunologia , Linhagem Celular , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Antígeno Ki-1/genética , Antígeno Ki-1/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/imunologia , Monócitos/microbiologia , Plasmídeos/genética , Plasmídeos/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/imunologia , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Sorogrupo , Virulência
3.
Pol J Microbiol ; 68(4): 559-563, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31880899

RESUMO

We demonstrate here for the first time the use of an IncP-1ß plasmid, R751, as a gene capture vehicle for recombineering/conjugation strategies to clone large segments of bacterial genomes (20 - 100 + Kb). We designed R751 derivatives containing alternative markers for greater flexibility when using the R751 vehicle across different bacteria. These markers are removable if desired as part of the cloning procedure (with no extra steps needed). We demonstrated utility via cloning of 38 and 22 kb genomic segments from Salmonella enterica serovar Typhimurium and Escherichia coli, respectively. The plasmids expand the options available for use in recombineering/conjugation-based cloning applications.We demonstrate here for the first time the use of an IncP-1ß plasmid, R751, as a gene capture vehicle for recombineering/conjugation strategies to clone large segments of bacterial genomes (20 ­ 100 + Kb). We designed R751 derivatives containing alternative markers for greater flexibility when using the R751 vehicle across different bacteria. These markers are removable if desired as part of the cloning procedure (with no extra steps needed). We demonstrated utility via cloning of 38 and 22 kb genomic segments from Salmonella enterica serovar Typhimurium and Escherichia coli, respectively. The plasmids expand the options available for use in recombineering/conjugation-based cloning applications.


Assuntos
Clonagem Molecular , Conjugação Genética , Escherichia coli/genética , Plasmídeos/genética , Salmonella typhimurium/genética , DNA Bacteriano/genética , Recombinação Genética
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(5): 629-634, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31762229

RESUMO

OBJECTIVE: To establish a way for screening Mycobacterium mutants through adding the screening markers into pJV53. METHODS: The sucrose counter selection gene SacB and mutant hygromycin-resistant gene hygS were inserted into pJV53; The recovery of the hygromycin-resistance indicated the successful homologous recombination in Mycobacterium smegmatis (Ms), which could serve as mutant screening marker; The sucrose counter selection could be used to screen the plasmid-free mutants. RESULTS: The recombinant plasmid pJV53-SacB-hygS were successfully constructed. The rifampin-resistant rpoB D516Y and rpoB H526Q mutants and MSMEG_4487 G188A mutant were efficiently screened out. All mutants had shed the plasmid successfully. CONCLUSION: pJV53-SacB-hygS can efficiently contribute to construct and screen the mutants and to get the mutants shedding the plasmid self, which has high value of extensive application; the D516Y and H526Q mutations in gene rpoB of Mycobacterium tuberculosis contribute to its rifampin-resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Recombinação Homóloga , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Plasmídeos/genética , Rifampina/farmacologia
5.
Mol Plant Microbe Interact ; 32(12): 1635-1648, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617792

RESUMO

The ß-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.


Assuntos
Cupriavidus , Mimosa , Rhizobium , Cupriavidus/classificação , Cupriavidus/genética , Genes Bacterianos/genética , Mimosa/microbiologia , Filogenia , Plasmídeos/genética , Simbiose/genética
6.
Microb Cell Fact ; 18(1): 162, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581942

RESUMO

BACKGROUND: Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. RESULTS: Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR-Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR-Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR-Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. CONCLUSIONS: This study applied CRISPR-Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR-Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.


Assuntos
Edição de Genes/métodos , Genoma Bacteriano , Zymomonas/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Francisella/enzimologia , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia/genética , RNA Guia/metabolismo , Zymomonas/metabolismo
7.
Microb Cell Fact ; 18(1): 163, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581944

RESUMO

BACKGROUND: Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. RESULTS: In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. CONCLUSION: The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.


Assuntos
Arabidopsis/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Engenharia Metabólica , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/síntese química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/síntese química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Ácido Graxo Sintases/genética , Ácidos Graxos/química , Isoenzimas/síntese química , Isoenzimas/genética , Isoenzimas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
8.
Rev Soc Bras Med Trop ; 52: e20190237, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31508785

RESUMO

INTRODUCTION: The increased use of colistin against infections caused by Acinetobacter baumannii and Pseudomonas aeruginosa has resulted in colistin resistance. The purpose of this study was to detect plasmid-mediated mcr-1 gene in colistin-resistant A. baumannii and P. aeruginosa isolates. METHODS: A total of 146 clinical isolates of A. baumannii (n = 62) and P. aeruginosa (n = 84) were collected from the four largest tertiary care hospitals in Peshawar, Pakistan. All bacterial isolates were phenotypically screened for multidrug resistance using the Kirby-Baur disc diffusion method. The minimum inhibitory concentration (MIC) of colistin in all isolates was phenotypically performed using dilution methods. mcr-1 gene was detected through polymerase chain reaction and the nucleotide sequence of amplicon was determined using Sanger sequencing. RESULTS: Approximately 96.7% A. baumannii and 83.3% P. aeruginosa isolates were resistant to multiple antibiotics. Colistin resistance was found in 9.6% (6/62) of A. baumannii and 11.9% (10/84) of P. aeruginosa isolates. Among 16 colistin resistant isolates, the mcr-1 gene was detected in one A. baumannii (1.61% of total isolates; 16.6% of colistin resistant isolates) and one P. aeruginosa strain (1.19% of total isolates; 10% of colistin resistant isolates). Nucleotide BLAST showed 98-99% sequence similarity to sequences of the mcr-1 gene in GenBank. CONCLUSIONS: Our study reports, for the first time, the emergence of plasmid-mediated mcr-1-encoded colistin resistance in multidrug resistant strains of A. baumannii and P. aeruginosa. Further large scales studies are recommended to investigate the prevalence of this mode of resistance in these highly pathogenic bacteria.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Acinetobacter baumannii/efeitos dos fármacos , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Paquistão , Plasmídeos/genética , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Nat Protoc ; 14(10): 2954-2971, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534231

RESUMO

Exogenous biomolecule delivery into plants is difficult because the plant cell wall poses a dominant transport barrier, thereby limiting the efficiency of plant genetic engineering. Traditional DNA delivery methods for plants suffer from host-species limitations, low transformation efficiencies, tissue damage, or unavoidable and uncontrolled DNA integration into the host genome. We have demonstrated efficient plasmid DNA delivery into intact plants of several species with functionalized high-aspect-ratio carbon nanotube (CNT) nanoparticles (NPs), enabling efficient DNA delivery into a variety of non-model plant species (arugula, wheat, and cotton) and resulting in high protein expression levels without transgene integration. Herein, we provide a protocol that can be implemented by plant biologists and adapted to produce functionalized single-walled CNTs (SWNTs) with surface chemistries optimized for delivery of plasmid DNA in a plant species-independent manner. This protocol describes how to prepare, construct, and optimize polyethylenimine (PEI)-functionalized SWNTs and perform plasmid DNA loading. The authors also provide guidance on material characterization, gene expression evaluation, and storage conditions. The entire protocol, from the covalent functionalization of SWNTs to expression quantification, can be completed in 5 d.


Assuntos
DNA/genética , Técnicas de Transferência de Genes , Nanotubos de Carbono , Plantas/genética , Produtos Agrícolas/genética , Nanotubos de Carbono/química , Plantas Geneticamente Modificadas , Plasmídeos/genética , Polietilenoimina/química , Transgenes
10.
Microbiol Res ; 229: 126342, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536874

RESUMO

Non-conventional yeasts (NCYs), i.e. all yeasts other than Saccharomyces cerevisiae, are emerging as novel production strains and gain more and more attention to exploit their unique properties. Yet, these yeasts can hardly compete against the advanced methodology and genetic tool kit available for exploiting and engineering S. cerevisiae. Currently, for many NCYs one has to start from scratch to initiate molecular genetic manipulations, which is often time consuming and not straight-forward. More so because utilization of S. cerevisiae tools based on short-flank mediated homologous recombination or plasmid biology are not readily applicable in NCYs. Here we present a script with discrete steps that will lead to the development of a basic and expandable molecular toolkit for ascomycetous NCYs and will allow genetic engineering of novel platform strains. For toolkit development the highly efficient in vivo recombination efficiency of S. cerevisiae is utilized in the generation and initial testing of tools. The basic toolkit includes promoters, reporter genes, selectable markers based on dominant antibiotic resistance genes and the generation of long-flanking homology disruption cassettes. The advantage of having pretested molecular tools that function in a heterologous host facilitate NCY strain manipulations. We demonstrate the usefulness of this script on Saccharomycopsis schoenii, a predator yeast with useful properties in fermentation and fungal biocontrol.


Assuntos
Biologia Molecular/métodos , Saccharomycopsis/genética , Fermentação , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Saccharomycopsis/metabolismo
11.
Acta Virol ; 63(3): 301-308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507196

RESUMO

Transmissible gastroenteritis virus (TGEV) causes great economic loss to swine industry worldwide. Vaccination is an important method to control the TGEV infection. In this study, a TGEV oral vaccine was generated by transferring a eukaryotic expression recombinant plasmid carrying the SAD (A and D antigenic sites of the S protein) epitope of TGEV into a swine-origin Lactobacillus acidophilus (L. acidophilus). In orally immunized BALB/c mice, the TGEV L. acidophilus oral vaccine induced significantly higher level of SIgA antibodies specific to TGEV compared with the mice immunized with a commercial inactivated TGEV vaccine and similar levels of IgG specific to TGEV as the inactivated vaccine. Furthermore, the TGEV L. acidophilus oral vaccine induced higher levels of IFN-γ, which suggested that the vaccine was able to induce immune response. In brief, this novel TGEV L. acidophilus oral vaccine could induce high levels of both mucosal and humoral immune responses, which has a potential to be used in the pig industries in the future. Keywords: transmissible gastroenteritis virus (TGEV); live L. acidophilus oral vaccine; SIgA antibody; IgG antibody; IFN-γ; IL-4.


Assuntos
Anticorpos Antivirais , Epitopos , Gastroenterite Suína Transmissível , Lactobacillus acidophilus , Vírus da Gastroenterite Transmissível , Vacinas Virais , Administração Oral , Animais , Anticorpos Antivirais/sangue , Epitopos/genética , Epitopos/imunologia , Gastroenterite Suína Transmissível/imunologia , Gastroenterite Suína Transmissível/patologia , Imunogenicidade da Vacina/imunologia , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/virologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
12.
Mol Biol (Mosk) ; 53(4): 600-612, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31397434

RESUMO

A new plasmid, pSM22, was isolated from Serratia marcescens and sequenced. Its 43 190-bp sequence with an average GC-content of 58% contains 31 open reading frames (ORFs) which form replication, conjugation, stability, and adaptive modules. The replication module includes a site of initiation of leading-strand synthesis in plasmid replication, a replication termination site (terC), the rep A (=repA1) and repA4 genes, and the copA sequence, which codes for an antisense RNA (asRNA). These structures are functionally integrated in an FII replicon (incompatibility group IncFII). Based on the significant differences between the FII replicon and the canonical sequences of the R plasmids R1 and NR1 (=R100=R222), pSM22 was assigned to a new subtype. The conjugation module includes 13 genes with a high identity to the genes responsible for conjugation of the F plasmid. A comparative genomic analysis showed that the conjugation modules of pSM22 and F are structurally similar. By the conjugation system and the presence of three conserved motifs in relaxase (TraI), pSM22 belongs to the F12 clade of the MOBF type. The stability module includes the resD and parA genes, which are responsible for the resolution of multimeric plasmid forms and their subsequent segregation between daughter cells. The adaptive module contains the microcin H47 (MccH47) secretion/processing and UV resistance genes. The mosaic structure of pSM22 and reductive evolution of its modules suggest high genomic plasticity for the genus Serratia. An analysis of the architecture of the pSM22 modules clarifies the evolutionary relationships among IncF/MOBF12 group plasmids in bacteria of the family Enterobacteriaceae and opens a novel avenue for further comparative genomic studies of Serratia plasmids.


Assuntos
Evolução Molecular , Genômica , Plasmídeos/classificação , Plasmídeos/genética , Replicação do DNA , Genes Bacterianos , Genoma Bacteriano/genética , Replicon/genética , Serratia marcescens/genética
13.
Epidemiol Mikrobiol Imunol ; 68(2): 99-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398983

RESUMO

The increasing incidence of multiresistant bacterial strains is currently a serious health concern. These pathogens are often the cause of nosocomial infections with limited treatment options and high fatality rates. A case report is presented of an uncommon detection of four different species (Citrobacter freundii, Klebsiella pneumoniae, Escherichia coli, and Morganella morganii) producing the same type of carbapenemase, KPC-2, in a female patient during her complicated long-term hospital stay. Resistance was probably spread to other species by horizontal transmission of plasmids carrying the blaKPC-2 genes. The implementation of strict anti-epidemic measures prevented further spread of these carbapenem-resistant bacteria.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Infecção Hospitalar , beta-Lactamases , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Coinfecção/microbiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana/genética , Feminino , Transferência Genética Horizontal , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
14.
Bioelectrochemistry ; 130: 107343, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401517

RESUMO

Skin is a very suitable target for gene therapy and DNA vaccination due to its accessibility, its surface and its ability to produce transgenes. Gene electrotransfer (GET) to the skin is under development for clinical applications for DNA vaccine or local treatment such as wound healing. Local treatments are effective if the expression of the plasmid affects only the local environment (skin) by inducing an efficient concentration over a prolonged period. In this study, we evaluate the control of expression in the skin of a plasmid coding a fluorescent protein by its CpG (cytosine-phosphate-guanine motif) content. Two fluorescent reporter genes are evaluated: tdTomato and GFP. The expression is followed on the long term by in vivo fluorescence imaging. Our results show that GET mediated expression in the skin can be controlled by the CpG content of the plasmid. Long term expression (>120 days) can be obtained at high level with CpG-free constructs associated with a proper design of the electrodes where the field distribution mediating the gene electrotransfer is present deep in the skin.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Plasmídeos/administração & dosagem , Pele/metabolismo , Animais , Ilhas de CpG , DNA/genética , Eletrodos , Eletroporação/métodos , Feminino , Genes Reporter , Camundongos Endogâmicos C57BL , Plasmídeos/genética
15.
Int J Food Microbiol ; 307: 108274, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31404780

RESUMO

The purpose of this study was to determine the genetic characterization of ciprofloxacin resistant- Escherichia coli recovered from 7 different integrated broiler operations in Korea. Among the 157 E. coli isolated from chicken meat produced by integrated broiler operations, 75 (47.8%) were observed to be ciprofloxacin resistant-E. coli. However, the prevalence varied from 25.0 to 75.0%, in chicken meat, indicating variation in ciprofloxacin resistant E. coli occurrence among the operations. Among the 75 ciprofloxacin resistant-E. coli isolates, 10 showed plasmid-mediated quinolone resistance (PMQR) genes, aac(6')-Ib-cr, qnrS1 and qnrB4. Among the 10 PMQR-positive E. coli, a double amino-acid exchange in both gyrA and parC with ciprofloxacin minimum inhibitory concentrations of ≥16 µg/mL was noted in 8 isolates, and 4 transconjugants (40.0%) expressed similar antimicrobial resistance patterns and revealed the presence of PMQR genes and ß-lactamase genes. Our findings suggest that E. coli with resistance to ciprofloxacin can now be found in association with integrated broiler operations, thus highlighting the need for monitoring and prevention programs in integrated operations.


Assuntos
Ciprofloxacino/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Carne/microbiologia , Plasmídeos/genética , Quinolonas/farmacologia , Criação de Animais Domésticos/normas , Animais , Antibacterianos/farmacologia , Galinhas , Escherichia coli/genética , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana , República da Coreia/epidemiologia
16.
Nat Methods ; 16(9): 887-893, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406383

RESUMO

The ability to modify multiple genetic elements simultaneously would help to elucidate and control the gene interactions and networks underlying complex cellular functions. However, current genome engineering technologies are limited in both the number and the type of perturbations that can be performed simultaneously. Here, we demonstrate that both Cas12a and a clustered regularly interspaced short palindromic repeat (CRISPR) array can be encoded in a single transcript by adding a stabilizer tertiary RNA structure. By leveraging this system, we illustrate constitutive, conditional, inducible, orthogonal and multiplexed genome engineering of endogenous targets using up to 25 individual CRISPR RNAs delivered on a single plasmid. Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes , Redes Reguladoras de Genes , Engenharia Genética , Genoma Humano , RNA Guia/genética , Acidaminococcus/enzimologia , Endonucleases/genética , Células HEK293 , Humanos , Plasmídeos/genética , Ativação Transcricional
17.
Int J Food Microbiol ; 307: 108275, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31408739

RESUMO

Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) isolates were found to have a multi-drug resistance profile (kanamycin, streptomycin, nalidixic acid, tetracycline, sulfonamide, and sometimes to ampicillin) and high prevalence (91%) in Turkish poultry in our previous studies. To investigate the mechanism behind multi-drug antimicrobial resistance (AMR) and high prevalence in Turkish poultry, 23 of the isolates were sequenced for comparative genomic analyses including: SNP-based comparison to S. Infantis from other countries, comparison of antimicrobial resistance genes (AMGs) with AMR phenotypes, and plasmid identification and annotation. Whole-genome SNP-based phylogenetic analysis found that all 23 Turkish S. Infantis isolates formed a distinct, well-supported clade, separate from 243 comparison S. Infantis genomes in GenomeTrakr identified as from the US and EU; the isolates most closely related to the cluster of these Turkish isolates were from Israel and Egypt. AMGs identified by bioinformatic analysis, without differentiating chromosomal or plasmid located genes, implied AMR phenotypes with 94% similarity overall to wet lab data, which was performed by phenotypic and conventional PCR methods. Most of the S. Infantis (21/23) isolates had identifiable plasmids, with 76% (16/21) larger than 100 kb and 48% (10/21) larger than 200 kb. A plasmid larger than 200 kb, with the incompatibility type of IncX1, similar to United States S. Infantis plasmid N55391 (99% query coverage and 99% identity overall), which itself is similar to Italian and Hungarian S. Infantis plasmids. Turkish S. Infantis plasmids had different beta-lactam resistance genes (blaTEM-70, blaTEM-148 and blaTEM-198) than the gene blaCTX-M-65 found in S. Infantis plasmids from other countries. This is the first observation of these three genes in S. Infantis isolates. The plasmids larger than 200 kb had two distinct regions of interest: Site 1 and Site 2. Site 1 (around 130 kb) had virulence- and bacteriocin- associated genes such as bacteriocin secretion system and type II toxin-antitoxin system genes (vagC, ccdA, ccdB, mchE, cvaB) and an aminoglycoside resistance gene (str). Site 2 (around 75-110 kb) had the antimicrobial resistance genes (aadA, sulI, tetA, tetR) and mercury (mer) resistance gene on tranposons Tn552 and Tn501. Presence of these AMR and virulence genes suggests they may have a role in the emergence of S. Infantis in poultry and support treating this serotype as a an important human health hazard.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Animais , Genoma Bacteriano/genética , Filogenia , Aves Domésticas , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Turquia , Virulência/genética
18.
Biochem Mol Biol Educ ; 47(6): 638-643, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390150

RESUMO

This laboratory experiment describes the production and purification of plasmid DNA for undergraduate biochemistry and biotechnology courses. This experiment performed in a one-week period includes the protocols for plasmid pVAX1-LacZ production in Escherichia coli DH5α cells and subsequent purification of supercoiled pVAX1-LacZ. Firstly, the students use a growth medium that favors the replication of the plasmid resulting in a higher plasmid production during exponential growth. Afterwards, alkaline lysis is done to disrupt the bacterial cells and recover pVAX1-LacZ plasmid. Lastly, they perform the purification of pVAX1-LacZ supercoiled isoform by L-histidine chromatography, followed by agarose gel electrophoresis to characterize the separation of supercoiled isoform from contaminants. The proposed experiment provides an opportunity for students to acquire these skills that are routinely used in biochemistry and biotechnology laboratories. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):638-643, 2019.


Assuntos
Bioquímica/educação , Biotecnologia/educação , Currículo , DNA Bacteriano/biossíntese , DNA Bacteriano/isolamento & purificação , Plasmídeos/biossíntese , Plasmídeos/isolamento & purificação , DNA Bacteriano/genética , Escherichia coli/citologia , Escherichia coli/metabolismo , Humanos , Laboratórios , Plasmídeos/genética , Estudantes , Universidades
19.
Microbiol Res ; 228: 126307, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31422229

RESUMO

Bacterial plasmids carry genes that code for additional traits such as osmoregulation, CO2 fixation, antibiotic and heavy metal resistance, root nodulation and nitrogen fixation. The main objective of the current study was to identify plasmid-conferring osmoregulatory genes in bacteria isolated from rhizospheric and non-rhizospheric soils of halophytes (Salsola stocksii and Atriplex amnicola). More than 55% of halophilic bacteria from the rhizosphere and 70% from non-rhizospheric soils were able to grow at 3 M salt concentrations. All the strains showed optimum growth at 1.5-3.0 M NaCl. Bacterial strains from the Salsola rhizosphere showed maximum (31%) plasmid elimination during curing experiments as compared to bacterial strains from the Atriplex rhizosphere and non-rhizospheric soils. Two plasmid cured strains Bacillus HL2HP6 and Oceanobacillus HL2RP7 lost their ability to grow in halophilic medium, but they grew well on LB medium. The plasmid cured strains also showed a change in sensitivity to specific antibiotics. These plasmids were isolated and transformed into E. coli strains and growth response of wild-type and transformed E. coli strains was compared at 1.5-4 M NaCl concentrations. Chromosomal DNA and plasmids from Bacillus filamentosus HL2HP6 were sequenced by using high throughput sequencing approach. Results of functional analysis of plasmid sequences showed different proteins and enzymes involved in osmoregulation of bacteria, such as trehalose, ectoine synthetase, porins, proline, alanine, inorganic ion transporters, dehydrogenases and peptidases. Our results suggested that plasmid conferring osmoregulatory genes play a vital role to maintain internal osmotic balance of bacterial cells and these genes can be used to develop salt tolerant transgenic crops.


Assuntos
Bactérias/genética , Osmorregulação/genética , Plasmídeos/genética , Plasmídeos/isolamento & purificação , Rizosfera , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/microbiologia , Alanina/metabolismo , Diamino Aminoácidos/metabolismo , Antibacterianos/farmacologia , Atriplex/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Oxirredutases , Peptídeo Hidrolases , Filogenia , Porinas/metabolismo , Prolina/metabolismo , Cloreto de Sódio , Solo , Microbiologia do Solo , Trealose/metabolismo
20.
Int J Food Microbiol ; 308: 108290, 2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31442712

RESUMO

The plasmid-mediated colistin resistance gene mcr-1 has been identified in various Enterobacteriaceae species, which poses a great challenge to the public health. The present study aimed to investigate the prevalence of mcr-1 in Vibrio parahaemolyticus isolated from food samples in China, and to conduct a comprehensive analysis on the molecular characterization of V. parahaemolyticus isolate carrying mcr-1-harboring plasmid. A total of 646 V. parahaemolyticus strains isolated from 2531 food samples collected in retail markets in 34 different cities in China were screened for colistin resistance. Of the 646 V. parahaemolyticus isolates tested, 25 (2.5%) exhibited colistin resistance. The mcr-1 gene was detected in one colistin-resistant V. parahaemolyticus isolate, VP181, obtained from a shrimp sample collected in Hong Kong. The mcr-1 gene was located on a transferable IncX4 plasmid with size of ~40 kb. A Class A ß-lactamase gene, blaCARB-17 and the plasmid-mediated quinolone resistance (PMQR) gene qnrVC5 were detected in the mcr-1-positive V. parahaemolyticus isolate VP181. Virulence gene assays indicated that tdh was detected in VP181 by PCR. This is the first report of the occurrence of plasmid-encoded mcr-1 in virulent V. parahaemolyticus strain. Our findings indicate horizontal transfer of this gene to non-Enterobacteriaceae gram-negative bacteria, which warrants further investigation because of the public health threat it poses.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Vibrio parahaemolyticus/genética , beta-Lactamases/genética , China , Plasmídeos/genética , Plasmídeos/isolamento & purificação , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA