Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.328
Filtrar
1.
Braz. j. biol ; 83: e247422, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285631

RESUMO

Abstract Plasmodium falciparum resistance to Chloroquine (CQ) is a significant cause of mortality and morbidity worldwide. There is a paucity of documented data on the prevalence of CQ-resistant mutant haplotypes of Pfcrt and Pfmdr1 genes from malaria-endemic war effected Federally Administered Tribal Areas of Pakistan. The objective of this study was to investigate the prevalence of P. falciparum CQ-resistance in this area. Clinical isolates were collected between May 2017 and May 2018 from North Waziristan and South Waziristan agencies of Federally Administrated Trial Area. Subsequently, Giemsa-stained blood smears were examined to detect Plasmodium falciparum. Extraction of malarial DNA was done from microscopy positive P. falciparum samples, and P. falciparum infections were confirmed by nested PCR (targeting Plasmodium small subunit ribosomal ribonucleic acid (ssrRNA) genes). All PCR confirmed P. falciparum samples were sequenced by pyrosequencing to find out mutation in Pfcrt gene at codon K76T and in pfmdr1 at codons N86Y, Y184F, N1042D, and D1246Y. Out of 121 microscopies positive P. falciparum cases, 109 samples were positive for P. falciparum by nested PCR. Pfcrt K76T mutation was found in 96% of isolates, Pfmdr1 N86Y mutation was observed in 20%, and 11% harboured Y184F mutation. All samples were wild type for Pfmdr1 codon N1042D and D1246Y. In the FATA, Pakistan, the frequency of resistant allele 76T remained high despite the removal of CQ. However, current findings of the study suggest complete fixation of P. falciparum CQ-resistant genotype in the study area.


Resumo A resistência do Plasmodium falciparum à cloroquina (CQ) é uma causa significativa de mortalidade e morbidade em todo o mundo. Há uma escassez de dados documentados sobre a prevalência de haplótipos mutantes CQ-resistentes dos genes Pfcrt e Pfmdr1 da guerra endêmica da malária em áreas tribais administradas pelo governo federal do Paquistão. O objetivo deste estudo foi investigar a prevalência de resistência a CQ de P. falciparum nesta área. Isolados clínicos foram coletados entre maio de 2017 e maio de 2018 nas agências do Waziristão do Norte e do Waziristão do Sul da Área de Ensaio Administrada Federalmente. Posteriormente, esfregaços de sangue corados com Giemsa foram examinados para detectar Plasmodium falciparum. A extração do DNA da malária foi feita a partir de amostras de P. falciparum positivas para microscopia, e as infecções por P. falciparum foram confirmadas por nested PCR (visando genes de ácido ribonucleico ribossômico de subunidade pequena de Plasmodium (ssrRNA)). Todas as amostras de P. falciparum confirmadas por PCR foram sequenciadas por pirosequenciamento para descobrir a mutação no gene Pfcrt no códon K76T e em pfmdr1 nos códons N86Y, Y184F, N1042D e D1246Y. De 121 microscopias de casos positivos de P. falciparum, 109 amostras foram positivas para P. falciparum por nested PCR. A mutação Pfcrt K76T foi encontrada em 96% dos isolados, a mutação Pfmdr1 N86Y foi observada em 20% e 11% abrigou a mutação Y184F. Todas as amostras eram do tipo selvagem para o códon N1042D e D1246Y de Pfmdr1. No FATA, Paquistão, a frequência do alelo resistente 76T permaneceu alta apesar da remoção de CQ. No entanto, as descobertas atuais do estudo sugerem a fixação completa do genótipo resistente a CQ de P. falciparum na área de estudo.


Assuntos
Plasmodium falciparum/genética , Antimaláricos/farmacologia , Paquistão , Proteínas de Membrana Transportadoras/genética , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Cloroquina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Alelos
2.
Elife ; 112022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36097817

RESUMO

Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.


Malaria is a disease spread by mosquitoes. When infected insects bite the skin, they inject parasites called Plasmodium into the host. The symptoms of the disease then develop when Plasmodium infect host red blood cells. These parasites cannot make the raw materials to build their own proteins, so instead, they digest haemoglobin ­ the protein used by red blood cells to carry oxygen ­ and use its building blocks to produce proteins. Blocking the digestion of haemoglobin can stop malaria infections in their tracks, but it is unclear how exactly Plasmodium parasites break down the protein. Researchers think that a group of four enzymes called aminopeptidases are responsible for the final stage in this digestion, releasing the amino acids that make up haemoglobin. However, the individual roles of each of these aminopeptidases are not yet known. To start filling this gap, Edgar et al. set out to study one of these aminopeptidases, called PfA-M17. First, they genetically modified Plasmodium falciparum parasites so that the levels of this aminopeptidase were reduced during infection. Without the enzyme, the parasites were unable to grow. The next step was to confirm that this was because PfA-M17 breaks down haemoglobin, and not for another reason. To test this, Edgar et al. designed a new molecule that could stop PfA-M17 from releasing amino acids. This molecule, which they called 'compound 3', had the same effect as reducing the levels of PfA-M17. Further analysis showed that the amino acids that PfA- M17 releases match the amino acids found in haemoglobin. Malaria causes hundreds of thousands of deaths per year. Although there are treatments available, the Plasmodium parasites are starting to develop resistance. Confirming the role of PfA-M17 provides a starting point for new studies by parasitologists, biologists, and drug developers. This could lead to the development of chemicals that block this enzyme, forming the basis for new treatments.


Assuntos
Malária Falciparum , Plasmodium falciparum , Aminopeptidases/química , Aminopeptidases/genética , Digestão , Hemoglobinas , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Inibidores de Proteases , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
3.
Malar J ; 21(1): 255, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068577

RESUMO

BACKGROUND: Circulating myeloid-derived-suppressor-cells (MDSC) with immunosuppressive function are increased in human experimental Plasmodium falciparum infection, but have not been studied in clinical malaria. METHODS: Using flow-cytometry, circulating polymorphonuclear-MDSC were evaluated in cryopreserved samples from patients with uncomplicated Plasmodium vivax (n = 8) and uncomplicated (n = 4) and severe (n = 16) falciparum malaria from Papua, Indonesia. RESULTS: The absolute number of circulating polymorphonuclear-MDSC were significantly elevated in severe falciparum malaria patients compared to controls (n = 10). Polymorphonuclear-MDSC levels in uncomplicated vivax malaria were also elevated to levels comparable to that seen in severe falciparum malaria. CONCLUSION: Control of expansion of immunosuppressive MDSC may be important for development of effective immune responses in falciparum and vivax malaria.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Células Supressoras Mieloides , Humanos , Indonésia , Malária/complicações , Plasmodium falciparum , Plasmodium vivax
4.
Front Cell Infect Microbiol ; 12: 934321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118030

RESUMO

Assessment of serological Plasmodium falciparum-specific antibodies in highly endemic areas provides valuable information about malaria status and parasite exposure in the population. Although serological evidence of Plasmodium exposure is commonly determined by Plasmodium-specific immunoglobulin G (IgG) levels; IgM and IgA are likely markers of malaria status that remain relatively unexplored. Previous studies on IgM and IgA responses have been based on their affinity for single antigens with shortage of immune responses analysis against the whole Plasmodium proteome. Here, we provide evidence of how P. falciparum infection triggers the production of specific IgM and IgA in plasma and its relationship with parasite density and changes in hematological parameters. A total of 201 individuals attending a hospital in Breman Asikuma, Ghana, were recruited into this study. Total and P. falciparum-specific IgM, IgA, and IgG were assessed by ELISA and examined in relation to age (0-5, 14-49, and ≥50 age ranges); infection (submicroscopic vs. microscopic malaria); pregnancy and hematological parameters. Well-known IgG response was used as baseline control. P. falciparum-specific IgM and IgA levels increased in the population with the age, similarly to IgG. These data confirm that acquired humoral immunity develops by repeated infections through the years endorsing IgM and IgA as exposure markers in endemic malaria regions. High levels of specific IgA and IgM in children were associated with microscopic malaria and worse prognosis, because most of them showed severe anemia. This new finding shows that IgM and IgA may be used as diagnostic markers in this age group. We also found an extremely high prevalence of submicroscopic malaria (46.27% on average) accompanied by IgM and IgA levels indistinguishable from those of uninfected individuals. These data, together with the observed lack of sensitivity of rapid diagnostic tests (RDTs) compared to PCR, invoke the urgent need to implement diagnostic markers for submicroscopic malaria. Overall, this study opens the potential use of P. falciparum-specific IgM and IgA as new serological markers to predict malaria status in children and parasite exposure in endemic populations. The difficulties in finding markers of submicroscopic malaria are highlighted, emphasizing the need to explore this field in depth.


Assuntos
Malária Falciparum , Malária , Plasmodium , Anticorpos Antiprotozoários , Biomarcadores , Criança , Humanos , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Malária Falciparum/diagnóstico , Plasmodium falciparum , Proteoma
5.
Vaccine ; 40(40): 5781-5790, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
6.
Front Immunol ; 13: 984323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072606

RESUMO

In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03906474, NCT02927145.


Assuntos
Malária Falciparum , Malária , Parasitos , Adulto , Animais , Humanos , Plasmodium falciparum , Reino Unido
7.
Front Immunol ; 13: 900080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059505

RESUMO

Developing a safe and effective malaria vaccine is critical to reducing the spread and resurgence of this deadly disease, especially in children. In recent years, vaccine technology has seen expanded development of subunit protein, peptide, and nucleic acid vaccines. This is due to their inherent safety, the ability to tailor their immune response, simple storage requirements, easier production, and lower expense compared to using attenuated and inactivated organism-based approaches. However, these new vaccine technologies generally have low efficacy. Subunit vaccines, due to their weak immunogenicity, often necessitate advanced delivery vectors and/or the use of adjuvants. A new area of vaccine development involves design of synthetic micro- and nano-particles and adjuvants that can stimulate immune cells directly through their physical and chemical properties. Further, the unique and complex life cycle of the Plasmodium organism, with multiple stages and varying epitopes/antigens presented by the parasite, is another challenge for malaria vaccine development. Targeting multistage antigens simultaneously is therefore critical for an effective malaria vaccine. Here, we rationally design a layer-by-layer (LbL) antigen delivery platform (we called LbL NP) specifically engineered for malaria vaccines. A biocompatible modified chitosan nanoparticle (trimethyl chitosan, TMC) was synthesized and utilized for LbL loading and release of multiple malaria antigens from pre-erythrocytic and erythrocytic stages. LbL NP served as antigen/protein delivery vehicles and were demonstrated to induce the highest Plasmodium falciparum Circumsporozoite Protein (PfCSP) specific T-cell responses in mice studies as compared to multiple controls. From immunogenicity studies, it was concluded that two doses of intramuscular injection with a longer interval (4 weeks) than traditional malaria vaccine candidate dosing would be the vaccination potential for LbL NP vaccine candidates. Furthermore, in PfCSP/Py parasite challenge studies we demonstrated protective efficacy using LbL NP. These LbL NP provided a significant adjuvant effect since they may induce innate immune response that led to a potent adaptive immunity to mediate non-specific anti-malarial effect. Most importantly, the delivery of CSP full-length protein stimulated long-lasting protective immune responses even after the booster immunization 4 weeks later in mice.


Assuntos
Quitosana , Vacinas Antimaláricas , Nanopartículas , Parasitos , Animais , Antígenos de Protozoários/metabolismo , Quitosana/metabolismo , Camundongos , Plasmodium falciparum
8.
BMC Med ; 20(1): 350, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36109733

RESUMO

BACKGROUND: In 2012, the World Health Organization (WHO) recommended single low-dose (SLD, 0.25 mg/kg) primaquine to be added as a Plasmodium (P.) falciparum gametocytocide to artemisinin-based combination therapy (ACT) without glucose-6-phosphate dehydrogenase (G6PD) testing, to accelerate malaria elimination efforts and avoid the spread of artemisinin resistance. Uptake of this recommendation has been relatively slow primarily due to safety concerns. METHODS: A systematic review and individual patient data (IPD) meta-analysis of single-dose (SD) primaquine studies for P. falciparum malaria were performed. Absolute and fractional changes in haemoglobin concentration within a week and adverse effects within 28 days of treatment initiation were characterised and compared between primaquine and no primaquine arms using random intercept models. RESULTS: Data comprised 20 studies that enrolled 6406 participants, of whom 5129 (80.1%) had received a single target dose of primaquine ranging between 0.0625 and 0.75 mg/kg. There was no effect of primaquine in G6PD-normal participants on haemoglobin concentrations. However, among 194 G6PD-deficient African participants, a 0.25 mg/kg primaquine target dose resulted in an additional 0.53 g/dL (95% CI 0.17-0.89) reduction in haemoglobin concentration by day 7, with a 0.27 (95% CI 0.19-0.34) g/dL haemoglobin drop estimated for every 0.1 mg/kg increase in primaquine dose. Baseline haemoglobin, young age, and hyperparasitaemia were the main determinants of becoming anaemic (Hb < 10 g/dL), with the nadir observed on ACT day 2 or 3, regardless of G6PD status and exposure to primaquine. Time to recovery from anaemia took longer in young children and those with baseline anaemia or hyperparasitaemia. Serious adverse haematological events after primaquine were few (9/3, 113, 0.3%) and transitory. One blood transfusion was reported in the primaquine arms, and there were no primaquine-related deaths. In controlled studies, the proportions with either haematological or any serious adverse event were similar between primaquine and no primaquine arms. CONCLUSIONS: Our results support the WHO recommendation to use 0.25 mg/kg of primaquine as a P. falciparum gametocytocide, including in G6PD-deficient individuals. Although primaquine is associated with a transient reduction in haemoglobin levels in G6PD-deficient individuals, haemoglobin levels at clinical presentation are the major determinants of anaemia in these patients. TRIAL REGISTRATION: PROSPERO, CRD42019128185.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Antimaláricos/efeitos adversos , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Glucosefosfato Desidrogenase , Hemoglobinas/análise , Humanos , Malária/complicações , Malária Falciparum/complicações , Plasmodium falciparum , Primaquina/efeitos adversos
9.
Malar J ; 21(1): 267, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109748

RESUMO

BACKGROUND: Plasmodium falciparum is the most serious, genetically most complex and fastest-evolving malaria parasite. Information on genetic diversity of this parasite would guide policy decision and malaria elimination endeavors. This study explored the temporal dynamics of P. falciparum population in two time points in Metehara, east-central Ethiopia. METHODS: The participants were quantitative real-time polymerase chain reaction-confirmed patients who were recruited for uncomplicated falciparum malaria therapeutic efficacy test in 2015 and 2019. Dry blood spot samples were analysed by the nested PCR to genotype P. falciparum merozoite surface protein (msp1, msp2) and glutamate-rich protein (glurp) genes. RESULTS: While msp1, msp2 and glurp genotypes were successfully detected in 26(89.7%), 24(82.8%) and 14(48.3%) of 2015 samples (n = 29); the respective figures for 2019 (n = 41) were 31(68.3%), 39(95.1%), 25(61.0%). In 2015, the frequencies of K1, MAD20 and RO33 allelic families of msp1, and FC27 and IC/3D7 of msp2 were 19(73.1%), 8(30.6%), 14(53.8%), 21(87.5%), 12(50.5%); and in 2019 it was 15(48.4%), 19(61.3%), 15(48.4%), 30(76.9%), 27(69.2%) respectively. MAD20 has shown dominance over both K1 and RO33 in 2019 compared to the proportion in 2015. Similarly, although FC27 remained dominant, there was shifting trend in the frequency of IC/3D7 from 50.5% in 2015 to 69.2% in 2019. The multiplicity of infection (MOI) and expected heterozygosity index (He) in 2015 and 2019 were respectively [1.43 ± 0.84] and [1.15 ± 0.91], 0.3 and 0.03 for msp1. However, there was no significant association between MOI and age or parasitaemia in both time points. CONCLUSION: The lower genetic diversity in P. falciparum population in the two time points and overall declining trend as demonstrated by the lower MOI and He may suggest better progress in malaria control in Metehara. But, the driving force and selective advantage of switching to MAD20 dominance over the other two msp1 allelic families, and the dynamics within msp2 alleles needs further investigation.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Variação Genética , Ácido Glutâmico , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
PLoS One ; 17(9): e0272847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048775

RESUMO

BACKGROUND: Rapid Diagnostic Tests (RDTs) have become the cornerstone for the management of malaria in many endemic settings, but their use is constrained for several reasons: (i) persistent malaria antigen (histidine-rich protein 2; HRP2) leading to false positive test results; (ii) hrp2 deletions leading to false negative PfHRP2 results; and (iii) limited sensitivity with a detection threshold of around 100 parasites/µl blood (pLDH- and HRP2-based) leading to false negative tests. Microscopy is still the gold standard for malaria diagnosis, and allows for species determination and quantitation, but requires trained microscopists, maintained microscopes and has detection limit issues. Consequently, there is a pressing need to develop and evaluate more sensitive and accurate diagnostic tests. To address this need we have developed a direct on blood mini PCR-NALFIA test that combines the benefits of molecular biology with low infrastructural requirements and extensive training. METHODS: This is a Phase 3 diagnostic evaluation in 5 African countries. Study sites (Sudan, Ethiopia, Burkina, Kenya and Namibia) were selected to ensure wide geographical coverage of Africa and to address various malaria epidemiological contexts ranging from high transmission to near elimination settings with different clinical scenarios and diagnostic challenges. Study participants will be enrolled at the study health facilities after obtaining written informed consent. Diagnostic accuracy will be assessed following the WHO/TDR guidelines for the evaluation of diagnostics and reported according to STARD principles. Due to the lack of a 100% specific and sensitive standard diagnostic test for malaria, the sensitivity and specificity of the new test will be compared to the available diagnostic practices in place at the selected sites and to quantitative PCR as the reference test. DISCUSSION: This phase 3 study is designed to validate the clinical performance and feasibility of implementing a new diagnostic tool for the detection of malaria in real clinical settings. If successful, the proposed technology will improve the diagnosis of malaria. Enrolment started in November 2022 (Kenya) with assessment of long term outcome to be completed by 2023 at all recruitment sites. TRIAL REGISTRATION: Pan African Clinical Trial Registry (www.pactr.org) PACTR202202766889963 on 01/02/2022 and ISCRTN (www.isrctn.com/) ISRCTN13334317 on 22/02/2022.


Assuntos
Malária Falciparum , Malária , Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/métodos , Humanos , Quênia , Malária/diagnóstico , Malária/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
11.
PLoS One ; 17(9): e0270863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048819

RESUMO

Plasmodium falciparum, a protozoan parasite and causative agent of human malaria, has one of the most A/T-biased genomes sequenced to date. This may give the genome and the transcriptome unusual structural features. Recent progress in sequencing techniques has made it possible to study the secondary structures of RNA molecules at the transcriptomic level. Thus, in this study we produced the in vivo RNA structurome of a protozoan parasite with a highly A/U-biased transcriptome. We showed that it is possible to probe the secondary structures of P. falciparum RNA molecules in vivo using two different chemical probes, and obtained structures for more than half of all transcripts in the transcriptome. These showed greater stability (lower free energy) than the same structures modelled in silico, and structural features appeared to influence translation efficiency and RNA decay. Finally, we compared the P. falciparum RNA structurome with the predicted RNA structurome of an A/U-balanced species, P. knowlesi, finding a bias towards lower overall transcript stability and more hairpins and multi-stem loops in P. falciparum. This unusual protozoan RNA structurome will provide a basis for similar studies in other protozoans and also in other unusual genomes.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Genoma de Protozoário , Humanos , Malária/genética , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA , RNA de Protozoário/genética , Transcriptoma
12.
Malar J ; 21(1): 265, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100912

RESUMO

BACKGROUND: Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS: Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS: The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION: This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.


Assuntos
Antimaláricos , Artemisininas , Culicidae , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Biomarcadores , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Humanos , Quênia/epidemiologia , Malária Falciparum/parasitologia , Mosquitos Vetores , Oocistos , Plasmodium falciparum/genética , Tetra-Hidrofolato Desidrogenase/genética
13.
Front Cell Infect Microbiol ; 12: 886728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061874

RESUMO

Plasmodium falciparum malaria is still an important disease in sub-Saharan Africa (sSA). Great strides have been made in its control spear-headed by artemisinin (ART)-based combination therapies (ACTs). However, concerns about the imminent spread of ART-resistant (ARTr) malaria parasites to sSA threaten gains already made. Attempts to mitigate this risk have highlighted the need to discover novel P. falciparum drug targets. Therefore, studies to deepen our understanding of the biology of P. falciparum are needed. The role of extracellular vesicles (EVs) in the biology of malaria parasites is not fully understood. Recently, the ART resistance-associated transcriptional profile has been reported to involve several biological processes connected to vesicular trafficking, proteotoxic stress, erythrocyte remodelling, and mitochondrial metabolism. We explored a role for EVs in developing the P. falciparum ARTr phenotype using bulk RNA sequencing of unsynchronized parasite cultures under untreated, 0.1% dimethyl sulfoxide and 700nM dihydroartemisinin treated conditions for six hours. As pathway and gene ontology analysis is limited in its curated knowledge repertoire on EVs biogenesis in P. falciparum, we used a modular (gene set) analysis approach to explore whether an EVs biogenesis module is associated with the ARTr phenotype in P. falciparum. We first generated well-defined EVs modules of interest and used statistical tools to determine differences in their expression among the parasite and treatment conditions. Then we used gene set enrichment analysis to determine the strength of the association between each EVs module of interest and the ARTr phenotype. This transcriptome-module phenotype association study (TMPAS) represents a well-powered approach to making meaningful discoveries out of bulk gene expression data. We identified four EVs module of interest and report that one module representing gene sets with correlated expression to PF3D7_1441800 - involved with EVs biogenesis in P. falciparum - is associated with the ARTr phenotype (R539T_DHA_treated versus R539T_untreated: normalized enrichment score (NES) = 1.1830174, FDR q-value < 0.25; C580R_DHA_treated versus C580R_untreated: NES = 1.2457103, FDR q-value < 0.25). PF3D7_1441800 has been reported to reduce EVs production when knocked out in P. falciparum. Altogether, our findings suggest a role for EVs in developing ART resistance and warrant further studies interrogating this association.


Assuntos
Antimaláricos , Artemisininas , Fenômenos Biológicos , Vesículas Extracelulares , Malária Falciparum , Antimaláricos/farmacologia , Artemisininas/farmacologia , Humanos , Malária Falciparum/parasitologia , Fenótipo , Plasmodium falciparum/genética , Transcriptoma
14.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080381

RESUMO

Malaria is one of the most important infectious diseases worldwide. The causative of the most severe forms of malaria, Plasmodium falciparum, has developed resistances against all the available antimalarial drugs. In the present study, the phytochemical investigation of the green seaweed Halimeda macroloba has afforded two new compounds 1-2, along with 4 known ones 3-6. The structures of the compounds had been confirmed using 1& 2D-NMR and HRESIMS analyses. Extensive machine-learning-supported virtual-screening suggested cytochrome-C enzyme as a potential target for compound 2. Docking, absolute-binding-free-energy (ΔGbinding) and molecular-dynamics-simulation (MDS) of compound 2 revealed the strong binding interaction of this compound with cytochrome-C. In vitro testing for crude extract and isolated compounds revealed the potential in vitro inhibitory activity of both extract and compound 2 against P. falciparum. The crude extract was able to inhibit the parasite growth with an IC50 value of 1.8 ± 0.35 µg/mL. Compound 2 also showed good inhibitory activity with an IC50 value of 3.2 ± 0.23 µg/mL. Meanwhile, compound 6 showed moderate inhibitory activity with an IC50 value of 19.3 ± 0.51 µg/mL. Accordingly, the scaffold of compound 2 can be considered as a good lead compound for the future development of new antimalarial agents.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Alga Marinha , Antimaláricos/química , Citocromos , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/química , Plasmodium falciparum
15.
Malar J ; 21(1): 251, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050680

RESUMO

BACKGROUND: The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the global burden of malaria. This study assessed the burden of malaria infection among individuals with varying blood groups seeking treatment at selected hospitals in Kenya. METHODS: A total of 366 samples from an ongoing malaria surveillance study were diagnosed for malaria by microscopy and further typed for blood group using ABO blood grouping. Age and sex were recorded in a data sheet, and analysed using R software version 4. Groups' proportions (blood group, malaria infection, age and sex) were compared using Pearson's Chi-square and Fischer exact tests. Wilcoxon and Kruskal-Wallis tests were performed and P-value < 0.05 was considered significant after Bonferroni correction for multiple comparisons. To understand the effect of each blood group on parasitaemia, multivariate logistic regression was used to model ABO blood group in relation to parasitaemia. RESULTS: Of the 366 samples analysed, 312 were malaria positive, mean age was 9.83 years (< 5 years n = 152 (48.41%), 6 to 17 years n = 101 (32.16%) and > 18 years n = 61 (19.43%)). Malaria prevalence was higher among females than males, 54.46% and 45.54%, respectively. Kisumu enrolled the highest number 109 (35%)) of malaria cases, Kombewa 108 (35%), Malindi 32 (10%), Kisii 28 (9%), Marigat 23 (7%), and Kericho 12 (4%). Blood group O+ was the most prevalent among the enrolled individuals (46.50%), A+ (27.71%), B+ (21.02%) and AB+ (4.78%) respectively. Compared to blood group O+, blood group B+ individuals were (14%) were more likely to habour Plasmodium falciparum infection as opposed to A+ and AB+ individuals, that were 7% and 20%, respectively,. Those living in malaria-endemic zones presented with higher parasite densities compared to those living in malaria-epidemic (p = 0.0061). Individuals bearing B + blood group are more likely to habour high parasitaemia compared to O + blood group bearers (OR = 4.47, CI = 1.53-13.05, p = 0.006). CONCLUSION: Individuals of blood group B harbour high parasitaemia compared with the blood group O, Additionally, blood group A and B present with symptoms at lower parasitaemia than blood group O. Regardles of malaria transmission zones, individuals from endemic zones showed up with high parasitaemia and among them were more individuals of blood groups A and B than individuals of blood group O. Implying that these individuals were more at risk and require additional attention and effective case management.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Malária , Criança , Feminino , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária Falciparum/parasitologia , Masculino , Parasitemia/epidemiologia , Plasmodium falciparum
16.
Malar J ; 21(1): 252, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050757

RESUMO

BACKGROUND: Simple and accurate diagnosis is a key component of malaria control programmes. Microscopy is the current gold standard, however it requires extensive training and the results largely rely on the skill of the microscopists. Malaria rapid diagnostic tests (RDT) can be performed with minimal training and offer timely diagnosis, but results are not quantitative. Moreover, some Plasmodium falciparum parasites have evolved and can no longer be detected by existing RDT. Developed by the Sysmex Corporation, the XN-31 prototype (XN-31p) is an automated haematology analyser capable of detecting Plasmodium-infected erythrocytes and providing species differentiation and stage specific parasite counts in venous blood samples without any preparation in approximately one minute. However, factors such as stable electricity supply in a temperature-controlled room, cost of the instrument and its initial set-up, and need for proprietary reagents limit the utility of the XN-31p across rural settings. To overcome some of these limitations, a hub and spoke diagnosis model was designed, in which peripheral health facilities were linked to a central hospital where detection of Plasmodium infections by the XN-31p would take place. To explore the feasibility of this concept, the applicability of capillary blood samples with the XN-31p was evaluated with respect to the effect of sample storage time and temperature on the stability of results. METHODS: Paired capillary and venous blood samples were collected from 169 malaria-suspected outpatients in Homa Bay County Referral Hospital, Kenya. Malaria infections were diagnosed with the XN-31p, microscopy, RDT, and PCR. Capillary blood samples were remeasured on the XN-31p after 24 h of storage at either room (15-25 °C) or chilled temperatures (2-8 °C). RESULTS: Identical results in malaria diagnosis were observed between venous and capillary blood samples processed immediately after collection with the XN-31p. Relative to PCR, the sensitivity and specificity of the XN-31p with capillary blood samples were 0.857 and 1.000, respectively. Short-term storage of capillary blood samples at chilled temperatures had no adverse impact on parasitaemia and complete blood counts (CBC) measured by the XN-31p. CONCLUSION: These results demonstrate the potential of the XN-31p to improve routine malaria diagnosis across remote settings using a hub and spoke model.


Assuntos
Hematologia , Malária Falciparum , Malária , Testes Diagnósticos de Rotina/métodos , Humanos , Quênia , Malária/diagnóstico , Malária Falciparum/parasitologia , Plasmodium falciparum , Sensibilidade e Especificidade
17.
Comput Biol Med ; 149: 105962, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049412

RESUMO

Plasmodium falciparum causes malaria, which is an infectious and fatal disease. In early days, malaria-infected cells were diagnosed using a microscope. owing to a huge number of instances for analysis and intricacy of time, it may lead to false detection. Automated parasite detection technologies are in high demand due to increased time consumption and erroneous detection. To create effective cures and treatments, it is critical to use an accurate approach for predicting malaria parasite. Here, numerous protein sequences formulation techniques namely: discrete methods, Biochemical, physiochemical and Natural language processing techniques are applied for transformation of protein sequences in to numerical descriptors. Four classification algorithms are utilized and the anticipated results of these classifiers were then fused to establish ensemble classification model via simple majority and genetic algorithm. In addition, BCH error correction code is incorporated with support vector machine using all the feature spaces. The simulated results demonstrate the remarkable achievement of proposed compared to previous models. Thus, our proposed model may be an effective tool for discriminating the secretory and non-secretory proteins of malaria parasite.


Assuntos
Malária , Parasitos , Algoritmos , Animais , Simulação por Computador , Humanos , Plasmodium falciparum
18.
Front Cell Infect Microbiol ; 12: 931635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118020

RESUMO

Malaria is one of the most prevalent infectious diseases posing a serious challenge over the years, mainly owing to the emergence of drug-resistant strains, sparking a need to explore and identify novel protein targets. It is a well-known practice to adopt a chemo-genomics approach towards identifying targets for known drugs, which can unravel a novel mechanism of action to aid in better drug targeting proficiency. Immunosuppressive drugs cyclosporin A, FK506 and rapamycin, were demonstrated to inhibit the growth of the malarial parasite, Plasmodium falciparum. Peptidyl prolyl cis/trans isomerases (PPIases), comprising cylcophilins and FK506-binding proteins (FKBPs), the specific target of these drugs, were identified in the Plasmodium parasite and proposed as an antimalarial drug target. We previously attempted to decipher the structure of these proteins and target them with non-immunosuppressive drugs, predominantly on FKBP35. This review summarizes the structural insights on Plasmodium PPIases, their inhibitor complexes and perspectives on drug discovery.


Assuntos
Antimaláricos , Tacrolimo , Antimaláricos/farmacologia , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Imunossupressores/metabolismo , Peptidilprolil Isomerase/metabolismo , Plasmodium falciparum/genética , Sirolimo/farmacologia , Tacrolimo/química , Tacrolimo/metabolismo , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
19.
Front Immunol ; 13: 978591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119062

RESUMO

Background: A blood-stage vaccine targeting the erythrocytic-stages of the malaria parasite Plasmodium falciparum could play a role to protect against clinical disease. Antibodies against the P. falciparum serine repeat antigen 5 (SE47 and SE36 domains) correlate well with the absence of clinical symptoms in sero-epidemiological studies. A previous phase Ib trial of the recombinant SE36 antigen formulated with aluminum hydroxyl gel (BK-SE36) was promising. This is the first time the vaccine candidate was evaluated in young children below 5 years using two vaccination routes. Methods: Safety and immunogenicity of BK-SE36 was assessed in a double-blind, randomized, controlled, age de-escalating phase Ib trial. Fifty-four Burkinabe children in each age cohort, 25-60 or 12-24 months, were randomized in a 1:1:1 ratio to receive three doses of BK-SE36 either by intramuscular (BK IM) or subcutaneous (BK SC) route on Day 0, Week 4, and 26; or the control vaccine, Synflorix® via IM route on Day 0, Week 26 (and physiological saline on Week 4). Safety data and samples for immunogenicity analyses were collected at various time-points. Results: Of 108 subjects, 104 subjects (96.3%) (Cohort 1: 94.4%; Cohort 2: 98.1%) received all three scheduled vaccine doses. Local reactions, mostly mild or of moderate severity, occurred in 99 subjects (91.7%). The proportion of subjects that received three doses without experiencing Grade 3 adverse events was similar across BK-SE36 vaccines and control arms (Cohort 1: 100%, 89%, and 89%; and Cohort 2: 83%, 82%, and 83% for BK IM, BK SC, and control, respectively). BK-SE36 vaccine was immunogenic, inducing more than 2-fold change in antibody titers from pre-vaccination, with no difference between the two vaccination routes. Titers waned before the third dose but in both cohorts titers were boosted 6 months after the first vaccination. The younger cohort had 2-fold and 4-fold higher geometric mean titers compared to the 25- to 60-month-old cohort after 2 and 3 doses of BK-SE36, respectively. Conclusion: BK-SE36 was well tolerated and immunogenic using either intramuscular or subcutaneous routes, with higher immune response in the younger cohort. Clinical Trial Registration: https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=934, identifier PACTR201411000934120.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Alumínio , Antígenos de Protozoários , Criança , Pré-Escolar , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum
20.
Front Cell Infect Microbiol ; 12: 961832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061865

RESUMO

LAMP diagnosis of malaria is simple and cost-effective with acceptable sensitivity and specificity as compared to standard diagnostic modules such as microscopy, RDTs and nested PCR, and thus its deployment for onsite screening of malaria in resource-limited regions is under consideration. However, the requirement of an electricity-operated dry bath and bulky read-out unit is still a major concern. In an effort to simplify this limitation, we have developed a portable LAMP device and fluorescence readout unit which can be used in the rapid point-of-care diagnosis of malaria. We have developed a point-of-care diagnostic LAMP device that is easy to operate by a mobile application, and the results can be quantified with a fluorescent readout unit. The diagnostic performance of the device was evaluated in 90 P. falciparum-infected clinical isolates stored at 4°C for 6-7 years and 10 freshly collected isolates from healthy volunteers. The LOD and quantitative ability of LAMP in estimating parasitemia levels were revealed with laboratory-grown P. falciparum strain (3D7). The LAMP assay performed in our device was exclusive for P. falciparum detection with sensitivity and specificity determined to be 98.89% and 100%, respectively, in clinical isolates. The LOD was documented to be 1 parasite/µl at the cut-off ADC value of 20. Parasite density estimated from ADC values showed concordance with microscopically determined parasite density of the cultured P. falciparum 3D7 strain. The LAMP assay performed in our device provides a possible portable platform for its deployment in the point-of-care diagnosis of malaria. Further validation of the quantitative ability of the assay with freshly collected or properly stored clinical samples of known parasitemia is necessary for field applicability.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico , Parasitemia/diagnóstico , Plasmodium falciparum/genética , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...