Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.861
Filtrar
1.
Medicine (Baltimore) ; 99(36): e22044, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899064

RESUMO

BACKGROUND: Malaria remains a global health threat for centuries. In recent years, a rising resistance of Plasmodium falciparum to current standard artemisinin-based combination therapies (ACTs) leads to increasing treatment failures and requires for optimized treatment. Here, we intend to make a systematic review and meta-analysis of optimizing treatment for malaria, so as to find a potential optimal treatment. METHODS: We will search electronic databases: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CEN-TRAL), PubMed, Embase, Web of Science from their inception to 1 July, 2020. We will also search International Clinical Trials Registry Platform (ICTRP) and ClinicalTrials.gov, and contact with authors when necessary. Two authors will independently collect and select data, and the statistical analyses will be conducted by Revman V.5.3 software. RESULTS: We will evaluate efficacy and safety of modified ACTs for uncomplicate malaria, comparing with standard ACTs in all eligible clinical studies. CONCLUSION: In this study, we will offer clinical evidence for optimizing treatment for malaria. REGISTRATION NUMBER: INPLASY202070115.


Assuntos
Anti-Infecciosos/uso terapêutico , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Terapia Combinada , Feminino , Humanos , Malária/epidemiologia , Malária/parasitologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Segurança , Falha de Tratamento , Resultado do Tratamento
2.
Nat Commun ; 11(1): 4813, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968076

RESUMO

Artemisinins have revolutionized the treatment of Plasmodium falciparum malaria; however, resistance threatens to undermine global control efforts. To broadly explore artemisinin susceptibility in apicomplexan parasites, we employ genome-scale CRISPR screens recently developed for Toxoplasma gondii to discover sensitizing and desensitizing mutations. Using a sublethal concentration of dihydroartemisinin (DHA), we uncover the putative transporter Tmem14c whose disruption increases DHA susceptibility. Screens performed under high doses of DHA provide evidence that mitochondrial metabolism can modulate resistance. We show that disrupting a top candidate from the screens, the mitochondrial protease DegP2, lowers porphyrin levels and decreases DHA susceptibility, without significantly altering parasite fitness in culture. Deleting the homologous gene in P. falciparum, PfDegP, similarly lowers heme levels and DHA susceptibility. These results expose the vulnerability of heme metabolism to genetic perturbations that can lead to increased survival in the presence of DHA.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Testes Genéticos/métodos , Heme/genética , Heme/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Inativação de Genes , Humanos , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Toxoplasma/efeitos dos fármacos , Toxoplasma/genética
3.
Nat Commun ; 11(1): 3922, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764664

RESUMO

The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Transporte Biológico Ativo , Resistência a Medicamentos/genética , Feminino , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligopeptídeos/metabolismo , Oócitos/metabolismo , Plasmodium falciparum/genética , Transporte Proteico , Proteínas de Protozoários/genética , Xenopus laevis
4.
Nat Commun ; 11(1): 4015, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782246

RESUMO

Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Fosforilação/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Nat Commun ; 11(1): 3799, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732892

RESUMO

Plasmodium falciparum in pregnancy is a major cause of adverse pregnancy outcomes. We combine performance estimates of standard rapid diagnostic tests (RDT) from trials of intermittent screening and treatment in pregnancy (ISTp) with modelling to assess whether screening at antenatal visits improves upon current intermittent preventative therapy with sulphadoxine-pyrimethamine (IPTp-SP). We estimate that RDTs in primigravidae at first antenatal visit are substantially more sensitive than in non-pregnant adults (OR = 17.2, 95% Cr.I. 13.8-21.6), and that sensitivity declines in subsequent visits and with gravidity, likely driven by declining susceptibility to placental infection. Monthly ISTp with standard RDTs, even with highly effective drugs, is not superior to monthly IPTp-SP. However, a hybrid strategy, recently adopted in Tanzania, combining testing and treatment at first visit with IPTp-SP may offer benefit, especially in areas with high-grade SP resistance. Screening and treatment in the first trimester, when IPTp-SP is contraindicated, could substantially improve pregnancy outcomes.


Assuntos
Malária Falciparum/diagnóstico , Malária Falciparum/prevenção & controle , Programas de Rastreamento/métodos , Complicações Parasitárias na Gravidez/prevenção & controle , Cuidado Pré-Natal/métodos , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Feminino , Política de Saúde , Humanos , Malária Falciparum/tratamento farmacológico , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Gravidez , Complicações Parasitárias na Gravidez/tratamento farmacológico , Primeiro Trimestre da Gravidez , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Tanzânia , Organização Mundial da Saúde
6.
PLoS One ; 15(8): e0235401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817665

RESUMO

BACKGROUND: Current malaria control and elimination strategies rely mainly on efficacious antimalarial drugs. However, drug resistance is a major threat facing malaria control programs. Determination of drug resistance molecular markers is useful in the monitoring and surveillance of malaria drug efficacy. This study aimed to determine the mutations and haplotypes frequencies of different genes linked with antimalarial drug resistance in certain areas in Sudan. METHODS: A total of 226 dried blood spots (DBS) of microscopically diagnosed P. falciparum isolates were collected from Khartoum and three other areas in Sudan during 2015-2017. Plasmodium falciparum confirmation and multiplicity of infection was assessed using the Sanger's 101 SNPs-barcode and speciation was confirmed using regions of the parasite mitochondria. Molecular genotyping of drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, exonuclease, Pfk13, parasite genetic background (PGB) (Pfarps10, ferredoxin, Pfcrt, Pfmdr2)) was also performed. All genotypes were generated by selective regions amplicon sequencing of the parasite genome using the Illumina MiSeq platform at the Wellcome Sanger Institute, UK then genotypes were translated into drug resistance haplotypes and species determination. FINDINGS: In total 225 samples were confirmed to be P. falciparum. A higher proportion of multiplicity of infection was observed in Gezira (P<0.001) based on the Sanger 101 SNPs -barcode. The overall frequency of mutant haplotype Pfcrt 72-76 CVIET was 71.8%. For Pfmdr1, N86Y was detected in 53.6%, Y184F was observed in 88.1% and D1246Y was detected in 1.5% of the samples. The most frequently observed haplotype was YFD 47.4%. For Pfdhfr (codons 51, 59,108,164), the ICNI haplotype was the most frequent (80.7%) while for Pfdhps (codons 436, 437, 540, 581, 613) the (SGEAA) was most frequent haplotype (41%). The Quadruple mutation (dhfr N51I, S108N + dhps A437G, K540E) was the highest frequent combined mutation (33.9%). In Pfkelch13 gene, 18 non-synonymous mutations were detected, 7 of them were detected in other African countries. The most frequent Pfk13 mutation was E433D detected in four samples. All of the Pfk13 mutant alleles have not been reported to belong to mutations associated with delayed parasite clearance in Southeast Asia. PGB mutations were detected only in Pfcrt N326S\I (46.3%) and Pfcrt I356T (8.2%). The exonuclease mutation was not detected. There was no significant variation in mutant haplotypes between study areas. CONCLUSIONS: There was high frequency of mutations in Pfcrt, Pfdhfr and Pfdhps in this study. These mutations are associated with chloroquine and sulfadoxine-pyrimethamine (SP) resistance. Many SNPs in Pfk13 not linked with delayed parasite clearance were observed. The exonuclease E415G mutation which is linked with piperaquine resistance was not reported.


Assuntos
Resistência a Medicamentos/genética , Malária/parasitologia , Mutação , Plasmodium falciparum/genética , Adolescente , Antimaláricos/farmacologia , Criança , Cloroquina/farmacologia , Feminino , Humanos , Malária/epidemiologia , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirimetamina/farmacologia , Sudão , Sulfadoxina/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Adulto Jovem
7.
SAR QSAR Environ Res ; 31(9): 677-695, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32854545

RESUMO

A set of 23 steroidal 1,2,4,5-tetraoxane analogues were studied using quantum-chemical method (B3LYP/6-31 G*) and multivariate analyses (PCA, HCA, KNN and SIMCA) in order to calculate the properties and correlate them with antimalarial activity (log RA) against Plasmodium falciparum clone D-6 from Sierra Leone. PCA results indicated 99.94% of the total variance and it was possible to divide the compounds into two classes: less and more active. Descriptors responsible for separating were: highest occupied molecular orbital energy (HOMO), bond length (O1-O2), Mulliken electronegativity (χ) and Bond information content (BIC0). We use HCA, KNN and SIMCA to explain relationships between molecular properties and biological activity of a training set and to predict antimalarial activity (log RA) of 13 compounds (#24-36) with unknown biological activity. We apply molecular docking simulations to identify intermolecular interactions with a selected biological target. The results obtained in multivariate analysis aided in the understanding of the activity of the new compound's design (#24-36). Thus, through chemometric analyses and docking molecular study, we propose theoretical synthetic routes for the most promising compounds 28, 30, 32 and 36 that can proceed to synthesis steps and in vitro and in vivo assays.


Assuntos
Antimaláricos/química , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Tetraoxanos/química , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
8.
PLoS One ; 15(8): e0237671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797068

RESUMO

In high malaria transmission settings, the use of sulfadoxine-pyrimethamine-based intermittent preventive treatment during pregnancy (IPTp-SP) has resulted in decreased antibody (Ab) levels to VAR2CSA. However, information of Ab levels in areas of low or intermediate malaria transmission after long-term implementation of IPTp-SP is still lacking. The present study sought to evaluate antibody prevalence and levels in women at delivery in Etoudi, a peri-urban area in the capital of Yaoundé, Cameroon, that is a relatively low-malaria transmission area. Peripheral plasma samples from 130 pregnant women were collected at delivery and tested for IgG to the full-length recombinant VAR2CSA (FV2) and its most immunogenic subdomain, DBL5. The study was conducted between 2013 and 2015, approximately ten years after implementation of IPTp-SP in Cameroon. About 8.6% of the women attending the clinic had placental malaria (PM). One, two or 3 doses of SP did not impact significantly on either the percentage of women with Ab to FV2 and DBL5 or Ab levels in Ab-positive women compared to women not taking SP. The prevalence of Ab to FV2 and DBL5 was only 36.9% and 36.1%, respectively. Surprisingly, among women who had PM at delivery, only 61.5% and 57.7% had Ab to FV2 and DBL5, respectively, with only 52.9% and 47.1% in PM-positive paucigravidae and 77.7% of multigravidae having Ab to both antigens. These results suggest that long-term implementation of IPTp-SP in a low-malaria transmission area results in few women having Ab to VAR2CSA.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antimaláricos/uso terapêutico , Malária Falciparum/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Adulto , Anticorpos Antiprotozoários/sangue , Camarões/epidemiologia , Combinação de Medicamentos , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Malária/sangue , Malária/epidemiologia , Malária/imunologia , Malária/prevenção & controle , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/imunologia , Gravidez , Complicações Parasitárias na Gravidez/sangue , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/imunologia , Adulto Jovem
9.
PLoS One ; 15(8): e0237786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822376

RESUMO

Plasmodium falciparum malaria killed 451,000 people in 2017. Merozoites, the stage of the parasite that invades RBCs, are a logical target for vaccine development. Treatment with the protease inhibitor E64 followed by filtration through a 1.2 µm filter is being used to purify merozoites for immunologic assays. However, there have been no studies to determine the effect of these treatments on the susceptibility of merozoites to complement or antibodies. To address this gap, we purified merozoites with or without E64 followed by filtration through either a 1.2 or 2.7 µm filter, or no filtration. Merozoites were then incubated in either 10% fresh or heat-inactivated serum followed by surface staining and flow cytometry with monoclonal antibodies against the complement effector molecules C3b or C5b9. To determine the effect of anti-merozoite antibodies, we incubated merozoites with MAb5.2, a mouse monoclonal antibody that targets the merozoite surface protein 1. We used an amine-reactive fluorescent dye to measure membrane integrity. Treatment with E64 resulted in an insignificant increase in the proportion of merozoites that were C3b positive but in a significant increase in the proportion that were C5b9 positive. Filtration increased the proportion of merozoites that were either C3b or C5b9-positive. The combination of filtration and E64 treatment resulted in marked deposition of C3b and C5b9. MAb5.2 induced greater complement deposition than serum alone or an IgG2b isotype control. The combination of E64 treatment, filtration, and MAb5.2 resulted in very rapid and significant deposition of C5b9. Filtration through the 1.2 µm filter selected a population of merozoites with greater membrane integrity, but their integrity deteriorated rapidly upon exposure to serum. We conclude that E64 treatment and filtration increase the susceptibility of merozoites to complement and antibody. Filtered or E64-treated merozoites are not suitable for immunologic studies that address the efficacy of antibodies in vitro.


Assuntos
Merozoítos/efeitos dos fármacos , Merozoítos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Inibidores de Proteases/farmacologia , Animais , Anticorpos Antiprotozoários/imunologia , Ativação do Complemento/efeitos dos fármacos , Filtração , Citometria de Fluxo , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Merozoítos/imunologia , Camundongos , Plasmodium falciparum/imunologia
10.
PLoS One ; 15(8): e0237791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822392

RESUMO

Artemisinin-based combination therapies (ACTs) have been recommended by the World Health Organization (WHO) as first-line treatment of uncomplicated Plasmodium falciparum (P. falciparum) malaria since 2005 in Democratic Republic of Congo (DRC) and a regular surveillance of the ACT efficacy is required to ensure the treatment effectiveness. Mutations in the propeller domain of the pfk13 gene were identified as molecular markers of artemisinin resistance (ART-R). This study investigated the pfk13-propeller gene polymorphism in clinical isolates of P. falciparum collected in the DRC. In 2017, ten geographical sites across DRC were selected for a cross-sectional study that was conducted first in Kinshasa from January to March, then in the nine other sites from September to December. Dried blood samples were collected from patients attending health centers for fever where diagnosis of Malaria was first made by rapid diagnostic test (RDT) available on site (SD Bioline malaria Ag Pf or CareStart Malaria Pf) or by thick blood smear and then confirmed by a P. falciparum real-time PCR assay. A pfk13-propeller segment containing a fragment that codes for amino acids at positions 427-595 was amplified by conventional PCR before sequencing. In total, 1070 patients were enrolled in the study. Real-time PCR performed confirmed the initial diagnosis of P. falciparum infection in 806 samples (75.3%; 95% CI: 72.6%- 77.9%). Of the 717 successfully sequenced P. falciparum isolates, 710 (99.0%; 95% CI: 97.9% - 99.6) were wild-type genotypes and 7 (1.0%; 95% CI: 0.4% - 2.1%) carried non-synonymous (NS) mutations in pfk13-propeller including 2 mutations (A578S and V534A) previously detected and 2 other (M472I and A569T) not yet detected in the DRC. Mutations associated with ART-R in Southeast Asia were not observed in DRC. However, the presence of other mutations in pfk13-propeller gene calls for further investigations to assess their implication in drug resistance.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Adolescente , Adulto , Idoso , Antimaláricos/farmacologia , Artemisininas/farmacologia , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Resistência a Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo Genético , Adulto Jovem
11.
PLoS One ; 15(7): e0235798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673324

RESUMO

During the course of the asexual erythrocytic stage of development, Plasmodium spp. parasites undergo a series of morphological changes and induce alterations in the host cell. At the end of this stage, the parasites egress from the infected cell, after which the progeny invade a new host cell. These processes are rapid and occur in a time-dependent manner. Of particular importance, egress and invasion of erythrocytes by the parasite are difficult to capture in an unsynchronized culture, or even a culture that has been synchronized within a window of one to several hours. Therefore, precise synchronization of parasite cultures is of paramount importance for the investigation of these processes. Here we describe a method for synchronizing Plasmodium falciparum and Plasmodium knowlesi asexual blood stage parasites with ML10, a highly specific inhibitor of the cGMP-dependent protein kinase (PKG) that arrests parasite growth approximately 15 minutes prior to egress. This inhibitor allows parasite cultures to be synchronized so that all parasites are within a window of development of several minutes, with a simple wash step. Furthermore, we show that parasites remain viable for several hours after becoming arrested by the compound and that ML10 has advantages, owing to its high specificity and low EC50, over the previously used PKG inhibitor Compound 2. Here, we demonstrate that ML10 is an invaluable tool for the study of Plasmodium spp. asexual blood stage biology and for the routine synchronization of P. falciparum and P. knowlesi cultures.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo
12.
Parasitol Res ; 119(9): 2749-2764, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32638101

RESUMO

The global challenge to the treatment of malaria is mainly the occurrence of resistance of malaria parasites to conventionally used antimalarials. Artesunate, a semisynthetic artemisinin compound, and other artemisinin derivatives are currently used in combination with selected active antimalarial drugs in order to prevent or delay the emergence of resistance to artemisinin derivatives. Several methods, such as preparation of hybrid compounds, combination therapy, chemical modification and the use of synthetic materials to enhance solubility and delivery of artesunate, have been employed over the years to improve the antimalarial activity of artesunate. Each of these methods has advantages it bestows on the efficacy of artesunate. This review discussed the various methods employed in enhancing the antimalarial activity of artesunate and delaying the emergence of resistance of parasite to it.


Assuntos
Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/química , Artemisininas/uso terapêutico , Resistência a Medicamentos/fisiologia , Quimioterapia Combinada , Humanos , Malária Falciparum/parasitologia
13.
Toxicol Appl Pharmacol ; 401: 115074, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32464218

RESUMO

The natural naphthoquinones lapachol, α- and ß-lapachone are found in Bignoniaceous Brazilian plant species of the Tabebuia genus (synonym Handroanthus) and are recognized for diverse bioactivities, including as antimalarial. The aim of the present work was to perform in silico, in vitro and in vivo studies to evaluating the antimalarial potential of these three naphthoquinones in comparison with atovaquone, a synthetic antimalarial. The ADMET properties of these compounds were predicted in silico by the preADMET program. The in vitro toxicity assays were experimentally determined in immortalized and tumoral cells from different organs. In vivo acute oral toxicity was also evaluated for lapachol. Several favorable pharmacokinetics data were predicted although, as expected, high cytotoxicity was experimentally determined for ß-lapachone. Lapachol was not cytotoxic or showed low cytotoxicity to all of the cells assayed (HepG2, A549, Neuro 2A, LLC-PK1, MRC-5), it was nontoxic in the acute oral test and disclosed the best parasite selectivity index in the in vitro assays against chloroquine resistant Plasmodium falciparum W2 strain. On the other hand, α- and ß-lapachone were more potent than lapachol in the antiplasmodial assays but with low parasite selectivity due to their cytotoxicity. The diversity of data here reported disclosed lapachol as a promising candidate to antimalarial drug development.


Assuntos
Antimaláricos/administração & dosagem , Atovaquona/administração & dosagem , Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Naftoquinonas/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Células A549 , Animais , Células CACO-2 , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células Hep G2 , Humanos , Células LLC-PK1 , Células Madin Darby de Rim Canino , Camundongos , Naftoquinonas/isolamento & purificação , Plasmodium falciparum/fisiologia , Suínos
14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(2): 174-180, 2020 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-32458607

RESUMO

OBJECTIVE: To detect the chloroquine-resistant molecular marker polymorphisms in Plasmodium falciparum imported into China, investigate the mutation types of P. falciparum chloroquine resistant transporter (Pfcrt) gene at positions 72 to 76, and analyze the specificity of the P. falciparum specimens with different origins. METHODS: A total of 674 filter paper blood samples were collected from the National Malaria Diagnosis Reference Laboratory of China in 2012 and 2018. The amino acid po- sitions 72 to 76 of the Pfcrt gene on chromosome 7 were amplified using nested PCR assay and sequenced, and the sequencing results of the target gene fragment and the geographical region-specific prevalence of the mutations in the Pfcrt gene were analyzed. RESULTS: Among the 674 imported P. falciparum malaria cases in China in 2012 and 2018, 99.5% (644/674) were from Africa, which were predominantly from western and central Africa (80.4%, 518/644), and 4.5% (30/674) from Southeast Asia and Oceania (Papua New Guinea). A total of 4 site mutations (C72S, M74I, N75E and K76T) and 5 haplotypes (CVMNK, CVIET and SVMNT and two mixed types) were identified, with haplotypes CVMNK and CVIET present in parasites of both African and Southeast Asian origins, SVMNT detected in Southeast Asia (Myanmar) and Papua New Guinea isolates, the mixed type of haplo- types CVMNK/CVIET detected in P. falciparum of African and Southeast Asian origins, and the mixed type of haplotypes CVMNK/SVMNT detected only in the Myanmar isolate. Most P. falciparum parasites of the African origin carried the wild-type Pfcrt allele (77.7%, 478/615), and 68.0% (17/25) of the P. falciparum parasites of the Southeast Asian and Papua New Guinea or- igins harbored chloroquine resistant molecular markers (χ2 = 28.5, P < 0.05). The constituent ratio of the wild- and mutant-type Pfcrt allele varied in different geographical regions of Africa (P < 0.01), and the lowest prevalence of the wild-type Pfcrt allele was seen in western Africa. CONCLUSIONS: Among the 674 imported malaria cases in China in 2012 and 2018, the P. falciparum imported from Sotheast Asia habors a higher proportion of resistance to chloroquine and a higher molecular polymophism at ami- no acid positions 72 to 76 of the Pfcrt gene than the parasite of the African origin.


Assuntos
Cloroquina , Doenças Transmissíveis Importadas , Malária Falciparum , Plasmodium falciparum , Polimorfismo Genético , Proteínas de Protozoários , África , Antimaláricos/farmacologia , Ásia , China , Cloroquina/farmacologia , Doenças Transmissíveis Importadas/parasitologia , Resistência a Medicamentos/genética , Haplótipos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
15.
Nat Commun ; 11(1): 2107, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355199

RESUMO

The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known about the spatial and genetic structure of the parasite population in that country. We sequence 2537 Plasmodium falciparum infections, including a nationally representative population sample from DRC and samples from surrounding countries, using molecular inversion probes - a high-throughput genotyping tool. We identify an east-west divide in haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identify highly related parasites over large geographic distances, indicative of gene flow and migration. Our results are consistent with a background of isolation by distance combined with the effects of selection for antimalarial drug resistance. This study provides a high-resolution view of parasite genetic structure across a large country in Africa and provides a baseline to study how implementation programs may impact parasite populations.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Cloroquina/farmacologia , República Democrática do Congo , Combinação de Medicamentos , Genoma de Protozoário , Genótipo , Geografia , Haplótipos , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Pirimetamina/farmacologia , Sulfadoxina/farmacologia
16.
Parasitol Res ; 119(6): 1879-1887, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32382989

RESUMO

Malaria, caused by protozoa of the genus Plasmodium, is a disease that infects hundreds of millions of people annually, causing an enormous social burden in many developing countries. Since current antimalarial drugs are starting to face resistance by the parasite, the development of new therapeutic options has been prompted. The enzyme Plasmodium falciparum enoyl-ACP reductase (PfENR) has a determinant role in the fatty acid biosynthesis of this parasite and is absent in humans, making it an ideal target for new antimalarial drugs. In this sense, the present study aimed at evaluating the in silico binding affinity of natural and synthetic amides through molecular docking, in addition to their in vitro activity against P. falciparum by means of the SYBR Green Fluorescence Assay. The in vitro results revealed that the natural amide piplartine (1a) presented partial antiplasmodial activity (20.54 µM), whereas its synthetic derivatives (1m-IC50 104.45 µM), (1b, 1g, 1k, and 14f) and the natural amide piperine (18a) were shown to be inactive (IC50 > 200 µM). The in silico physicochemical analyses demonstrated that compounds 1m and 14f violated the Lipinski's rule of five. The in silico analyses showed that 14f presented the best binding affinity (- 13.047 kcal/mol) to PfENR and was also superior to the reference inhibitor triclosan (- 7.806 kcal/mol). In conclusion, we found that the structural modifications in 1a caused a significant decrease in antiplasmodial activity. Therefore, new modifications are encouraged in order to improve the activity observed.


Assuntos
Amidas/farmacologia , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Amidas/química , Animais , Chlorocebus aethiops , Simulação por Computador , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Células Hep G2 , Humanos , Malária Falciparum , Simulação de Acoplamento Molecular , Piper nigrum , Plasmodium falciparum/enzimologia , Triclosan/farmacologia , Células Vero
18.
Nat Protoc ; 15(6): 1881-1921, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341577

RESUMO

Despite decades of research, little is known about the cellular targets and the mode of action of the vast majority of antimalarial drugs. We recently demonstrated that the cellular thermal shift assay (CETSA) protocol in its two variants: the melt curve and the isothermal dose-response, represents a comprehensive strategy for the identification of antimalarial drug targets. CETSA enables proteome-wide target screening for unmodified antimalarial compounds with undetermined mechanisms of action, providing quantitative evidence about direct drug-protein interactions. The experimental workflow involves treatment of P. falciparum-infected erythrocytes with a compound of interest, heat exposure to denature proteins, soluble protein isolation, enzymatic digestion, peptide labeling with tandem mass tags, offline fractionation, and liquid chromatography-tandem mass spectrometry analysis. Methodological optimizations necessary for the analysis of this intracellular parasite are discussed, including enrichment of parasitized cells and hemoglobin depletion strategies to overcome high hemoglobin abundance in the host red blood cells. We outline an effective data processing workflow using the mineCETSA R package, which enables prioritization of drug-target candidates for follow-up studies. The entire protocol can be completed within 2 weeks.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Descoberta de Drogas/métodos , Eritrócitos/parasitologia , Humanos , Malária Falciparum/metabolismo , Terapia de Alvo Molecular/métodos , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/metabolismo , Proteoma/metabolismo
19.
Lancet Infect Dis ; 20(8): 964-975, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275867

RESUMO

BACKGROUND: (+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans. METHODS: The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR48) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18-55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b). FINDINGS: In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC0-∞) of 13 000 µg × h/L (median AUC0-∞ 24 283 [IQR 16 135-31 311] µg × h/L, median terminal half-life 17·4 h [IQR 16·1-24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6-1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived log10PRR48 and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0-2·5) and 6·47 h (95% CI 5·88-7·18) for 150 mg, and 4·1 (3·7-4·4) and 3·56 h (3·29-3·88) for 600 mg. INTERPRETATION: The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy. FUNDING: Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities.


Assuntos
Antimaláricos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Isoquinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores da Bomba de Prótons/uso terapêutico , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Estudos de Casos e Controles , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Humanos , Isoquinolinas/administração & dosagem , Isoquinolinas/efeitos adversos , Isoquinolinas/farmacocinética , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Resultado do Tratamento , Adulto Jovem
20.
Malar J ; 19(1): 134, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228566

RESUMO

BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS: Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS: In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION: As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Sequenciamento de Nucleotídeos em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Senegal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA