Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Open Vet J ; 10(2): 164-177, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821661

RESUMO

Viruses are having great time as they seem to have bogged humans down. Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and novel coronavirus (COVID-19) are the three major coronaviruses of present-day global human and animal health concern. COVID-19 caused by SARS-CoV-2 is identified as the newest disease, presumably of bat origin. Different theories on the evolution of viruses are in circulation, yet there is no denying the fact that the animal source is the skeleton. The whole world is witnessing the terror of the COVID-19 pandemic that is following the same path of SARS and MERS, and seems to be more severe. In addition to humans, several species of animals are reported to have been infected with these life-threatening viruses. The possible routes of transmission and their zoonotic potentialities are the subjects of intense research. This review article aims to overview the link of all these three deadly coronaviruses among animals along with their phylogenic evolution and cross-species transmission. This is essential since animals as pets or food are said to pose some risk, and their better understanding is a must in order to prepare a possible plan for future havoc in both human and animal health. Although COVID-19 is causing a human health hazard globally, its reporting in animals are limited compared to SARS and MERS. Non-human primates and carnivores are most susceptible to SARS-coronavirus and SARS-CoV-2, respectively, whereas the dromedary camel is susceptible to MERS-coronavirus. Phylogenetically, the trio viruses are reported to have originated from bats and have special capacity to undergo mutation and genomic recombination in order to infect humans through its reservoir or replication host. However, it is difficult to analyze how the genomic pattern of coronaviruses occurs. Thus, increased possibility of new virus-variants infecting humans and animals in the upcoming days seems to be the biggest challenge for the future of the world. One health approach is portrayed as our best way ahead, and understanding the animal dimension will go a long way in formulating such preparedness plans.


Assuntos
Betacoronavirus/classificação , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Pandemias/veterinária , Pneumonia Viral/veterinária , Vírus da SARS/classificação , Síndrome Respiratória Aguda Grave/veterinária , Animais , Animais Selvagens , Betacoronavirus/genética , Camelídeos Americanos/virologia , Camelus/virologia , Gatos , Quirópteros/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Suscetibilidade a Doenças/veterinária , Cães , Eutérios/virologia , Furões/virologia , Humanos , Leões/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , Primatas/virologia , Cães Guaxinins/virologia , Vírus da SARS/genética , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/transmissão , Serpentes/virologia , Tigres/virologia , Viverridae/virologia
2.
Zool Res ; 41(5): 503-516, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32772513

RESUMO

As of June 2020, Coronavirus Disease 2019 (COVID-19) has killed an estimated 440 000 people worldwide, 74% of whom were aged ≥65 years, making age the most significant risk factor for death caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To examine the effect of age on death, we established a SARS-CoV-2 infection model in Chinese rhesus macaques ( Macaca mulatta) of varied ages. Results indicated that infected young macaques manifested impaired respiratory function, active viral replication, severe lung damage, and infiltration of CD11b + and CD8 + cells in lungs at one-week post infection (wpi), but also recovered rapidly at 2 wpi. In contrast, aged macaques demonstrated delayed immune responses with a more severe cytokine storm, increased infiltration of CD11b + cells, and persistent infiltration of CD8 + cells in the lungs at 2 wpi. In addition, peripheral blood T cells from aged macaques showed greater inflammation and chemotaxis, but weaker antiviral functions than that in cells from young macaques. Thus, the delayed but more severe cytokine storm and higher immune cell infiltration may explain the poorer prognosis of older aged patients suffering SARS-CoV-2 infection.


Assuntos
Envelhecimento/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Macaca mulatta/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Betacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/veterinária , Inflamação/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta/virologia , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Pandemias/veterinária , Pneumonia Viral/veterinária , Pneumonia Viral/virologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Carga Viral/imunologia , Carga Viral/veterinária , Replicação Viral/imunologia
3.
Viruses ; 12(8)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764506

RESUMO

Zoonoses can constitute a threat for public health that can have a global importance, as seen with the current COVID-19 pandemic of severe acute respiratory syndrome coronavirus (SARS-CoV2). Bats have been recognized as an important reservoir of zoonotic coronaviruses (CoVs). In West Africa, where there is a high diversity of bat species, little is known on the circulation of CoVs in these hosts, especially at the interface with human populations. In this study, in Guinea, we tested a total of 319 bats belonging to 14 genera and six families of insectivorous and frugivorous bats across the country, for the presence of coronaviruses. We found CoVs in 35 (11%) of the tested bats-in three insectivorous bat species and five fruit bat species that were mostly captured close to human habitat. Positivity rates varied from 5.7% to 100%, depending on bat species. A wide diversity of alpha and beta coronaviruses was found across the country, including three sequences belonging to SarbeCoVs and MerbeCoVs subgenera known to harbor highly pathogenic human coronaviruses. Our findings suggest that CoVs are widely spread in West Africa and their circulation should be assessed to evaluate the risk of exposure of potential zoonotic CoVs to humans.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus/classificação , Coronavirus/genética , Animais , Betacoronavirus/isolamento & purificação , Biodiversidade , Coronavirus/isolamento & purificação , Feminino , Genoma Viral , Guiné , Humanos , Masculino , Pandemias , Filogenia , Projetos Piloto , Pneumonia Viral/veterinária , Pneumonia Viral/virologia , Zoonoses/virologia
4.
Vet Microbiol ; 247: 108777, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768223

RESUMO

Coronaviruses (CoVs) cause disease in a range of agricultural and companion animal species, and can be important causes of zoonotic infections. In humans, several coronaviruses circulate seasonally. Recently, a novel zoonotic CoV named SARS-CoV-2 emerged from a bat reservoir, resulting in the COVID-19 pandemic. With a focus on felines, we review here the evidence for SARS-CoV-2 infection in cats, ferrets and dogs, describe the relationship between SARS-CoV-2 and the natural coronaviruses known to infect these species, and provide a rationale for the relative susceptibility of these species to SARS-CoV-2 through comparative analysis of the ACE-2 receptor.


Assuntos
Doenças do Gato/virologia , Infecções por Coronavirus/veterinária , Doenças do Cão/virologia , Evolução Molecular , Pandemias/veterinária , Pneumonia Viral/veterinária , Zoonoses/transmissão , Animais , Betacoronavirus , Gatos/virologia , Cães/virologia , Furões/virologia , Humanos , Peptidil Dipeptidase A/metabolismo , Receptores Virais/genética , Zoonoses/virologia
5.
Parasit Vectors ; 13(1): 409, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778178

RESUMO

The coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Recent evidence raised the question about the possibility that cats may be a domestic host for SARS-CoV-2 with unknown implications in disease dissemination. Based on the fact that the domestic cat flea, Ctenocephalides felis, are abundant ectoparasites infesting humans, companion animals and wildlife and that coronavirus-like agents have been identified in the ectoparasite tick vector, Ixodes uriae of seabirds, herein we considered the presence of coronaviruses in general and SARS-CoV-2 in particular in C. felis. We identified coronavirus-derived and cell receptor angiotensin-converting enzyme RNA/proteins in C. felis. Although current evidence suggests that pets are probably dead-end-hosts with small risk of transmission to humans, our results suggested that cat flea may act as biological and/or mechanical vectors of SARS-CoV. Although preliminary, these results indicate a possibility of ectoparasites acting as reservoirs and vectors of SARS-CoV and related beta-coronavirus although with little disease risk due to systemic transmission route, low viremia, virus attenuation or other unknown factors. These results support the need to further study the role of animal SARS-CoV-2 hosts and their ectoparasite vectors in COVID-19 disease spread.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/isolamento & purificação , Ctenocephalides/virologia , Insetos Vetores/virologia , Pneumonia Viral/veterinária , Sequência de Aminoácidos , Animais , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/transmissão , Pneumonia Viral/virologia
6.
Psychiatr Danub ; 32(2): 236-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32796792

RESUMO

Infection with the new corona virus (SARS-CoV-2) was first registered in December 2019 in China, and then later spread rapidly to the rest of the world. On December 31, 2019, the World Health Organization (WHO) informed the public for the first time about causes of pneumonnia of unknown origin, in the city of Wuhan (Hubei Province, China), in people who were epidemiologically linked to a seafood and wet animal whole sale local market in Wuhan. Coronavrus disease, called COVID-19 (Corona virus disease 2019), after China quickly spread to most countries in the wold, and the WHO on March 11, 2020 declared a pandmic with this virus. SARS-CoV-2, has a high level of sequential similarities to the SARS-CoV-1 and uses the same receptors when it enters the human body (angiotensin-converting enzyme 2/ACE2). COVID-19 is respiratry infection that is primarily transmitted via respiratry droplets. Typical symptoms of COVID-19 infection can be very moderate (infected can be even asymptomatic) to very severe, with severe respiratory symptoms (bilateral severe pneumonia), septic schock, and fatal outcome. Numeous unknows regarding the biological, epidemilogical adn clinical characteristics of COVID-19, still exist, and make it impossible to predict with certainty the further course of the current pandemic. COVID-19 is primarily a disease of the respiratory system, but SARS-CoV-2, in a number of patients also penetrates the CNS, and apparently could be responsible for fatal outcome in some cases. The entrry of the virus into the brain can lead to neurological and psychiatric manifestationss, which are not uncommon, including headache, paresthesia, myalgia, impaired consciousnessm, confusion or delirum and cerebrovascular diseases. SARS-CoV-2 positive individuals should be evaluated in a timely manner for neurological and psychiatic symptoms because tretament of infection-related neurological and psychiatric complications is an important factor in better prognosis of severe COVID-19 patients.From the current point of view, it seems that in COVID-19 survivors, in the coming years and decades, the inflammatory systemic process and/or the inflammatory process of the brain could trigger long-term mechanisms that generally lead to an increase of neurological and neurodegenerative disorders. Psychosocial consequences as well as consequences for mental health are also significant, both for the general population and especially for health workers of all profiles. COVID-19 pandemia is associtaed with negative psychosocial consequences, including depressive symptoms, anxiety, anger and stress, sleep disorders, simpotms of posttrauamtic stres disorder, social isolation, loneliness and stigmatization.


Assuntos
Comorbidade , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Animais , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Humanos , Pandemias/veterinária , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária
8.
Vet Pathol ; 57(5): 653-657, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663073

RESUMO

SARS-CoV-2, the causative agent of COVID-19, caused respiratory disease outbreaks with increased mortality in 4 mink farms in the Netherlands. The most striking postmortem finding was an acute interstitial pneumonia, which was found in nearly all examined mink that died at the peak of the outbreaks. Acute alveolar damage was a consistent histopathological finding in mink that died with pneumonia. SARS-CoV-2 infections were confirmed by detection of viral RNA in throat swabs and by immunohistochemical detection of viral antigen in nasal conchae, trachea, and lung. Clinically, the outbreaks lasted for about 4 weeks but some animals were still polymerase chain reaction-positive for SARS-CoV-2 in throat swabs after clinical signs had disappeared. This is the first report of the clinical and pathological characteristics of SARS-CoV-2 outbreaks in mink farms.


Assuntos
Betacoronavirus , Infecções por Coronavirus/veterinária , Vison/virologia , Pandemias/veterinária , Pneumonia Viral/veterinária , Animais , Infecções por Coronavirus/patologia , Surtos de Doenças/veterinária , Feminino , Pulmão/patologia , Pulmão/virologia , Masculino , Países Baixos/epidemiologia , Pneumonia Viral/patologia
9.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32661139

RESUMO

The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/veterinária , Receptores Virais/metabolismo , Sequência de Aminoácidos , Animais , Betacoronavirus/classificação , Linhagem Celular , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/química , Filogenia , Ligação Proteica , Domínios Proteicos , Proteólise , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Tropismo Viral , Internalização do Vírus
10.
Washington; Organización Panamericana de la Salud; jul. 21, 2020. 5 p.
Não convencional em Espanhol | LILACS, Inca | ID: biblio-1103787

RESUMO

El SARS-CoV-2 es un agente patógeno que causa la enfermedad por COVID-19, la cual fue notificada por primera vez en diciembre de 2019. Se cree que el SARS-CoV-2 fue originado de una fuente animal y posteriormente diseminado a la población humana. A pesar de que se han aislado virus genéticamente relacionados en murciélagos Rhinolophus, no se ha establecido el origen exacto de SARS-CoV-2 y la ruta de introducción de este virus a la población humana sigue siendo objeto de investigación.


Assuntos
Humanos , Animais , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Monitoramento Epidemiológico/veterinária , Betacoronavirus/patogenicidade
15.
Euro Surveill ; 25(23)2020 06.
Artigo em Inglês | MEDLINE | ID: covidwho-594583

RESUMO

Respiratory disease and increased mortality occurred in minks on two farms in the Netherlands, with interstitial pneumonia and SARS-CoV-2 RNA in organ and swab samples. On both farms, at least one worker had coronavirus disease-associated symptoms before the outbreak. Variations in mink-derived viral genomes showed between-mink transmission and no infection link between the farms. Inhalable dust contained viral RNA, indicating possible exposure of workers. One worker is assumed to have attracted the virus from mink.


Assuntos
Infecções por Coronavirus/diagnóstico , Coronavirus/isolamento & purificação , Surtos de Doenças/prevenção & controle , Fazendas , Vison , Pneumonia Viral/diagnóstico , RNA Viral/genética , Análise de Sequência de RNA/veterinária , Animais , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Coronavirus/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Genoma Viral , Países Baixos , Pandemias/veterinária , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária , Síndrome Respiratória Aguda Grave/epidemiologia
16.
MMWR Morb Mortal Wkly Rep ; 69(23): 710-713, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: covidwho-590108

RESUMO

On April 22, CDC and the U.S. Department of Agriculture (USDA) reported cases of two domestic cats with confirmed infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). These are the first reported companion animals (including pets and service animals) with SARS-CoV-2 infection in the United States, and among the first findings of SARS-CoV-2 symptomatic companion animals reported worldwide. These feline cases originated from separate households and were epidemiologically linked to suspected or confirmed human COVID-19 cases in their respective households. Notification of presumptive positive animal test results triggered a One Health* investigation by state and federal partners, who determined that no further transmission events to other animals or persons had occurred. Both cats fully recovered. Although there is currently no evidence that animals play a substantial role in spreading COVID-19, CDC advises persons with suspected or confirmed COVID-19 to restrict contact with animals during their illness and to monitor any animals with confirmed SARS-CoV-2 infection and separate them from other persons and animals at home (1).


Assuntos
Betacoronavirus/isolamento & purificação , Doenças do Gato/diagnóstico , Doenças do Gato/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Animais de Estimação/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/veterinária , Animais , Gatos , Infecções por Coronavirus/transmissão , Feminino , Humanos , Masculino , New York , Pneumonia Viral/transmissão , Zoonoses
18.
Arch Virol ; 165(8): 1869-1875, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488616

RESUMO

Coronaviruses can become zoonotic, as in the case of COVID-19, and hunting, sale, and consumption of wild animals in Southeast Asia increases the risk for such incidents. We sampled and tested rodents (851) and other mammals and found betacoronavirus RNA in 12 rodents. The sequences belong to two separate genetic clusters and are closely related to those of known rodent coronaviruses detected in the region and distantly related to those of human coronaviruses OC43 and HKU1. Considering the close human-wildlife contact with many species in and beyond the region, a better understanding of virus diversity is urgently needed for the mitigation of future risks.


Assuntos
Animais Selvagens/virologia , Betacoronavirus/genética , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , RNA Viral/genética , Roedores/virologia , Animais , Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Coronavirus Humano OC43/genética , Humanos , Laos/epidemiologia , RNA Viral/isolamento & purificação
19.
Am J Primatol ; 82(8): e23158, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32495390

RESUMO

The coronavirus disease 2019 pandemic has radically changed the human activities worldwide. Although we are still learning about the disease, it is necessary that primatologists, veterinarians, and all that are living with nonhuman primates (NHP) be concerned about the probable health impacts as these animals face this new pandemic. We want to increase discussion with the scientific community that is directly involved with these animals, because preliminary studies report that NHP may become infected and develop symptoms similar to those in human beings.


Assuntos
Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , Doenças dos Primatas/virologia , Primatas/virologia , Animais , Animais de Zoológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/etiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Macaca mulatta , Mucosa Nasal/virologia , Pneumonia Viral/etiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Doenças dos Primatas/sangue , Doenças dos Primatas/etiologia , Doenças dos Primatas/transmissão , Síndrome Respiratória Aguda Grave/epidemiologia , Carga Viral/veterinária , Perda de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA