Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.142
Filtrar
1.
Pestic Biochem Physiol ; 159: 80-84, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400787

RESUMO

The plastid acetyl coenzyme carboxylase (ACCase) Trp1999Leu mutation was identified in a Beckmannia syzigachne population resistant to fenoxaprop-p-ethyl. The pattern of cross-resistance for the Trp1999Leu mutation is still ambiguous. In this paper, mutant homozygote (1999Leu/Leu, RR) and wild type (1999Trp/Trp, SS) B. syzigachne plants with the same genetic background were purified from the JS-26 population using the dCAPS method. The activity of ACCase in RR and SS was determined. Then, the cross-resistance pattern to ACCase inhibiting herbicides of the Trp1999Leu mutation was determined using the whole-plant method. ACCase activity showed that the Trp1999Leu mutation decreased ACCase sensitivity to fenoxaprop-p-ethyl by 2.73-fold. A dose-response experiment indicated that the Trp1999Leu mutation conferred high resistance to quizalofop-p-ethyl (20.29-fold), metamifop (12.22-fold) and pinoxaden (18.60-fold), moderate resistance to fenoxaprop-p-ethyl (8.20-fold) and sethoxydim (6.38-fold), low resistance to cyhalofop-butyl (2.73-fold) and no resistance to clodinafop-propargyl (1.42 fold) and clethodim (1.59-fold). This is the first report of the role of Trp1999Leu in fenoxaprop-p-ethyl resistance and of the patterns of cross-resistance to ACCase-inhibiting herbicides in B. syzigachne.


Assuntos
Acetil-CoA Carboxilase/genética , Herbicidas/farmacologia , Poaceae/efeitos dos fármacos , Poaceae/genética , Anilidas/farmacologia , Benzoxazóis/farmacologia , Cicloexanonas/farmacologia , Resistência a Herbicidas/genética , Compostos Heterocíclicos com 2 Anéis/farmacologia , Mutação/genética , Propionatos/farmacologia , Piridinas/farmacologia , Quinoxalinas/farmacologia
2.
DNA Cell Biol ; 38(7): 607-626, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31210530

RESUMO

CONSTANS (CO)/CONSTANS-like (COL) genes that have been studied in annual model plants such as Arabidopsis thaliana and Oryza sativa play key roles in the photoperiodic flowering pathway. Moso bamboo is a perennial plant characterized by a long vegetative stage and flowers synchronously followed by widespread death. However, the characteristics of COL in moso bamboo remain unclear. In view of this, we performed a genome-wide identification and expression analysis of the COL gene family in moso bamboo. Fourteen nonredundant PheCOL genes were identified, and we analyzed gene structures, phylogeny, and subcellular location predictions. Phylogenetic analyses indicated that 14 PheCOLs could be clustered into three groups, and each clade was well supported by conserved intron/exon structures and motifs. A number of light-related and tissue-specific cis-elements were randomly distributed within the promoter sequences of the PheCOLs. The expression profiling of PheCOL genes in various tissues and developmental stages revealed that most of PheCOL genes were most highly expressed in the leaves and took part in moso bamboo flower development and rapid shoot growth. In addition, the transcription of PheCOLs exhibited a clear diurnal oscillation in both long-day and short-day conditions. Most of the PheCOL genes were inhibited under light treatment and upregulated in dark conditions. PheCOLs can interact with each other. Subcellular localization result showed that PheCOL14 encoded a cell membrane protein, and it bound to the promoter of PheCOL3. Taken together, the results of this study will be useful not only as they contribute to comprehensive information for further analyses of the molecular functions of the PheCOL gene family, but also will provide a theoretical foundation for the further construction of moso bamboo photoperiod regulation networks.


Assuntos
Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/genética , Poaceae/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Fatores de Transcrição/metabolismo
3.
BMC Plant Biol ; 19(1): 242, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174465

RESUMO

BACKGROUND: Recurrent drought associated with climate change is a major constraint to wheat (Triticum aestivum L.) productivity. This study aimed to (i) quantify the effects of addition/substitution/translocation of chromosome segments from wild relatives of wheat on the root, physiological and yield traits of hexaploid wheat under drought, and (ii) understand the mechanism(s) associated with drought tolerance or susceptibility in wheat-alien chromosome lines. METHODS: A set of 48 wheat-alien chromosome lines (addition/substitution/translocation lines) with Chinese Spring background were used. Seedling root traits were studied on solid agar medium. To understand the influence of drought on the root system of adult plants, these 48 lines were grown in 150-cm columns for 65 d under full irrigation or withholding water for 58 d. To quantify the effect of drought on physiological and yield traits, the 48 lines were grown in pots under full irrigation until anthesis; after that, half of the plants were drought stressed by withholding water for 16 d before recording physiological and yield-associated traits. RESULTS: The alien chromosome lines exhibited altered root architecture and decreased photochemical efficiency and seed yield and its components under drought. The wheat-alien chromosome lines T5DS·5S#3L (TA5088) with a chromosome segment from Aegilops speltoides (5S) and T5DL.5 V#3S (TA5638) with a chromosome segment from Dasypyrum villosum (5 V) were identified as drought tolerant, and the drought tolerance mechanism was associated with a deep, thin and profuse root system. CONCLUSIONS: The two germplasm lines (TA5088 and TA5638) could be used in wheat breeding programs to improve drought tolerance in wheat and understand the underlying molecular genetic mechanisms of root architecture and drought tolerance.


Assuntos
Cromossomos de Plantas/genética , Secas , Genes de Plantas/genética , Melhoramento Vegetal , Triticum/genética , Aegilops/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/genética , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
4.
BMC Plant Biol ; 19(1): 230, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151385

RESUMO

BACKGROUND: Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS: The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS: The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.


Assuntos
Genótipo , Hibridização Genética , Poaceae/genética , Poliploidia , Análise Citogenética , República Tcheca , DNA de Plantas/análise , Hibridização In Situ , Hibridização in Situ Fluorescente , RNA Ribossômico 18S/análise , RNA Ribossômico 5S/análise
5.
Planta ; 250(2): 395-412, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236698

RESUMO

MAIN CONCLUSION: Bioethanol from lignocellulosic biomass is a promising step for the future energy requirements. Grass is a potential lignocellulosic biomass which can be utilised for biorefinery-based bioethanol production. Grass biomass is a suitable feedstock for bioethanol production due to its all the year around production, requirement of less fertile land and noninterference with food system. However, the processes involved, i.e. pretreatment, enzymatic hydrolysis and fermentation for bioethanol production from grass biomass, are both time consuming and costly. Developing the grass biomass in planta for enhanced bioethanol production is a promising step for maximum utilisation of this valuable feedstock and, thus, is the focus of the present review. Modern breeding techniques and transgenic processes are attractive methods which can be utilised for development of the feedstock. However, the outcomes are not always predictable and the time period required for obtaining a robust variety is generation dependent. Sophisticated genome editing technologies such as synthetic genetic circuits (SGC) or clustered regularly interspaced short palindromic repeats (CRISPR) systems are advantageous for induction of desired traits/heritable mutations in a foreseeable genome location in the 1st mutant generation. Although, its application in grass biomass for bioethanol is limited, these sophisticated techniques are anticipated to exhibit more flexibility in engineering the expression pattern for qualitative and qualitative traits. Nevertheless, the fundamentals rendered by the genetics of the transgenic crops will remain the basis of such developments for obtaining biorefinery-based bioethanol concepts from grass biomass. Grasses which are abundant and widespread in nature epitomise attractive lignocellulosic feedstocks for bioethanol production. The complexity offered by the grass cell wall in terms of lignin recalcitrance and its binding to polysaccharides forms a barricade for its commercialization as a biofuel feedstock. Inspired by the possibilities for rewiring the genetic makeup of grass biomass for reduced lignin and lignin-polysaccharide linkages along with increase in carbohydrates, innovative approaches for in planta modifications are forging ahead. In this review, we highlight the progress made in the field of transgenic grasses for bioethanol production and focus our understanding on improvements of simple breeding techniques and post-harvest techniques for development in shortening of lignin-carbohydrate and carbohydrate-carbohydrate linkages. Further, we discuss about the designer lignins which are aimed for qualitable lignins and also emphasise on remodelling of polysaccharides and mixed-linkage glucans for enhancing carbohydrate content and in planta saccharification efficiency. As a final point, we discuss the role of synthetic genetic circuits and CRISPR systems in targeted improvement of cell wall components without compromising the plant growth and health. It is anticipated that this review can provide a rational approach towards a better understanding of application of in planta genetic engineering aspects for designing synthetic genetic circuits which can promote grass feedstocks for biorefinery-based bioethanol concepts.


Assuntos
Biocombustíveis , Etanol/metabolismo , Engenharia Genética , Poaceae/genética , Biomassa , Biotecnologia , Fermentação , Hidrólise , Lignina/metabolismo , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Polissacarídeos/metabolismo , Desenvolvimento Sustentável
6.
BMC Evol Biol ; 19(1): 97, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046675

RESUMO

BACKGROUND: Gene duplication has played an important role in the evolution and domestication of flowering plants. Yet little is known about how plant duplicate genes evolve and are retained over long timescales, particularly those arising from small-scale duplication (SSD) rather than whole-genome duplication (WGD) events. RESULTS: We address this question in the Poaceae (grass) family by analyzing gene expression data from nine tissues of Brachypodium distachyon, Oryza sativa japonica (rice), and Sorghum bicolor (sorghum). Consistent with theoretical predictions, expression profiles of most grass genes are conserved after SSD, suggesting that functional conservation is the primary outcome of SSD in grasses. However, we also uncover support for widespread functional divergence, much of which occurs asymmetrically via the process of neofunctionalization. Moreover, neofunctionalization preferentially targets younger (child) duplicate gene copies, is associated with RNA-mediated duplication, and occurs quickly after duplication. Further analysis reveals that functional divergence of SSD-derived genes is positively correlated with both sequence divergence and tissue specificity in all three grass species, and particularly with anther expression in B. distachyon. CONCLUSIONS: Our results suggest that SSD-derived grass genes often undergo rapid functional divergence that may be driven by natural selection on male-specific phenotypes. These observations are consistent with those in several animal species, suggesting that duplicate genes take similar evolutionary trajectories in plants and animals.


Assuntos
Duplicação Gênica , Variação Genética , Poaceae/genética , Sequência de Bases , Brachypodium/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Genes de Plantas , Fases de Leitura Aberta/genética , Especificidade de Órgãos/genética , Oryza/genética , Filogenia , Sorghum/genética
7.
Plant Dis ; 103(6): 1068-1074, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31063029

RESUMO

Dasypyrum villosum is a wild relative of common wheat (Triticum aestivum L.) with resistance to Puccinia graminis f. tritici, the causal agent of stem rust, including the highly virulent race TTKSK (Ug99). In order to transfer resistance, T. durum-D. villosum amphiploids were initially developed and used as a bridge to create wheat-D. villosum introgression lines. Conserved ortholog set (COS) markers were used to identify D. villosum chromosome introgression lines, which were then subjected to seedling P. graminis f. tritici resistance screening with race TTKSK. A COS marker-verified line carrying chromosome 2V with TTKSK resistance was further characterized by combined genomic in situ and fluorescent in situ analyses to confirm a monosomic substitution line MS2V(2D) (20″ + 1' 2V[2D]). This is the first report of stem rust resistance on 2V, which was temporarily designated as SrTA10276-2V. To facilitate the use of this gene in wheat improvement, a complete set of previously developed wheat-D. villosum disomic addition lines was subjected to genotyping-by-sequencing analysis to develop D. villosum chromosome-specific markers. On average, 350 markers per chromosome were identified. These markers can be used to develop diagnostic markers for D. villosum-derived genes of interest in wheat improvement.


Assuntos
Basidiomycota , Cromossomos de Plantas , Resistência à Doença , Poaceae , Triticum , Basidiomycota/fisiologia , Resistência à Doença/genética , Genes de Plantas/genética , Genótipo , Poaceae/genética , Triticum/genética , Triticum/microbiologia
8.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085987

RESUMO

Sheepgrass (Leymus chinensis (Trin.) Tzvel.) is an economically and ecologically important forage in the grass family. Self-incompatibility (SI) limits its seed production due to the low seed-setting rate after self-pollination. However, investigations into the molecular mechanisms of sheepgrass SI are lacking. Therefore, microscopic observation of pollen germination and pollen tube growth, as well as transcriptomic analyses of pistils after self- and cross-pollination, were performed. The results indicated that pollen tube growth was rapidly inhibited from 10 to 30 min after self-pollination and subsequently stopped but preceded normally after cross-pollination. Time course comparative transcriptomics revealed different transcriptome dynamics between self- and cross-pollination. A pool of SI-related signaling genes and pathways was generated, including genes related to calcium (Ca2+) signaling, protein phosphorylation, plant hormone, reactive oxygen species (ROS), nitric oxide (NO), cytoskeleton, and programmed cell death (PCD). A putative SI response molecular model in sheepgrass was presented. The model shows that SI may trigger a comprehensive calcium- and phytohormone-dominated signaling cascade and activate PCD, which may explain the rapid inhibition of self-pollen tube growth as observed by cytological analyses. These results provided new insight into the molecular mechanisms of sheepgrass (grass family) SI.


Assuntos
Perfilação da Expressão Gênica/métodos , Poaceae/genética , Transcriptoma/genética , Cálcio/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização/genética , Polinização/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
BMC Genomics ; 20(1): 289, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987602

RESUMO

BACKGROUND: Dasypyrum villosum is an important wild species of wheat (Triticum aestivum L.) and harbors many desirable genes that can be used to improve various traits of wheat. Compared with other D. villosum accessions, D. villosum#4 still remains less studied. In particular, chromosomes of D. villosum#4 except 6V#4 have not been introduced into wheat by addition or substitution and translocation, which is an essential step to identify and apply the alien desired genes. RNA-seq technology can generate large amounts of transcriptome sequences and accelerate the development of chromosome-specific molecular markers and assisted selection of alien chromosome line. RESULTS: We obtained the transcriptome of D. villosum#4 via a high-throughput sequencing technique, and then developed 76 markers specific to each chromosome arm of D. villosum#4 based on the bioinformatic analysis of the transcriptome data. The D. villosum#4 sequences containing the specific DNA markers were expected to be involved in different genes, among which most had functions in metabolic processes. Consequently, we mapped these newly developed molecular markers to the homologous chromosome of barley and obtained the chromosome localization of these markers on barley genome. Then we analyzed the collinearity of these markers among D. villosum, wheat, and barley. In succession, we identified six types of T. aestivum-D. villosum#4 alien chromosome lines which had one or more than one D. villosum#4 chromosome in the cross and backcross BC3F5 populations between T. durum-D. villosum#4 amphidiploid TH3 and wheat cv. Wan7107 by employing the selected specific markers, some of which were further confirmed to be translocation or addition lines by genomic in situ hybridization (GISH). CONCLUSION: Seventy-six PCR markers specific to chromosomes of D. villosum#4 based on transcriptome data were developed in the current study and their collinearity among D. villosum, wheat, and barley were carried out. Six types of Triticum aestivum-D. villosum#4 alien chromosome lines were identified by using 12 developed markers and some of which were further confirmed by GISH. These novel T. aestivum-D. villosum#4 chromosome lines have great potential to be used for the introduction of desirable genes from D. villosum#4 into wheat by chromosomal translocation to breed new wheat varieties.


Assuntos
Cruzamento , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Genômica , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase
10.
Biomed Res Int ; 2019: 5046958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016191

RESUMO

Sorghum comprises 31 species that exhibit considerable morphological and ecological diversity. The phylogenetic relationships among Sorghum species still remain unresolved due to lower information on the traditional DNA markers, which provides a limited resolution for identifying Sorghum species. In this study, we sequenced the complete chloroplast genomes of Sorghum sudanense and S. propinquum and analyzed the published chloroplast genomes of S. bicolor and S. timorense to retrieve valuable chloroplast molecular resources for Sorghum. The chloroplast genomes ranged in length from 140,629 to 140,755 bp, and their gene contents, gene orders, and GC contents were similar to those for other Poaceae species but were slightly different in the number of SSRs. Comparative analyses among the four chloroplast genomes revealed 651 variable sites, 137 indels, and nine small inversions. Four highly divergent DNA regions (rps16-trnQ, trnG-trnM, rbcL-psaI, and rps15-ndhF), which were suitable for phylogenetic and species identification, were detected in the Sorghum chloroplast genomes. A phylogenetic analysis strongly supported that Sorghum is a monophyletic group in the tribe Andropogoneae. Overall, the genomic resources in this study could provide potential molecular markers for phylogeny and species identification in Sorghum.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Sorghum/genética , Composição de Bases/genética , DNA de Cloroplastos/genética , Ordem dos Genes/genética , Marcadores Genéticos/genética , Genômica/métodos , Filogenia , Poaceae/genética , Análise de Sequência de DNA/métodos
11.
J Plant Physiol ; 237: 61-71, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31026777

RESUMO

Drought stress negatively influences the growth and physiology of perennial grasses. The objective of this study was to identify associations of candidate genes with drought tolerance traits in 96 zoysiagrass (Zoysia Willd.) accessions. Germplasm varied largely in leaf wilting, canopy and air temperature difference (CAD), leaf water content (LWC), chlorophyll fluorescence (Fv/Fm), leaf dry weight (LDW), stolon dry weight (SDW), rhizome dry weight (RZW), and root dry weight (RDW) under drought stress across the two experiments in 2014 and 2015 in a greenhouse. The population exhibited three subgroups based on molecular marker analysis and had minimum relative kinship. Associations between single nucleotide polymorphisms (SNPs) in BADH encoding betaine aldehyde dehydrogenase, DREB1 encoding DREB-like protein 1, Ndhf encoding NADH dehydrogenase subunit F, CAT encoding catalase, and VP1 encoding H+-pyrophosphatase were analyzed with trait under drought stress (D) and relative values compared to the control (R). Twenty-seven mark and trait associations were detected in year 2014, 2015, and a two-year combination across four genes, including 13 associations in 7 SNP loci in BADH, 9 associations in 5 SNP loci in DREB1, 3 associations in one SNP locus in Ndhf, and 2 associations in one SNP locus in CAT. Of them, one SNP in BADH was associated with D-RDW or D-SDW, three SNPs in DREB1 were associated with D-RZW, D-RDW, R-LWC, and D-CAD, and one SNP in CAT was associated with D-SDW. Nucleotide changes in these SNP loci caused non-synonymous amino acid substitutions. The results indicated that allelic diversity in genes involved in antioxidant metabolism, osmotic homeostasis, and dehydration responsive transcription factor could contribute to growth and physiological variations in zoysiagrass under drought stress.


Assuntos
Secas , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Poaceae/fisiologia , Estresse Fisiológico/genética , Poaceae/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
12.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027154

RESUMO

Thinopyrum has been widely used to improve wheat (Triticum aestivum L.) cultivars. Non-denaturing fluorescence in situ hybridization (ND-FISH) technology using oligonucleotides (oligo) as probes provides a convenient and efficient way to identify alien chromosomes in wheat backgrounds. However, suitable ND-FISH-positive oligo probes for distinguishing Thinopyrum chromosomes from wheat are lacking. Two oligo probes, Oligo-B11 and Oligo-pThp3.93, were designed according to the published Thinopyrum ponticum (Th. ponticum)-specific repetitive sequences. Both Oligo-B11 and Oligo-pThp3.93 can be used for ND-FISH analysis and can replace conventional GISH and FISH to discriminate some chromosomes of Th. elongatum, Th. intermedium, and Th. ponticum in wheat backgrounds. The two oligo probes provide a convenient way for the utilization of Thinopyrum germplasms in future wheat breeding programs.


Assuntos
Cromossomos de Plantas/genética , Sondas de DNA/metabolismo , Hibridização in Situ Fluorescente/métodos , Desnaturação de Ácido Nucleico , Poaceae/genética , Triticum/genética , Metáfase
13.
BMC Plant Biol ; 19(1): 154, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023225

RESUMO

BACKGROUND: Trihelix transcription factors (TTFs) are photoresponsive proteins that have a representative three-helix structure (helix-loop-helix-loop-helix). Members of this gene family have been reported to play roles in many plant processes. RESULTS: In this study, we performed a functional and evolutionary analysis of the TTFs in Moso bamboo (Phyllostachys edulis). A total of 35 genes were identified and grouped into five subfamilies (GT-1, GT-γ, GT-2, SIP1 and SH4) according to their structural properties. Gene structure analysis showed that most genes in the PeTTF family had fewer introns. A unique motif (Motif 16) to the GT-γ subfamily was identified by conserved motif analysis. Promoter analysis revealed various cis-acting elements related to plant growth and development, abiotic and biotic stresses, and phytohormone responses. Data for the 35 Moso bamboo TTF genes were used to generate heat maps, which indicated that these genes were expressed in different tissues or developmental stages. Most of the TTF genes identified here had high expression in leaves and panicles according to the expression profile analysis. The expression levels of the TTF members in young leaves were studied using quantitative real-time PCR to determine their tissue specificity and stress-related expression patterns to help functionally characterize individual members. CONCLUSIONS: The results indicated that members of the TTF gene family may be involved in plant responses to stress conditions. Additionally, PeTTF29 was shown to be located in the nucleus by subcellular localization analysis and to have transcriptional activity in a transcriptional activity assay. Our research provides a comprehensive summary of the PeTTF gene family, including functional and evolutionary perspectives, and provides a basis for functionally characterizing these genes.


Assuntos
Evolução Molecular , Poaceae/genética , Fatores de Transcrição/genética , Acetatos/farmacologia , Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Motivos de Nucleotídeos , Oryza/genética , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
14.
Plant Physiol Biochem ; 139: 446-458, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30999132

RESUMO

Sheepgrass (Leymus chinensis ((Trin.) Tzvel)) is an important perennial forage grass that is widely distributed in the Eurasia steppe. The seed germination percentage show significant variation among the different germplasm in sheepgrass. However, the underlying molecular mechanisms of distinct germination during seed development are still mostly unknown. Here, we performed comparative transcriptomic analyses of high seed germination percentage (H) and low seed germination percentage (L) at 14, 28, and 42 days after pollination. After comparing 3 consecutive development stages, 9255, 5366, and 4306 genes were found to be significantly differently expressed between H and L. Pathway analysis indicated that transcripts related to starch and sucrose metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, amino sugar and nucleotide sugar metabolism, and photosynthesis were significantly changed between the two germplasm at three stages. ABA and GA metabolism- and signaling transduction-related genes were differentially expressed between two germplasm at development stages, suggesting that the reduced signaling of GA and ABA is likely to be related to seed germination and dormancy in sheepgrass. We also identified 81 transcription factor (TF) families, and some TFs genes such as NAC48, NAC78, WRKY80, ZnFP, C3H14 and ILR3 were significantly differential expressed in two germplasm. Our results provide insights into seed development, germination and dormancy in sheepgrass at the transcriptional level.


Assuntos
Sementes/metabolismo , Sementes/fisiologia , Transcriptoma/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Germinação/fisiologia , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/fisiologia , Fatores de Transcrição/metabolismo
15.
BMC Plant Biol ; 19(Suppl 1): 50, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813892

RESUMO

BACKGROUND: Myc-like regulatory factors carrying the basic helix-loop-helix (bHLH) domain belong to a large superfamily of transcriptional factors (TFs) present in all eukaryotic kingdoms. In plants, the representatives of this superfamily regulate diverse biological processes including growth and development as well as response to various stresses. As members of the regulatory MBW complexes, they participate in biosynthesis of flavonoids. In wheat, only one member (TaMyc1) of the Myc-like TFs family has been studied, while structural and functional organization of further members remained uncharacterized. From two Myc-subfamilies described recently in the genomes of Triticeae tribe species, we investigated thoroughly the members of the subfamily I which includes the TaMyc1 gene. RESULTS: Comparison of the promoter regions of the Myc subfamily I members in wheat suggested their division into two groups (likely homoeologous sets): TaMyc-1 (TaMyc-A1/TaMyc1, TaMyc-B1, TaMyc-D1) and TaMyc-2 (TaMyc-A2 and TaMyc-D2). It was demonstrated that the TaMyc-D1 copy has lost its functionality due to the frame shift mutation. The study of functional features of the other four copies suggested some of them to be involved in the biosynthesis of anthocyanins. In particular, TaMyc-B1 is assumed to be a co-regulator of the gene TaC1-A1 (encoding R2R3-Myb factor) in the MBW regulatory complex activating anthocyanin synthesis in wheat coleoptile. The mRNA levels of the TaMyc-A1, TaMyc-B1, TaMyc-A2 and TaMyc-D2 genes increased significantly in wheat seedlings exposed to osmotic stress. Salinity stress induced expression of TaMyc-B1 and TaMyc-A2, while TaMyc-A1 was repressed. CONCLUSIONS: The features of the structural and functional organization of the members of subfamily I of Myc-like TFs in wheat were determined. Myc-like co-regulator (TaMyc-B1) of anthocyanin synthesis in wheat coleoptile was described for the first time. The Myc-encoding genes presumably involved in response to drought and salinity were determined in wheat. The results obtained are important for further manipulations with Myc genes, aimed on increasing wheat adaptability.


Assuntos
Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Pressão Osmótica/fisiologia , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição/genética , Triticum/genética
16.
BMC Plant Biol ; 19(Suppl 1): 55, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813900

RESUMO

BACKGROUND: Leaves of Poaceae have a unique morphological feature: they consist of a proximal sheath and a distal blade separated by a ligular region. The sheath provides structural support and protects young developing leaves, whereas the main function of the blade is photosynthesis. The auricles allow the blade to tilt back for optimal photosynthesis and determine the angle of a leaf, whereas the ligule protects the stem from the entry of water, microorganisms, and pests. Liguleless variants have an upright leaf blade that wraps around the culm. Research on liguleless mutants of maize and other cereals has led to identification of genes that are involved in leaf patterning and differentiation. RESULTS: We characterized an induced liguleless mutant (LM) of Aegilops tauschii Coss., a donor of genome D of bread wheat Triticum aestivum L.. The liguleless phenotype of LM is under dominant monogenic control (Lgt). To determine precise position of Lgt on the Ae. tauschii genetic map, highly saturated genetic maps were constructed containing 887 single-nucleotide polymorphism (SNP) markers derived via diversity arrays technology (DArT)seq. The Lgt gene was mapped to chromosome 5DS. Taking into account coordinates of the SNP markers, flanking Lgt, on the pseudomolecule 5D, a chromosomal region that contains this gene was determined, and a list of candidate genes was identified. Morphological features of the LM phenotype suggest that Lgt participates in the control of leaf development, mainly, in leaf proximal-distal patterning, and its dominant mutation causes abnormal ligular region but does not affect reproductive development. CONCLUSIONS: Here we report characterization of a liguleless Ae. tauschii mutant, whose phenotype is under control of a dominant mutation of Lgt. The dominant mode of inheritance of the liguleless trait in a Triticeae species is reported for the first time. The position of the Lgt locus on chromosome 5DS allowed us to identify a list of candidate genes. This list does not contain Ae. tauschii orthologs of any well-characterized cereal genes whose mutations cause liguleless phenotypes. Thus, the characterized Lgt mutant represents a new model for further investigation of plant leaf patterning and differentiation.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Mutação/genética , Poaceae/genética , Triticum/genética , Zea mays/genética
17.
Mol Biol Rep ; 46(2): 2327-2353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830588

RESUMO

SWEET proteins represent one of the largest sugar transporter family in the plant kingdom and play crucial roles in plant development and stress responses. In the present study, a total of 108 TaSWEET genes distributed on all the 21 wheat chromosomes were identified using the latest whole genome sequence (as against 59 genes reported in an earlier report). These 108 genes included 14 of the 17 types reported in Arabidopsis and also included three novel types. Tandem duplications (22) and segmental duplications (5) played a significant role in the expansion of TaSWEET family. A number of cis-elements were also identified in the promoter regions of TaSWEET genes, indicating response of TaSWEET genes during development and also during biotic/abiotic stresses. The TaSWEET proteins carried 4-7 trans-membrane helices (TMHs) showing diversity in structure. Phylogenetic analysis using SWEET proteins of wheat and 8 other species gave four well-known clusters. Expression analysis involving both in silico and in planta indicated relatively higher expression of TaSWEET genes in water/heat sensitive and leaf rust resistant genotypes. The results provided insights into the functional role of TaSWEETs in biotic and abiotic stresses, which may further help in planning strategies to develop high yielding wheat varieties tolerant to environmental stresses.


Assuntos
Proteínas de Transporte de Monossacarídeos/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Poaceae/genética , Estresse Fisiológico/genética , Açúcares
18.
Plant Cell Physiol ; 60(6): 1354-1373, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835314

RESUMO

Circular RNAs, including circular exonic RNAs (circRNA), circular intronic RNAs (ciRNA) and exon-intron circRNAs (EIciRNAs), are a new type of noncoding RNAs. Growing shoots of moso bamboo (Phyllostachys edulis) represent an excellent model of fast growth and their circular RNAs have not been studied yet. To understand the potential regulation of circular RNAs, we systematically characterized circular RNAs from eight different developmental stages of rapidly growing shoots. Here, we identified 895 circular RNAs including a subset of mutually inclusive circRNA. These circular RNAs were generated from 759 corresponding parental coding genes involved in cellulose, hemicellulose and lignin biosynthetic process. Gene co-expression analysis revealed that hub genes, such as DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), MAINTENANCE OF METHYLATION (MOM), dicer-like 3 (DCL3) and ARGONAUTE 1 (AGO1), were significantly enriched giving rise to circular RNAs. The expression level of these circular RNAs presented correlation with its linear counterpart according to transcriptome sequencing. Further protoplast transformation experiments indicated that overexpressing circ-bHLH93 generating from transcription factor decreased its linear transcript. Finally, the expression profiles suggested that circular RNAs may have interplay with miRNAs to regulate their cognate linear mRNAs, which was further supported by overexpressing miRNA156 decreasing the transcript of circ-TRF-1 and linear transcripts of TRF-1. Taken together, the overall profile of circular RNAs provided new insight into an unexplored category of long noncoding RNA regulation in moso bamboo.


Assuntos
Brotos de Planta/crescimento & desenvolvimento , Poaceae/genética , RNA de Plantas/genética , RNA/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Brotos de Planta/metabolismo , Poaceae/crescimento & desenvolvimento , Transcriptoma
19.
Planta ; 249(6): 1949-1962, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30895446

RESUMO

MAIN CONCLUSION: Tripsacum dactyloides is closely related to Zea mays since Zea perennis and the MTP tri- species hybrid have four possible reproductive modes. Eastern gamagrass (Tripsacum dactyloides L.) and tetraploid perennial teosinte (Zea perennis) are well known to possess genes conferring resistance against biotic and abiotic stresses as well as adaptation to flood and aluminum toxic soils. However, plant breeders have been hampered to utilize these and other beneficial traits for maize improvement due to sterility in their hybrids. By crossing a tetraploid maize-inbred line × T. dactyloides, a female fertile hybrid was produced that was crossed with Z. perennis to yield a tri-genomic female fertile hybrid, which was backcrossed with diploid maize to produce BC1 and BC2. The tri-genomic hybrid provided a new way to transfer genetic material from both species into maize by utilizing conventional plant breeding methods. On the basis of cytogenetic observations using multi-color genomic in situ hybridization, the progenies were classified into four groups, in which chromosomes could be scaled both up and down with ease to produce material for varying breeding and genetic purposes via apomixis or sexual reproduction. In the present study, pathways were found to recover maize and to obtain specific translocations as well as a speedy recovery of the T. dactyloides-maize addition line in a second backcross generation. However, phenotypes of the recovered maize were in most cases far from maize as a result of genetic load from T. dactyloides and Z. perennis, and could not be directly used as a maize-inbred line but could serve as an intermediate material for maize improvement. A series of hybrids was produced (having varying chromosome number, constitution, and translocations) with agronomic traits from all three parental species. The present study provides an application of overcoming the initial interspecific barriers among these species. Moreover, T. dactyloides is closely related to Z. mays L. ssp. mays since Z. perennis and the MTP tri- species hybrid have four possible reproductive modes.


Assuntos
Cromossomos de Plantas/genética , Fluxo Gênico , Especiação Genética , Genoma de Planta/genética , Poaceae/genética , Zea mays/genética , Apomixia , Quimera , Segregação de Cromossomos , Hibridização In Situ , Fenótipo , Melhoramento Vegetal , Poliploidia , Reprodução , Translocação Genética
20.
Plant Physiol Biochem ; 139: 161-170, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30897507

RESUMO

Soil salinization is a major abiotic stress condition that affects about half of global agricultural lands. Salinity leads to osmotic shock, ionic imbalance and/or toxicity and build-up of reactive oxygen species. Na⁺/H⁺ antiporters (NHXs) are integral membrane transporters that catalyze the electro-neutral exchange of K⁺/Na⁺ for H⁺ and are implicated in cell expansion, development, pH/ion homeostasis and salt tolerance. Porteresia coarctata is a salt secreting halophytic wild rice that thrives in the coastal-riverine interface. P. coarctata NHX1 (PcNHXI) expression is induced by salinity in P. coarctata roots and shows high sequence identity to Oryza sativa NHX1. PcNHX1 confers hygromycin and Li+ sensitivity and Na+ tolerance transport in a yeast strain lacking sodium transport systems. Additionally, transgenic PcNHX1 expressing tobacco seedlings (PcNHX1 promoter) show significant growth advantage under increasing concentrations of NaCl and MS salts. Etiolated PcNHX1 seedlings also exhibit significantly elongated hypocotyl lengths in 100 mM NaCl. PcNHX1 expression in transgenic tobacco roots increases under salinity, similar to expression in P. coarctata roots. Under incremental salinity, transgenic lines show reduction in leaf Na+, stem specific accumulation of Na+ and K+ (unaltered Na+/K+ ratios). PcNHX1 transgenic plants also show enhanced chlorophyll content and reduced malondialdehyde (MDA) production in leaves under salinity. The above data suggests that PcNHX1 overexpression (controlled by PcNHX1p) enhances stem specific accumulation of Na+, thereby protecting leaf tissues from salt induced injury.


Assuntos
Hipocótilo/crescimento & desenvolvimento , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Poaceae/genética , Trocadores de Sódio-Hidrogênio/genética , Sódio/metabolismo , Clorofila/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Poaceae/fisiologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA