Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.903
Filtrar
1.
J Enzyme Inhib Med Chem ; 36(1): 1968-1983, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34482781

RESUMO

A novel 3,4-dihydroisoquinol-1-one-4-carboxamide scaffold was designed as the basis for the development of novel inhibitors of poly(ADP-ribose) polymerase (PARP). Synthesis of 3,4-dihydroisoquinol-1-one-4-carboxylic acids was achieved using the previously developed protocol based on the modified Castagnoli-Cushman reaction of homophthalic anhydrides and 1,3,5-triazinanes as formaldimine synthetic equivalents. Employment of 2,4-dimethoxy groups on the nitrogen atom of the latter allowed preparation of 2,3-unsubatituted 3,4-dihydroquinolone core building blocks. Iterative synthesis and in vitro biological testing of the amides resulting from the amidation of these carboxylic acids allowed not only drawing important structure-activity generalisations (corroborated by in silico docking simulation) but also the identification of the lead compound, 4-([1,4'-bipiperidine]-1'-carbonyl)-7-fluoro-3,4-dihydroisoquinolin-1(2H)-one, as the candidate for further preclinical development. The lead compound as well as its des-fluoro analog were compared to the approved PARP1 inhibitor, anticancer drug Olaparib, in terms of their molecular characteristics defining druglikeness as well as experimentally determined ADME parameters. The newly developed series demonstrated clear advantages over Olaparib in terms of molecular weight, hydrophilicity, human liver microsomal and plasma stability as well as plasma protein binding. Further preclinical investigation of the lead compound is highly warranted.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
2.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486521

RESUMO

The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Transporte/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443427

RESUMO

Pterostilbene, a natural metabolite of resveratrol, has been indicated as a potent anticancer molecule. Recently, several pterostilbene derivatives have been reported to exhibit better anticancer activities than that of the parent pterostilbene molecule. In the present study, a series of pterostilbene derivatives were designed and synthesized by the hybridization of pterostilbene, chalcone, and cinnamic acid. The cytotoxic effect of these hybrid molecules was determined using two oral cancer cell lines, HSC-3 and OECM-1. (E)-3-(2-((E)-4-Hydroxystyryl)-4,6-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (4d), with IC50 of 16.38 and 18.06 µM against OECM-1 and HSC-3, respectively, was selected for further anticancer mechanism studies. Results indicated that compound 4d effectively inhibited cell proliferation and induced G2/M cell cycle arrest via modulating p21, cyclin B1, and cyclin A2. Compound 4d ultimately induced cell apoptosis by reducing the expression of Bcl-2 and surviving. In addition, cleavage of PARP and caspase-3 were enhanced following the treatment of compound 4d with increased dose. To conclude, a number of pterostilbene derivatives were discovered to possess potent anticancer potentials. Among them, compound 4d was the most active, more active than the parent pterostilbene.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Estilbenos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Poli(ADP-Ribose) Polimerases/metabolismo , Estilbenos/química , Relação Estrutura-Atividade
4.
Biochem Soc Trans ; 49(4): 1711-1721, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34351418

RESUMO

The COVID-19 pandemic has prompted intense research efforts into elucidating mechanisms of coronavirus pathogenesis and to propose antiviral interventions. The interferon (IFN) response is the main antiviral component of human innate immunity and is actively suppressed by several non-structural SARS-CoV-2 proteins, allowing viral replication within human cells. Differences in IFN signalling efficiency and timing have emerged as central determinants of the variability of COVID-19 disease severity between patients, highlighting the need for an improved understanding of host-pathogen interactions that affect the IFN response. ADP-ribosylation is an underexplored post-translational modification catalyzed by ADP-ribosyl transferases collectively termed poly(ADP-ribose) polymerases (PARPs). Several human PARPs are induced by the IFN response and participate in antiviral defences by regulating IFN signalling itself, modulating host processes such as translation and protein trafficking, as well as directly modifying and inhibiting viral target proteins. SARS-CoV-2 and other viruses encode a macrodomain that hydrolyzes ADP-ribose modifications, thus counteracting antiviral PARP activity. This mini-review provides a brief overview of the known targets of IFN-induced ADP-ribosylation and the functions of viral macrodomains, highlighting several open questions in the field.


Assuntos
ADP-Ribosilação , COVID-19/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , SARS-CoV-2/metabolismo , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/fisiologia
5.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361036

RESUMO

Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias do Endométrio/metabolismo , Monoterpenos/toxicidade , Tropolona/análogos & derivados , Autofagia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Feminino , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tropolona/toxicidade , Proteína Supressora de Tumor p53/metabolismo
6.
Environ Sci Pollut Res Int ; 28(36): 49491-49506, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34370190

RESUMO

The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP) inhibitors have been a major breakthrough in the history of ovarian cancer treatment. PARP is an enzyme responsible for post-translational modification of proteins and repair of single-stranded DNA damage. PARP inhibitors can selectively inhibit PARP function, resulting in a synthetic lethal effect on tumor cells defective in homologous recombination repair. However, with large-scale application, drug resistance also inevitably appears. For PARP inhibitors, the diversity and complexity of drug resistance mechanisms have always been difficult problems in clinical treatment. Herein, we mainly summarized the research progress of DNA damage repair and drug resistance mechanisms related to PARP inhibitors and the impact of environmental pollutants on DNA damage repair to aid the development prospects and highlight urgent problems to be solved.


Assuntos
Poluentes Ambientais , Neoplasias Ovarianas , Reparo do DNA , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo
7.
Biomolecules ; 11(7)2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34356606

RESUMO

The genetic principle of synthetic lethality has most successfully been exploited in therapies engaging Poly-ADP-ribose-polymerase (PARP) inhibitors to treat patients with homologous recombination (HR)-defective tumors. In this work, we went a step further following the idea of a local molecular cooperation and designed hybrid compounds M1-M3. The drug conjugates M1-M3 combine Olaparib, the first PARP inhibitor approved for clinical use, with Cpd 1, an inhibitor of RAD51 that blocks its HR functions and yet permits RAD51 nucleoprotein filament formation on single-stranded DNA. While in M2 and M3, the parental drugs are linked by -CO-(CH2)n-CO-spacers (n = 2 and 4, respectively), they are directly merged omitting the piperazine ring of Olaparib in M1. Monitoring anti-survival effects of M1-M3 in six breast cancer cell lines of different molecular subtypes showed that in each cell line, at least one of the drug conjugates decreased viability by one to two orders of magnitude compared with parental drugs. While triple-negative breast cancer (TNBC) cells with frequent BRCA1 pathway dysfunction were sensitive to spacer-linked hybrid compounds M1 and M2 regardless of their HR capacities, non-TNBC cells were responsive to the merged drug conjugate M1 only, suggesting different spatial requirements for dual inhibition in these two groups of cell lines. These results demonstrate that, depending on chemical linkage, dual PARP1-RAD51 inhibitory drugs can either sensitize non-TNBC and re-sensitize TNBC cells, or discriminate between these groups of cells.


Assuntos
Antineoplásicos , Proteínas de Neoplasias/antagonistas & inibidores , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Rad51 Recombinase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Ftalazinas/química , Ftalazinas/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
8.
J Enzyme Inhib Med Chem ; 36(1): 1916-1921, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461785

RESUMO

An earlier described three-component variant of the Castagnoli-Cushman reaction employing homophthalic anhydrides, carbonyl compound and ammonium acetate was applied towards the preparation of 1-oxo-3,4-dihydroisoquinoline-4-carboxamides with variable substituent in position 3. These compounds displayed inhibitory activity towards poly(ADP-ribose) polymerase (PARP), a clinically validated cancer target. The most potent compound (PARP1/2 IC50 = 22/4.0 nM) displayed the highest selectivity towards PARP2 in the series (selectivity index = 5.5), more advantageous ADME prameters compared to the clinically used PARP inhibitor Olaparib.


Assuntos
Acetatos/química , Antineoplásicos/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Quinolonas/química , Acetatos/farmacologia , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Sítios de Ligação , Dano ao DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , NAD/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
9.
J Biol Chem ; 297(3): 101041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358560

RESUMO

SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself.


Assuntos
ADP-Ribosilação , COVID-19/virologia , Interferons/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Humanos
10.
Exp Cell Res ; 406(1): 112759, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332984

RESUMO

The Serum Amyloid A (SAA) family of proteins is associated with various pathological conditions, including cancer. However, their role in cancer is incompletely understood. Here, we investigated the role of SAA1 in cell cycle regulation, apoptosis, survival signaling, metabolism, and metastasis in models of triple-negative breast cancer (TNBC), using RNAi. Our data show that in untransformed epithelial cells (MCF12A), the knockdown of SAA1 induces the expression of cell cycle regulators (MCM2, p53), the activation of DNA repair (PARP synthesis), and survival signaling (NFκB). In contrast, knockdown of SAA1 in the TNBC cell line (MDA-MB-231) induced the expression p16 and shifted cells in the cell cycle from the S to G2/M phase, without the activation of DNA repair. Moreover, in SAA1-deficient MDA-MB-231 and HCC70 cells, metabolism (NADH oxidation) continually increased while cell migration (% wound closure and the rate of wound closure) decreased. However, silencing of SAA1 altered epithelial and mesenchymal markers in MCF12A (E-cadherin, Laminin 1ß, Vimentin) and MDA-MB-231 (α-Smooth muscle actin) cells, associated with the metastatic program of epithelial-mesenchymal transition. Nonetheless, our data provide evidence that SAA1 could potentially serve as a therapeutic target in TNBC.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Movimento Celular/genética , Células Epiteliais/metabolismo , Proteína Amiloide A Sérica/genética , Actinas/genética , Actinas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina/genética , Laminina/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Amiloide A Sérica/antagonistas & inibidores , Proteína Amiloide A Sérica/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vimentina/genética , Vimentina/metabolismo
11.
Nat Commun ; 12(1): 4055, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210965

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Reparo do DNA , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina/metabolismo , ADP-Ribosilação , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional
12.
Nat Commun ; 12(1): 4057, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210977

RESUMO

Chromatin remodeler ALC1 (amplification in liver cancer 1) is crucial for repairing damaged DNA. It is autoinhibited and activated by nucleosomal epitopes. However, the mechanisms by which ALC1 is regulated remain unclear. Here we report the crystal structure of human ALC1 and the cryoEM structure bound to the nucleosome. The structure shows the macro domain of ALC1 binds to lobe 2 of the ATPase motor, sequestering two elements for nucleosome recognition, explaining the autoinhibition mechanism of the enzyme. The H4 tail competes with the macro domain for lobe 2-binding, explaining the requirement for this nucleosomal epitope for ALC1 activation. A dual-arginine-anchor motif of ALC1 recognizes the acidic pocket of the nucleosome, which is critical for chromatin remodeling in vitro. Together, our findings illustrate the structures of ALC1 and shed light on its regulation mechanisms, paving the way for the discovery of drugs targeting ALC1 for the treatment of cancer.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cristalografia por Raios X/métodos , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Neoplasias Hepáticas/patologia , Nucleossomos/metabolismo , Proteínas Recombinantes/química , Células Cultivadas , DNA Helicases/química , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
13.
Biomolecules ; 11(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208033

RESUMO

Previous studies have reported that 4,6'-Anhydrooxysporidinone (SSF2-2), isolated from Fusarium lateritium SSF2, has neuroprotective effects on the HT-22 hippocampal neuronal cell line. However, the anti-cancer effect of SSF2-2 remains unclear. Here, we examined the viability of MCF-7 human breast cancer cells treated with SSF2-2 or left untreated using a cell viability assay kit. The underlying molecular mechanism was further investigated by Western blotting and immunocytochemistry studies. The results demonstrated that SSF2-2 inhibited the viability of MCF-7 cells. Treatment with SSF2-2 increased the levels of cleaved caspase-9, cleaved caspase-7, poly (ADP-ribose) polymerase (PARP), and LC3B. Additionally, SSF2-2 significantly increased the conversion of LC3-I to LC3II and LC3-positive puncta in MCF-7 cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Piridonas/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Caspase 7/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fusarium/metabolismo , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Piridonas/química , Espécies Reativas de Oxigênio/metabolismo
14.
Chem Commun (Camb) ; 57(51): 6308-6311, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34075974

RESUMO

Here, we describe the identification of PARP1/2 as direct binding proteins of andrographolide (Andro) using protein microarray, surface plasmon resonance (SPR), and enzyme activity assays. We then evaluated the proliferation inhibition, apoptosis, and cell migration effects of Andro on the MDA-MB-436 cell line in vitro. The final biological evaluation confirmed that Andro was a highly effective single agent in the MDA-MB-436 xenograft model and had a low hERG-mediated cardiac toxicity. Therefore, Andro represents the first natural product, non-amide member of a novel nanomolar-potency PARP1/2 inhibitor family.


Assuntos
Diterpenos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Ensaios Enzimáticos , Humanos , Cinética , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ftalazinas/metabolismo , Ftalazinas/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/análise , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/análise , Poli(ADP-Ribose) Polimerases/química , Análise Serial de Proteínas , Razão Sinal-Ruído , Ressonância de Plasmônio de Superfície , Transplante Heterólogo
15.
Nat Commun ; 12(1): 3479, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108479

RESUMO

Human PARP2/ARTD2 is an ADP-ribosyltransferase which, when activated by 5'-phosphorylated DNA ends, catalyses poly-ADP-ribosylation of itself, other proteins and DNA. In this study, a crystal structure of PARP2 in complex with an activating 5'-phosphorylated DNA shows that the WGR domain bridges the dsDNA gap and joins the DNA ends. This DNA binding results in major conformational changes, including reorganization of helical fragments, in the PARP2 regulatory domain. A comparison of PARP1 and PARP2 crystal structures reveals how binding to a DNA damage site leads to formation of a catalytically competent conformation. In this conformation, PARP2 is capable of binding substrate NAD+ and histone PARylation factor 1 that changes PARP2 residue specificity from glutamate to serine when initiating DNA repair processes. The structure also reveals how the conformational changes in the autoinhibitory regulatory domain would promote the flexibility needed by the enzyme to reach the target macromolecule for ADP-ribosylation.


Assuntos
Dano ao DNA , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Transporte/metabolismo , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ativação Enzimática , Humanos , NAD/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Desdobramento de Proteína
16.
DNA Repair (Amst) ; 105: 103144, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116477

RESUMO

ADP-ribosylation is a chemical modification of macromolecules found across all domains of life and known to regulate a variety of cellular processes. Notably, it has a well-established role in the DNA damage response. While it was historically known as a post-translational modification of proteins, recent studies have shown that nucleic acids can also serve as substrates of reversible ADP-ribosylation. More precisely, ADP-ribosylation of DNA bases, phosphorylated DNA ends and phosphorylated RNA ends have been reported. We will discuss these three types of modification in details. In a variety of bacterial species, including Mycobacterium tuberculosis, ADP-ribosylation of thymidine has emerged as the mode of action of a toxin-antitoxin system named DarTG, with the resultant products perceived as DNA damage by the cell. On the other hand, mammalian DNA damage sensors PARP1, PARP2 and PARP3 were shown to ADP-ribosylate phosphorylated ends of double-stranded DNA in vitro. Additionally, TRPT1 and several PARP enzymes, including PARP10, can add ADP-ribose to the 5'-phosphorylated end of single-stranded RNA in vitro, representing a novel RNA capping mechanism. Together, these discoveries have led to the emergence of a new and exciting research area, namely DNA and RNA ADP-ribosylation, that is likely to have far-reaching implications for the fields of DNA repair, replication and epigenetics.


Assuntos
ADP-Ribosilação , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , RNA/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
17.
Biomolecules ; 11(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066020

RESUMO

Poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPis) belong to a class of targeted drugs developed for the treatment of homologous recombination repair (HRR)-defective tumors. Preclinical and limited clinical data suggest that PARP inhibition is effective against prostate cancer (PC) in patients with HRR-deficient tumors and that PARPis can improve the mortality rate of PC in patients with BRCA1/2 mutations through a synthetic lethality. Olaparib has been approved by the FDA for advanced ovarian and breast cancer with BRCA mutations, and as a maintenance therapy for ovarian cancer after platinum chemotherapy. PARPis are also a new and emerging clinical treatment for metastatic castration-resistant prostate cancer (mCRPC). Although PARPis have shown great efficacy, their widespread use is restricted by various factors, including drug resistance and the limited population who benefit from treatment. It is necessary to study the combination of PARPis and other therapeutic agents such as anti-hormone drugs, USP7 inhibitors, BET inhibitors, and immunotherapy. This article reviews the mechanism of PARP inhibition in the treatment of PC, the progress of clinical research, the mechanisms of drug resistance, and the strategies of combination treatments.


Assuntos
Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/química , Neoplasias da Próstata/tratamento farmacológico , Ensaios Clínicos como Assunto , Humanos , Masculino , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
18.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102106

RESUMO

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Assuntos
Reparo do DNA/genética , DNA/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Animais , Linhagem Celular , Quebras de DNA de Cadeia Simples , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica/efeitos dos fármacos
19.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066057

RESUMO

Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.


Assuntos
Proteínas de Ciclo Celular/química , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerases/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos/efeitos dos fármacos
20.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066541

RESUMO

Breast cancer is one of the major causes of deaths due to cancer, especially in women. The crucial barrier for breast cancer treatment is resistance to radiation therapy, one of the important local regional therapies. We previously established and characterized radio-resistant MDA-MB-231 breast cancer cells (RT-R-MDA-MB-231 cells) that harbor a high expression of cancer stem cells (CSCs) and the EMT phenotype. In this study, we performed antibody array analysis to identify the hub signaling mechanism for the radiation resistance of RT-R-MDA-MB-231 cells by comparing parental MDA-MB-231 (p-MDA-MB-231) and RT-R-MDA-MB-231 cells. Antibody array analysis unveiled that the MAPK1 protein was the most upregulated protein in RT-R-MDA-MB-231 cells compared to in p-MDA-MB-231 cells. The pathway enrichment analysis also revealed the presence of MAPK1 in almost all enriched pathways. Thus, we used an MEK/ERK inhibitor, PD98059, to block the MEK/ERK pathway and to identify the role of MAPK1 in the radio-resistance of RT-R-MDA-MB-231 cells. MEK/ERK inhibition induced cell death in both p-MDA-MB-231 and RT-R-MDA-MB-231 cells, but the death mechanism for each cell was different; p-MDA-MB-231 cells underwent apoptosis, showing cell shrinkage and PARP-1 cleavage, while RT-R-MDA-MB-231 cells underwent necroptosis, showing mitochondrial dissipation, nuclear swelling, and an increase in the expressions of CypA and AIF. In addition, MEK/ERK inhibition reversed the radio-resistance of RT-R-MDA-MB-231 cells and suppressed the increased expression of CSC markers (CD44 and OCT3/4) and the EMT phenotype (ß-catenin and N-cadherin/E-cadherin). Taken together, this study suggests that activated ERK signaling is one of the major hub signals related to the radio-resistance of MDA-MB-231 breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/radioterapia , Sistema de Sinalização das MAP Quinases , Tolerância a Radiação , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Ciclofilina A/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Poli(ADP-Ribose) Polimerases/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Tolerância a Radiação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...