Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.267
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 80, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900404

RESUMO

To harness the synthetic power of modular polyketide synthases (PKSs), many aspects of their biochemistry must be elucidated. A robust platform to study these megadalton assembly lines has not yet been described. Here, we in vitro reconstitute the venemycin PKS, a short assembly line that generates an aromatic product. Incubating its polypeptides, VemG and VemH, with 3,5-dihydroxybenzoic acid, ATP, malonate, coenzyme A, and the malonyl-CoA ligase MatB, venemycin production can be monitored by HPLC and NMR. Multi-milligram quantities of venemycin are isolable from dialysis-based reactors without chromatography, and the enzymes can be recycled. Assembly line engineering is performed using pikromycin modules, with synthases designed using the updated module boundaries outperforming those using the traditional module boundaries by over an order of magnitude. Using combinations of VemG, VemH, and their engineered derivatives, as well as the alternate starter unit 3-hydroxybenzoic acid, a combinatorial library of six polyketide products is readily accessed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Streptomyces/enzimologia , Proteínas de Bactérias/metabolismo , Macrolídeos/química , Policetídeo Sintases/metabolismo , Policetídeos/química , Engenharia de Proteínas , Streptomyces/química , Streptomyces/genética , Especificidade por Substrato
2.
PLoS One ; 15(1): e0228217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990962

RESUMO

Escherichia coli (E. coli) from the B2 phylogenetic group is implicated in colorectal cancer (CRC) as it possesses a genomic island, termed polyketide synthetase (pks), which codes for the synthesis of colibactin, a genotoxin that induces DNA damage, cell cycle arrest, mutations and chromosomal instability in eukaryotic cells. The aim of this study was to detect and compare the prevalence of E. coli expressing pks (pks+ E. coli) in CRC patients and healthy controls followed by investigating the virulence triggered by pks+ E. coli using an in-vitro model. Mucosal colon tissues were collected and processed to determine the presence of pks+ E. coli. Thereafter, primary colon epithelial (PCE) and colorectal carcinoma (HCT116) cell lines were used to detect cytopathic response to the isolated pks+ E. coli strains. Our results showed 16.7% and 4.3% of CRC and healthy controls, respectively were pks+ E. coli. Further, PCE displayed syncytia and cell swelling and HCT116 cells, megalocytosis, in response to treatment with the isolated pks+ E. coli strains. In conclusion, pks+ E. coli was more often isolated from tissue of CRC patients compared to healthy individuals, and our in-vitro assays suggest these isolated strains may be involved in the initiation and development of CRC.


Assuntos
Centros Médicos Acadêmicos/estatística & dados numéricos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Policetídeo Sintases/metabolismo , Idoso , Feminino , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência
3.
Nat Chem Biol ; 16(1): 42-49, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636431

RESUMO

Modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymatic assembly lines are large and dynamic protein machines that generally effect a linear sequence of catalytic cycles. Here, we report the heterologous reconstitution and comprehensive characterization of two hybrid NRPS-PKS assembly lines that defy many standard rules of assembly line biosynthesis to generate a large combinatorial library of cyclic lipodepsipeptide protease inhibitors called thalassospiramides. We generate a series of precise domain-inactivating mutations in thalassospiramide assembly lines, and present evidence for an unprecedented biosynthetic model that invokes intermodule substrate activation and tailoring, module skipping and pass-back chain extension, whereby the ability to pass the growing chain back to a preceding module is flexible and substrate driven. Expanding bidirectional intermodule domain interactions could represent a viable mechanism for generating chemical diversity without increasing the size of biosynthetic assembly lines and challenges our understanding of the potential elasticity of multimodular megaenzymes.


Assuntos
Família Multigênica , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Catálise , Cromatografia Líquida , Clonagem Molecular , Elasticidade , Deleção de Genes , Teste de Complementação Genética , Espectrometria de Massas , Mutação , Policetídeo Sintases/metabolismo , Domínios Proteicos , Proteobactérias/enzimologia , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 117(2): 1174-1180, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882449

RESUMO

Indolizidine alkaloids such as anticancer drugs vinblastine and vincristine are exceptionally attractive due to their widespread occurrence, prominent bioactivity, complex structure, and sophisticated involvement in the chemical defense for the producing organisms. However, the versatility of the indolizidine alkaloid biosynthesis remains incompletely addressed since the knowledge about such biosynthetic machineries is only limited to several representatives. Herein, we describe the biosynthetic gene cluster (BGC) for the biosynthesis of curvulamine, a skeletally unprecedented antibacterial indolizidine alkaloid from Curvularia sp. IFB-Z10. The molecular architecture of curvulamine results from the functional collaboration of a highly reducing polyketide synthase (CuaA), a pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (CuaB), an NADPH-dependent dehydrogenase (CuaC), and a FAD-dependent monooxygenase (CuaD), with its transportation and abundance regulated by a major facilitator superfamily permease (CuaE) and a Zn(II)Cys6 transcription factor (CuaF), respectively. In contrast to expectations, CuaB is bifunctional and capable of catalyzing the Claisen condensation to form a new C-C bond and the α-hydroxylation of the alanine moiety in exposure to dioxygen. Inspired and guided by the distinct function of CuaB, our genome mining effort discovers bipolamines A-I (bipolamine G is more antibacterial than curvulamine), which represent a collection of previously undescribed polyketide alkaloids from a silent BGC in Bipolaris maydis ATCC48331. The work provides insight into nature's arsenal for the indolizidine-coined skeletal formation and adds evidence in support of the functional versatility of PLP-dependent enzymes in fungi.


Assuntos
Alcaloides/biossíntese , Ascomicetos/enzimologia , Ascomicetos/metabolismo , Indolizidinas/metabolismo , Policetídeo Sintases/metabolismo , Fosfato de Piridoxal/metabolismo , Alcaloides/genética , Alcaloides/isolamento & purificação , Antibacterianos/metabolismo , Ascomicetos/genética , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Catálise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Hidroxilação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Família Multigênica , Filogenia , Policetídeo Sintases/classificação , Policetídeo Sintases/genética , Policetídeos , Fosfato de Piridoxal/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Appl Microbiol Biotechnol ; 103(23-24): 9619-9631, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686146

RESUMO

Type I polyketide synthases (PKSs) are large multi-domain proteins converting simple acyl-CoA thioesters such as acetyl-CoA and malonyl-CoA to a large diversity of biotechnologically interesting molecules. Such multi-step reaction cascades are of particular interest for applications in engineered microbial cell factories, as the introduction of a single protein with many enzymatic activities does not require balancing of several individual enzymatic activities. However, functional introduction of type I PKSs into heterologous hosts is very challenging as the large polypeptide chains often do not fold properly. In addition, PKS usually require post-translational activation by dedicated 4'-phosphopantetheinyl transferases (PPTases). Here, we introduce an engineered Corynebacterium glutamicum strain as a novel microbial cell factory for type I PKS-derived products. Suitability of C. glutamicum for polyketide synthesis could be demonstrated by the functional introduction of the 6-methylsalicylic acid synthase ChlB1 from Streptomyces antibioticus. Challenges related to protein folding could be overcome by translation fusion of ChlB1Sa to the C-terminus of the maltose-binding protein MalE from Escherichia coli. Surprisingly, ChlB1Sa was also active in the absence of a heterologous PPTase, which finally led to the discovery that the endogenous PPTase PptACg of C. glutamicum can also activate ChlB1Sa. The best strain, engineered to provide increased levels of acetyl-CoA and malonyl-CoA, accumulated up to 41 mg/L (0.27 mM) 6-methylsalicylic acid within 48 h of cultivation. Further experiments showed that PptACg of C. glutamicum can also activate nonribosomal peptide synthetases (NRPSs), rendering C. glutamicum a promising microbial cell factory for the production of several fine chemicals and medicinal drugs.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Salicilatos/metabolismo , Escherichia coli/metabolismo , Microbiologia Industrial , Engenharia Metabólica/métodos , Streptomyces antibioticus/enzimologia
6.
Environ Microbiol ; 21(12): 4875-4886, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698543

RESUMO

The economically important necrotrophic fungal pathogen, Pyrenophora tritici-repentis (Ptr), causes tan spot of wheat, a disease typified by foliar necrosis and chlorosis. The culture filtrate of an Australian Ptr isolate, M4, possesses phytotoxic activity and plant bioassay guided discovery led to the purification of necrosis inducing toxins called triticone A and B. High-resolution LC-MS/MS analysis of the culture filtrate identified an additional 37 triticone-like compounds. The biosynthetic gene cluster responsible for triticone production (the Ttc cluster) was identified and deletion of TtcA, a hybrid polyketide synthase (PKS)-nonribosomal peptide synthase (NRPS), abolished production of all triticones. The pathogenicity of mutant (ttcA) strains was not visibly affected in our assays. We hypothesize that triticones possess general antimicrobial activity important for competition in multi-microbial environments.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Lactamas/metabolismo , Peptídeo Sintases/metabolismo , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Triticum/microbiologia , Ascomicetos/química , Ascomicetos/genética , Ascomicetos/metabolismo , Austrália , Cromatografia Líquida , Proteínas Fúngicas/genética , Deleção de Genes , Lactamas/química , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Espectrometria de Massas em Tandem
7.
Planta ; 251(1): 15, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776718

RESUMO

MAIN CONCLUSION: Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.


Assuntos
Policetídeo Sintases/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Policetídeo Sintases/metabolismo , Regiões Promotoras Genéticas/genética
8.
Nat Chem ; 11(10): 906-912, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548673

RESUMO

Polyketide synthases assemble diverse natural products with numerous important applications. The thioester intermediates in polyketide assembly are covalently tethered to acyl carrier protein domains of the synthase. Several mechanisms for polyketide chain release are known, contributing to natural product structural diversification. Here, we report a dual transacylation mechanism for chain release from the enacyloxin polyketide synthase, which assembles an antibiotic with promising activity against Acinetobacter baumannii. A non-elongating ketosynthase domain transfers the polyketide chain from the final acyl carrier protein domain of the synthase to a separate carrier protein, and a non-ribosomal peptide synthetase condensation domain condenses it with (1S,3R,4S)-3,4-dihydroxycyclohexane carboxylic acid. Molecular dissection of this process reveals that non-elongating ketosynthase domain-mediated transacylation circumvents the inability of the condensation domain to recognize the acyl carrier protein domain. Several 3,4-dihydroxycyclohexane carboxylic acid analogues can be employed for chain release, suggesting a promising strategy for producing enacyloxin analogues.


Assuntos
Antibacterianos/biossíntese , Polienos/metabolismo , Policetídeo Sintases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acilação , Antibacterianos/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polienos/química , Polienos/farmacologia
9.
Nat Chem ; 11(10): 913-923, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548674

RESUMO

Modular polyketide synthases and non-ribosomal peptide synthetases are molecular assembly lines that consist of several multienzyme subunits that undergo dynamic self-assembly to form a functional megacomplex. N- and C-terminal docking domains are usually responsible for mediating the interactions between subunits. Here we show that communication between two non-ribosomal peptide synthetase subunits responsible for chain release from the enacyloxin polyketide synthase, which assembles an antibiotic with promising activity against Acinetobacter baumannii, is mediated by an intrinsically disordered short linear motif and a ß-hairpin docking domain. The structures, interactions and dynamics of these subunits were characterized using several complementary biophysical techniques to provide extensive insights into binding and catalysis. Bioinformatics analyses reveal that short linear motif/ß-hairpin docking domain pairs mediate subunit interactions in numerous non-ribosomal peptide and hybrid polyketide-non-ribosomal peptide synthetases, including those responsible for assembling several important drugs. Short linear motifs and ß-hairpin docking domains from heterologous systems are shown to interact productively, highlighting the potential of such interfaces as tools for biosynthetic engineering.


Assuntos
Peptídeo Sintases/química , Polienos/química , Policetídeo Sintases/química , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Peptídeo Sintases/metabolismo , Polienos/metabolismo , Policetídeo Sintases/metabolismo , Conformação Proteica
10.
Nat Commun ; 10(1): 4036, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492848

RESUMO

The skeleton of tropane alkaloids is derived from ornithine-derived N-methylpyrrolinium and two malonyl-CoA units. The enzymatic mechanism that connects N-methylpyrrolinium and malonyl-CoA units remains unknown. Here, we report the characterization of three pyrrolidine ketide synthases (PYKS), AaPYKS, DsPYKS, and AbPYKS, from three different hyoscyamine- and scopolamine-producing plants. By examining the crystal structure and biochemical activity of AaPYKS, we show that the reaction mechanism involves PYKS-mediated malonyl-CoA condensation to generate a 3-oxo-glutaric acid intermediate that can undergo non-enzymatic Mannich-like condensation with N-methylpyrrolinium to yield the racemic 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This study therefore provides a long sought-after biosynthetic mechanism to explain condensation between N-methylpyrrolinium and acetate units and, more importantly, identifies an unusual plant type III polyketide synthase that can only catalyze one round of malonyl-CoA condensation.


Assuntos
Malonil Coenzima A/metabolismo , Proteínas de Plantas/metabolismo , Policetídeo Sintases/metabolismo , Pirróis/metabolismo , Alcaloides de Solanáceas/metabolismo , Tropanos/metabolismo , Sequência de Aminoácidos , Biocatálise , Cromatografia Líquida/métodos , Cristalografia por Raios X , Malonil Coenzima A/química , Modelos Químicos , Estrutura Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Pirróis/química , Homologia de Sequência de Aminoácidos , Alcaloides de Solanáceas/química , Espectrometria de Massas em Tandem/métodos , Tropanos/química
11.
Nat Commun ; 10(1): 3918, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477708

RESUMO

Polyketides produced by modular type I polyketide synthases (PKSs) play eminent roles in the development of medicines. Yet, the production of structural analogs by genetic engineering poses a major challenge. We report an evolution-guided morphing of modular PKSs inspired by recombination processes that lead to structural diversity in nature. By deletion and insertion of PKS modules we interconvert the assembly lines for related antibiotic and antifungal agents, aureothin (aur) and neoaureothin (nor) (aka spectinabilin), in both directions. Mutational and functional analyses of the polyketide-tailoring cytochrome P450 monooxygenases, and PKS phylogenies give contradictory clues on potential evolutionary scenarios (generalist-to-specialist enzyme evolution vs. most parsimonious ancestor). The KS-AT linker proves to be well suited as fusion site for both excision and insertion of modules, which supports a model for alternative module boundaries in some PKS systems. This study teaches important lessons on the evolution of PKSs, which may guide future engineering approaches.


Assuntos
Cromonas/metabolismo , Oxigenases/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Cromonas/química , Engenharia Genética/métodos , Modelos Químicos , Estrutura Molecular , Mutação , Filogenia , Policetídeo Sintases/classificação , Policetídeo Sintases/genética , Policetídeos/química , Streptomyces/genética
12.
J Microbiol Biotechnol ; 29(10): 1570-1579, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31474098

RESUMO

The fungal products dibenzodioxocinones promise a novel class of inhibitors against cholesterol ester transfer protein (CEPT). Knowledge as to their biosynthesis is scarce. In this report, we characterized four more dibenzodioxocinones, which along with a previously described member pestalotiollide B, delimit the dominant spectrum of secondary metabolites in P. microspora. Through mRNA-seq profiling in gα1Δ, a process that halts the production of the dibenzodioxocinones, a gene cluster harboring 21 genes including a polyketide synthase, designated as pks8, was defined. Disruption of genes in the cluster led to loss of the compounds, concluding the anticipated role in the biosynthesis of the chemicals. The biosynthetic route to dibenzodioxocinones was temporarily speculated. This study reveals the genetic basis underlying the biosynthesis of dibenzodioxocinone in fungi, and may facilitate the practice for yield improvement in the drug development arena.


Assuntos
Família Multigênica , Policetídeos/metabolismo , Xylariales/genética , Vias Biossintéticas , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Endófitos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Família Multigênica/genética , Mutação , Paclitaxel/biossíntese , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Xylariales/química , Xylariales/metabolismo
13.
Microbiol Res ; 229: 126312, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31434034

RESUMO

Due to emergence of drug resistant pathogens, nearly all available medicines are becoming ineffective against these life threatening pathogens so there is dire need for the discovery of compounds having unique modes of action. During our previous studies, actinomycetes designated as 196 and RI.24 were isolated, screened for bioactive compounds production and characterized using 16S rRNA gene sequencing. Colony 196 was identified as strain of Streptomyces albolongus (100% sequence similarity) and RI.24 as strain of Streptomyces enissocaesilis (100% sequence similarity). In current study, potential bioactive compounds produced by these strains were characterized. Cold extraction method was applied for taking out of bioactive compounds from actinomycetes. Minimum inhibitory concentration (MIC) determination of compounds from these strains showed activity nearly in the range of commercial antibiotics (strain 196 0.0075 mg/ml, RI.24 0.25 mg/ml and chloramphenicol 0.0075 mg/ml, ampicillin 0.025 mg/ml). Structural elucidation of these compounds was carried out using spectroscopic techniques of LC-MS/MS and 1H NMR. Compounds K-252-C-Aglycone, indolocarbazole alkaloid, decoyinine, cycloheximide were detected from strain 196 whereas daunorubicin, hygromycin B, agecorynin F, indinavir-N-glucuronide and minocycline were identified from strain RI.24.Current study reports these compounds for the first time from strains of Streptomyces albolongus and Streptomyces enissocaesilis. Present investigation also suggests that strains 196 and RI.24 contain polyketide synthase-I (PKS-I) and non-ribosomal peptide synthetase (NRPS) gene clusters which are responsible for the production of bioactive compounds. The results of this study can be used by the scientific world or pharmaceutical industries for the development of new drugs/formulations by applying more advanced techniques.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Microbiologia do Solo , Streptomyces/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Molecular , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
15.
Microb Cell Fact ; 18(1): 137, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409353

RESUMO

Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/genética , Macrolídeos/metabolismo , Policetídeos/metabolismo , Produtos Biológicos/metabolismo , Engenharia Genética , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
16.
J Agric Food Chem ; 67(31): 8581-8589, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31321975

RESUMO

Intermediates in aromatic amino acid biosynthesis can serve as substrates for the synthesis of bioactive compounds. In this study we used two intermediates in the shikimate pathway of Escherichia coli, chorismate and anthranilate, to synthesize three bioactive compounds: 4-hydroxycoumarin (4-HC), 2,4-dihydroxyquinoline (DHQ), and 4-hydroxy-1-methyl-2(1H)-quinolone (NMQ). We introduced genes for the synthesis of salicylic acid from chorismate to supply the substrate for 4-HC and the gene encoding N-methyltransferase for the synthesis of N-methylanthranilate from anthranilate. Polyketide synthases and coenzyme (Co)A ligases were tested to determine the optimal combination of genes for the synthesis of each compound. We also tested several constructs and identified the best one for increasing levels of endogenous substrates for chorismate, anthranilate, and malonyl-CoA. With the use of these strategies, 255.4 mg/L 4-HC, 753.7 mg/L DHQ, and 17.5 mg/L NMQ were synthesized. This work provides a basis for the synthesis of diverse coumarin and quinoline derivatives with potential medical applications.


Assuntos
4-Hidroxicumarinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Policetídeo Sintases/genética , Quinolinas/metabolismo , 4-Hidroxicumarinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Corísmico/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Photorhabdus/enzimologia , Photorhabdus/genética , Policetídeo Sintases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Quinolinas/química , ortoaminobenzoatos/metabolismo
17.
PLoS Biol ; 17(7): e3000347, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31318855

RESUMO

Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.


Assuntos
Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Proteínas Recombinantes/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/classificação , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antraquinonas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Escherichia coli/genética , Modelos Químicos , Estrutura Molecular , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/química , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Proteínas Recombinantes/química
18.
Nat Chem Biol ; 15(8): 795-802, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308531

RESUMO

Glycosylation is a common modification reaction in natural product biosynthesis and has been known to be a post-assembly line tailoring process in glycosylated polyketide biosynthesis. Here, we show that in pactamycin biosynthesis, glycosylation can take place on an acyl carrier protein (ACP)-bound polyketide intermediate. Using in vivo gene inactivation, chemical complementation and in vitro pathway reconstitution, we demonstrate that the 3-aminoacetophenone moiety of pactamycin is derived from 3-aminobenzoic acid by a set of discrete polyketide synthase proteins via a 3-(3-aminophenyl)3-oxopropionyl-ACP intermediate. This ACP-bound intermediate is then glycosylated by an N-glycosyltransferase, PtmJ, providing a sugar precursor for the formation of the aminocyclopentitol core structure of pactamycin. This is the first example of glycosylation of a small molecule while tethered to a carrier protein. Additionally, we demonstrate that PtmO is a hydrolase that is responsible for the release of the ACP-bound product to a free ß-ketoacid that subsequently undergoes decarboxylation.


Assuntos
Proteínas de Transporte/metabolismo , Pactamicina/biossíntese , Streptomyces/metabolismo , Proteínas de Bactérias , Proteínas de Transporte/química , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Ligação Proteica
19.
Nat Chem Biol ; 15(8): 813-821, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308532

RESUMO

Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex known enzymes from secondary metabolism and are responsible for the biosynthesis of highly diverse bioactive polyketides. However, most of these metabolites remain uncharacterized, since trans-AT PKSs frequently occur in poorly studied microbes and feature a remarkable array of non-canonical biosynthetic components with poorly understood functions. As a consequence, genome-guided natural product identification has been challenging. To enable de novo structural predictions for trans-AT PKS-derived polyketides, we developed the trans-AT PKS polyketide predictor (TransATor). TransATor is a versatile bio- and chemoinformatics web application that suggests informative chemical structures for even highly aberrant trans-AT PKS biosynthetic gene clusters, thus permitting hypothesis-based, targeted biotechnological discovery and biosynthetic studies. We demonstrate the applicative scope in several examples, including the characterization of new variants of bioactive natural products as well as structurally new polyketides from unusual bacterial sources.


Assuntos
Bactérias/enzimologia , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos , Modelos Químicos , Filogenia , Policetídeo Sintases/genética , Policetídeos/química , Poríferos/microbiologia , Domínios Proteicos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA