Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.954
Filtrar
1.
Nat Commun ; 11(1): 4951, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009382

RESUMO

Immunogenic cell death (ICD) and tumour-infiltrating T lymphocytes are severely weakened by elevated reactive oxygen species (ROS) in the tumour microenvironment. It is therefore of critical importance to modulate the level of extracellular ROS for the reversal of immunosuppressive environment. Here, we present a tumour extracellular matrix (ECM) targeting ROS nanoscavenger masked by pH sensitive covalently crosslinked polyethylene glycol. The nanoscavenger anchors on the ECM to sweep away the ROS from tumour microenvironment to relieve the immunosuppressive ICD elicited by specific chemotherapy and prolong the survival of T cells for personalized cancer immunotherapy. In a breast cancer model, elimination of the ROS in tumour microenvironment elicited antitumour immunity and increased infiltration of T lymphocytes, resulting in highly potent antitumour effect. The study highlights a strategy to enhance the efficacy of cancer immunotherapy by scavenging extracellular ROS using advanced nanomaterials.


Assuntos
Antineoplásicos/farmacologia , Espaço Extracelular/metabolismo , Depuradores de Radicais Livres/metabolismo , Morte Celular Imunogênica , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Proteína HMGB1/metabolismo , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos
2.
Nat Commun ; 11(1): 4530, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913195

RESUMO

Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold. We have characterized this process for intracellular gold nanoparticle formation, which progressively accumulates proteins as the ionic gold clusters migrate to the nucleus. This nano-vectorized application of ionic gold emphasizes its potential biomedical opportunities while reducing the quantity of ionic gold and required incubation time. To demonstrate its biomedical potential, we further induce in-situ biosynthesis of gold nanoparticles within MCF7 tumor mouse xenografts which is followed by its photothermal remediation.


Assuntos
Cloretos/administração & dosagem , Portadores de Fármacos/química , Compostos de Ouro/administração & dosagem , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Biomineralização/efeitos da radiação , Feminino , Ouro/efeitos da radiação , Humanos , Hipertermia Induzida/métodos , Íons , Células MCF-7 , Nanopartículas Metálicas/efeitos da radiação , Camundongos , Fotoquimioterapia/métodos , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Commun ; 11(1): 4768, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958747

RESUMO

Detection and identification of proteins are typically achieved by analyzing protein size, charge, mobility and binding to antibodies, which are critical for biomedical research and disease diagnosis and treatment. Despite the importance, measuring these quantities with one technology and at the single-molecule level has not been possible. Here we tether a protein to a surface with a flexible polymer, drive it into oscillation with an electric field, and image the oscillation with a near field optical imaging method, from which we determine the size, charge, and mobility of the protein. We also measure antibody binding and conformation changes in the protein. The work demonstrates a capability for comprehensive protein analysis and precision protein biomarker detection at the single molecule level.


Assuntos
Proteínas/química , Proteínas/metabolismo , Imagem Individual de Molécula/métodos , Análise de Fourier , Ligantes , Polietilenoglicóis/química , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Compostos de Estanho/química
4.
J Med Life ; 13(2): 241-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742521

RESUMO

Cell culture is one of the most commonly used techniques in the production of biological products. Many physical and chemical parameters may affect cell growth and proliferation. This study was conducted to investigate the effect of chemical components as supplements using the experimental design method, which aimed at reducing the number of experiments. For this purpose, supplements including chemical components using four levels, with three replications in suspension and batch culture conditions, were examined for 72 hours using the Taguchi experimental design method. From the experiments, it was concluded that the culture media composition had a significant impact on final cell count and pH. High concentrations of different media composition alone were insufficient to ensure higher cell count. According to the results, this insufficiency was associated with an increase of 20% in the number of final cells. In the majority of cultures, the number of final cells at 48 hours increased relative to the number of final cells at 24 hours after culturing the cells.


Assuntos
Técnicas de Cultura de Células/métodos , Vírus da Febre Aftosa/imunologia , Rim/citologia , Vacinas Virais/imunologia , Aminoácidos/farmacologia , Animais , Contagem de Células , Células Cultivadas , Cricetinae , Vírus da Febre Aftosa/efeitos dos fármacos , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Proteínas/farmacologia , Vitaminas/farmacologia
5.
Int J Nanomedicine ; 15: 4739-4752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753862

RESUMO

Purpose: Combined chemotherapeutic drug and protein drug has been a widely employed strategy for tumor treatment. To realize both tumor accumulation and deep tumor penetration for drugs with different pharmacokinetics, we propose a structure-transformable, thermo-pH dual responsive co-delivery system to co-load granzyme B/docetaxel (GrB/DTX). Methods: Thermo-sensitive hydrogels based on diblock copolymers (mPEG-b-PELG) were synthesized through ring opening polymerization. GrB/DTX mini micelles (GDM) was developed by co-loading these two drugs in pH-sensitive mini micelles, and the GDM-incorporated thermo-sensitive hydrogel (GDMH) was constructed. The thermo-induced gelation behavior of diblock copolymers and the physiochemical properties of GDMH were characterized. GDMH degradation and deep tumor penetration of released mini micelles were confirmed. The pH-sensitive disassembly and lysosomal escape abilities of released mini micelles were evaluated. In vitro cytotoxicity was studied using MTT assays and the in vivo antitumor efficacy study was evaluated in B16-bearing C57BL/6 mice. Results: GDMH was gelatinized at body temperature and can be degraded by proteinase to release mini micelles. The mini micelles incorporated in GDMH can achieve deep tumor penetration and escape from lysosomes to release GrB and DTX. MTT results showed that maximum synergistic antitumor efficacy of GrB and DTX was observed at mass ratio of 1:100. Our in vivo antitumor efficacy study showed that GDMH inhibited tumor growth in the subcutaneous tumor model and in the post-surgical recurrence model. Conclusion: The smart-designed transformable GDMH can facilitate tumor accumulation, deep tumor penetration, and rapid drug release to achieve synergistic chemo-protein therapy.


Assuntos
Antineoplásicos/uso terapêutico , Hidrogéis/química , Neoplasias/tratamento farmacológico , Temperatura , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Granzimas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Injeções , Camundongos Endogâmicos C57BL , Micelas , Neoplasias/patologia , Polietilenoglicóis/química
6.
Yakugaku Zasshi ; 140(8): 1001-1006, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32741857

RESUMO

Ascertaining the absorption, distribution, metabolism, and excretion (ADME) profile of drugs is one of the most crucial factors in the process of drug discovery. Since it is important to combine water solubility and cell permeability within the compound to achieve the desired ADME properties, an appropriate balance between lipophilicity and hydrophilicity is required. It is often necessary to facilitate hydrophilicity of very hydrophobic candidates, because quite lipophobic molecules are rarely hit as positive in molecular-targeted or cell-based screenings. For that purpose, it has been popular to conjugate hydrophobic molecules with polyethylene glycol (PEG). However, PEG is a polymer, and PEG-conjugated molecules are not uniform. Besides, the dosage should be much increased compared with the original molecule due to the increase in molecular weight. Therefore we have been developing alternative ways to endow hydrophobic compounds with extra hydrophilicity by conjugating with symmetrically branched glycerol oligomers. This technology is versatile and easily applicable to various hydrophobic compounds. Water-solubility of fenofibrate, one of the most hydrophobic medicines in clinical use, was facilitated by a factor of more than 2000, and its lipid-lowering effect in vivo improved more than ten-fold, by simply conjugating with branched glycerol trimer, for instance. Here we will briefly introduce the basic concepts and our successful experiences of applying branched glycerol oligomers including antitumor agents in terms of water-solubility, pharmacological effects, and pharmacokinetics, and merits and current issues will be discussed in this review.


Assuntos
Antineoplásicos , Glicerol/química , Interações Hidrofóbicas e Hidrofílicas , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Ácidos Fíbricos , Polietilenoglicóis/química , Polímeros , Solubilidade , Água
7.
Int J Nanomedicine ; 15: 5017-5026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764933

RESUMO

Background: Molecular imaging is of great benefit to early disease diagnosis and timely treatment. One of the most striking innovations is the development of multimodal molecular imaging technology, which integrates two or more imaging modalities, largely in view of making the best of the advantages of each modality while overcoming their respective shortcomings. Hence, engineering a versatile and easily prepared nanomaterial with integrating multimodal molecular imaging function holds great promise, but is still a great challenge. Materials and Methods: We firstly designed and synthesized a BDT-DPP conjugated polymer and then noncovalent self-assembly with phospholipid-polyethylene glycol endowed BDT-DPP with water solubility and biocompatibility. Followed by [Cu] labeling, the acquired multifunctional nanoparticles (NPs) were studied in detail for the photophysical property. The cytotoxicity and biocompatibility of DPP-BDT NPs were examined through MTT assay and H&E stained analysis. In addition, we investigated the accumulation of the NPs in HepG2 tumor models by positron emission tomography (PET) and photoacoustic (PA) dual-mode imaging. Results and Discussion: The DPP-BDT NPs exhibited excellent optical stability, strong near-infrared (NIR) light absorption as well as fine biocompatibility. After tail vein injection into the living mice, the PA signals in the neoplastic tissues were gradually increased and reached to the maximum at the 4-h post-injection, which was consistent with the PET analysis. Such strong PA and PET signals were attributed to the efficient NPs accumulation resulting from the enhanced permeability and retention (EPR) effect. Conclusion: The biocompatible DPP-BDT NPs demonstrated to be strong NIR absorption property and PAI sensitivity. Besides, these novel DPP-BDT NPs can act not only as a PA imaging contrast agent but also as an imaging agent for PET.


Assuntos
Cetonas/química , Nanopartículas/química , Neoplasias Experimentais/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Tomografia por Emissão de Pósitrons/métodos , Pirróis/química , Animais , Meios de Contraste/química , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/farmacocinética , Feminino , Células Hep G2 , Humanos , Injeções , Camundongos , Camundongos Nus , Imagem Multimodal/métodos , Células NIH 3T3 , Nanopartículas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Polímeros/química , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Nanomedicine ; 15: 5405-5416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801696

RESUMO

Purpose: Although the effective and safe medical defoamers, dimethicone (DM) and simethicone (SM) are widely used in electronic gastroscope examination (EGE), their preparations are presented in the form of suspensions or emulsions, these are untransparent or milk-like in appearance and can easily cause misdiagnosis as a result of an unclear field of vision if the doctor does not master the amount of defoamer or operates incorrectly. At the same time, it is also difficult to wash out the camera and pipeline, due to the large oil droplets of preparations. The purpose of this study was to develop a new clear and transparent oil in water (O/W) DM nanoemulsions (DMNs) and observe the effect of application in EGE. Methods: The oil phase was chosen for its antifoaming activity and viscosity. The emulsifier and co-emulsifier were selected according to the solubility of the oil phase in them. The water titration method was used to make the pseudoternary phase diagrams of nanoemulsions and optimize the prescription composition. DM-in-water nanoemulsion was prepared by the low energy method and evaluated for appearance, antifoaming ability, droplet size, and stability. The effect of DMNs utilized in EGEs was also observed. Results: The optimal formulation of DMNs contained CRH-40 as an emulsifier, PEG-400 as a co-emulsifier, DM as oil phase with the viscosity of 10 mPa.s, and their proportion was 4.5:4.5:1, respectively. DMNs obtained the average particle size of 67.98 nm with the polydispersity index (PDI) of 0.332, and 57.14% defoaming rate. The result of using an EGE showed that DMNs were superior in comparison to the emulsions with regard to the defoaming effect, visual clarity, and easy cleanup. Conclusion: DMNs were found to provide excellent visual clarity to its other preparations. The novel DMNs is a promising substitute for DM emulsions or suspensions in EGEs.


Assuntos
Antiespumantes/química , Dimetilpolisiloxanos/química , Emulsões/química , Gastroscopia/métodos , Antiespumantes/efeitos adversos , Antiespumantes/uso terapêutico , Óleo de Rícino/química , Dimetilpolisiloxanos/efeitos adversos , Dimetilpolisiloxanos/uso terapêutico , Emulsificantes/química , Feminino , Gastroscopia/efeitos adversos , Humanos , Masculino , Nanoestruturas/química , Tamanho da Partícula , Polietilenoglicóis/química , Solubilidade , Viscosidade
9.
Int J Nanomedicine ; 15: 5459-5471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801700

RESUMO

Purpose: Indocyanine green (ICG), a near infrared (NIR) dye clinically approved in medical diagnostics, possesses great heat conversion efficiency, which renders itself as an effective photosensitizer for photothermal therapy (PTT) of cancer. However, there remain bottleneck challenges for use in PTT, which are the poor photo and plasma stability of ICG. To address these problems, in this research, ICG-loaded silver nanoparticles were prepared and evaluated for the applicability as an effective agent for photothermal cancer therapy. Methods and Results: PEGylated bovine serum albumin (BSA)-coated silver core/shell nanoparticles were synthesized with a high loading of ICG ("PEG-BSA-AgNP/ICG"). Physical characterization was carried out using size analyzer, transmission electron microscopy, and Fourier transform infrared spectrophotometry to identify successful preparation and size stability. ICG-loading content and the photothermal conversion efficiency of the particles were confirmed with inductively coupled plasma mass spectrometry and laser instruments. In vitro studies showed that the PEG-BSA-AgNP/ICG could provide great photostability for ICG, and their applicability for PTT was verified from the cellular study results. Furthermore, when the PEG-BSA-AgNP/ICG were tested in vivo, study results exhibited that ICG could stably remain in the blood circulation for a markedly long period (plasma half-life: 112 min), and about 1.7% ID/g tissue could be accumulated in the tumor tissue at 4 h post-injection. Such nanoparticle accumulation in the tumor enabled tumor surface temperature to be risen to 50°C (required for photo-ablation) by laser irradiation and led to successful inhibition of tumor growth in the B16F10 s.c. syngeneic nude mice model, with minimal systemic toxicity. Conclusion: Our findings demonstrated that PEG-BSA-AgNPs could serve as effective carriers for delivering ICG to the tumor tissue with great stability and safety.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Meia-Vida , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos ICR , Camundongos Nus , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Soroalbumina Bovina/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Int J Nanomedicine ; 15: 5561-5571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801704

RESUMO

Purpose: Platinum/paclitaxel-based chemotherapy is the strategy for ovarian cancer, but chemoresistance, inherent or acquired, occurs and hinders therapy. Therefore, further understanding of the mechanisms of drug resistance and adoption of novel therapeutic strategies are urgently needed. Methods: In this study, we report that sphingosine-1-phosphate receptor-1 (S1PR1)-mediated chemoresistance for ovarian cancer. Then we developed nanoparticles with a hydrophilic PEG2000 chain and a hydrophobic DSPE and biodegradable CaP (calcium ions and phosphate ions) shell with pH sensitivity as a delivery system (CaP-NPs) to carry BAF312, a selective antagonist of S1PR1 (BAF312@CaP-NPs), to overcome the cisplatin (DDP) resistance of the ovarian cancer cell line SKOV3DR. Results: We found that S1PR1 affected acquired chemoresistance in ovarian cancer by increasing the phosphorylated-signal transduction and activators of transcription 3 (P-STAT3) level. The mean size and zeta potential of BAF312@CaP-NPs were 116 ± 4.341 nm and -9.67 ± 0.935 mV, respectively. The incorporation efficiency for BAF312 in the CaP-NPs was 76.1%. The small size of the nanoparticles elevated their enrichment in the tumor, and the degradable CaP shell with smart pH sensitivity of the BAF312@CaP-NPs ensured the release of BAF312 in the acidic tumor niche. BAF312@CaP-NPs caused substantial cytotoxicity in DDP-resistant ovarian cancer cells by downregulating S1PR1 and P-STAT3 levels. Conclusion: We found that BAF312@CaP-NPs act as an effective and selective delivery system for overcoming S1PR1-mediated chemoresistance in ovarian carcinoma by inhibiting S1PR1 and P-STAT3.


Assuntos
Azetidinas/administração & dosagem , Compostos de Benzil/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Azetidinas/farmacocinética , Compostos de Benzil/farmacocinética , Fosfatos de Cálcio/química , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Polietilenoglicóis/química , Fator de Transcrição STAT3/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/metabolismo
11.
AAPS PharmSciTech ; 21(6): 231, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778980

RESUMO

The classically used nontargeted chemotherapeutic approach to pancreatic cancer has a dual drawback of suboptimal drug delivery at the target site and the systemic side effects produced by the unfettered exposure of the drug to healthy tissue. This study has the objective of developing novel poly(2-ethyl-2-oxazoline) (PETOX)-based long circulating liposomes loaded with gemcitabine and irinotecan for the treatment of pancreatic ductal adenocarcinoma, with a juxtaposition to PEGylated and uncoated liposomes. A PETOX-cholesteryl chloroformate lipopolymer conjugate (PETOX-ChC) with a carbonate linkage was prepared and characterized by 1H NMR, FTIR, and DSC. Liposomes were prepared using the thin film hydration technique followed by freeze-thaw and membrane extrusion methods. Liposome characterization includes particle size determination, zeta potential determination using a zetameter, and structural elucidation using 31P NMR and cryo-TEM. The PETOXylated liposomes showed a particle size of 180.1 ± 2.2 nm and a zeta potential of - 33.63 ± 1.23 mV. The liposomal combination therapy of gemcitabine and irinotecan was found to have an IC50 value 39 times lower in comparison to the drug combination in solution, while the PEGylated and PETOXylated liposomes showed IC50 values 1.6 times lower and 2 times lower than that of uncoated liposomes, respectively, against Mia PaCa II pancreatic cancer cell line. The PEGylated and PETOXylated liposomes showed 4.1 and 5.4 times slower macrophagial uptake in vitro in comparison to the uncoated liposomes respectively. The PEGylated liposomes showed 11% higher in vitro macrophagial uptake in comparison to PETOXylated liposomes.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Irinotecano/administração & dosagem , Lipossomos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Pancreáticas/patologia , Tamanho da Partícula , Polietilenoglicóis/química
12.
Int J Nanomedicine ; 15: 3851-3868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764919

RESUMO

Purpose: The aim of this study was to develop a means of improving the bioavailability and anticancer activity of urushiol by developing an urushiol-loaded novel tumor-targeted micelle delivery system based on amphiphilic block copolymer poly(ethylene glycol)-b-poly-(ß-amino ester) (mPEG-PBAE). Materials and Methods: We synthesized four different mPEG-PBAE copolymers using mPEG-NH2 with different molecular weights or hydrophobicity levels. Of these, we selected the mPEG5000-PBAE-C12 polymer and used it to develop an optimized means of preparing urushiol-loaded micelles. Response surface methodology was used to optimize this formulation process. The micellar properties, including particle size, pH sensitivity, drug release dynamics, and critical micelle concentrations, were characterized. We further used the MCF-7 human breast cancer cell line to explore the cytotoxicity of these micelles in vitro and assessed their pharmacokinetics, tissue distribution, and antitumor activity in vivo. Results: The resulting micelles had a mean particle size of 160.1 nm, a DL value of 23.45%, and an EE value of 80.68%. These micelles were found to release their contents in a pH-sensitive manner in vitro, with drug release being significantly accelerated at pH 5.0 (98.74% in 72 h) without any associated burst release. We found that urushiol-loaded micelles were significantly better at inducing MCF-7 cell cytotoxicity compared with free urushiol, with an IC50 of 1.21 mg/L. When these micelles were administered to tumor model animals in vivo, pharmacokinetic analysis revealed that the total AUC and MRT of these micelles were 2.28- and 2.53-fold higher than that of free urushiol, respectively. Tissue distribution analyses further revealed these micelles to mediate significantly enhanced tumor urushiol accumulation. Conclusion: The pH-responsive urushiol-loaded micelles described in this study may be ideally suited for clinical use for the treatment of breast cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Catecóis/química , Catecóis/farmacologia , Micelas , Polietilenoglicóis/química , Polímeros/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Catecóis/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Tamanho da Partícula , Distribuição Tecidual
13.
Int J Nanomedicine ; 15: 4899-4918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764924

RESUMO

Purpose: The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods: Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results: Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion: Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Paclitaxel/química , Paclitaxel/farmacologia
14.
Int J Nanomedicine ; 15: 4959-4967, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764929

RESUMO

Background: Particle-based drug delivery systems (DDSs) have a demonstrated value for drug discovery and development. However, some problems remain to be solved, such as limited stimuli, visual-monitoring. Aim: To develop an intelligent multicolor DDSs with both near-infrared (NIR) controlled release and macroscopic color changes. Materials and Methods: Microparticles comprising GO/pNIPAM/PEGDA composite hydrogel inverse opal scaffolds, with dextran and calcium alginate hydrogel were synthesized using SCCBs as the template. The morphology of microparticle was observed under scanning electron microscopy, and FITC-dextran-derived green fluorescence images were determined using a confocal laser scanning microscope. During the drug release, FITC-dextran-derived green fluorescence images were captured using fluorescent inverted microscope. The relationship between the power of NIR and the drug release rate was obtained using the change in optical density (OD) values. Finally, the amount of drug released could be estimated quantitatively used the structural color or the reflection peak position. Results: A fixed concentration 8% (v/v) of PEGDA and 4mg/mL of GO was chosen as the optimal concentration based on the balance between appropriate volume shrinkage and structure color. The FITC-dextran was uniformly encapsulated in the particles by using 0.2 wt% sodium alginate. The microcarriers shrank because of the photothermal response and the intrinsic fluorescence intensity of FITC-dextran in the microparticles gradually decreased at the same time, indicating drug release. With an increasing duration of NIR irradiation, the microparticles gradually shrank, the reflection peak shifted toward blue and the structural color changed from red to orange, yellow, green, cyan, and blue successively. The drug release quantity can be predicted by the structural color of microparticles. Conclusion: The multicolor microparticles have great potential in drug delivery systems because of its vivid reporting color, excellent photothermal effect, and the good stimuli responsivity.


Assuntos
Portadores de Fármacos/química , Microesferas , Resinas Acrílicas/química , Alginatos/química , Cor , Dextranos/química , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Hidrogéis/química , Fenômenos Ópticos , Polietilenoglicóis/química
15.
Nat Protoc ; 15(9): 3030-3063, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807909

RESUMO

Materials that sense and respond to biological signals in their environment have a broad range of potential applications in drug delivery, medical devices and diagnostics. Nucleic acids are important biological cues that encode information about organismal identity and clinically relevant phenotypes such as drug resistance. We recently developed a strategy to design nucleic acid-responsive materials using the CRISPR-associated nuclease Cas12a as a user-programmable sensor and material actuator. This approach improves on the sensitivity of current DNA-responsive materials while enabling their rapid repurposing toward new sequence targets. Here, we provide a comprehensive resource for the design, synthesis and actuation of CRISPR-responsive hydrogels. First, we provide guidelines for the synthesis of Cas12a guide RNAs (gRNAs) for in vitro applications. We then outline methods for the synthesis of both polyethylene glycol-DNA (PEG-DNA) and polyacrylamide-DNA (PA-DNA) hydrogels, as well as their controlled degradation using Cas12a for the release of cargos, including small molecules, enzymes, nanoparticles and living cells within hours. Finally, we detail the design and assembly of microfluidic paper-based devices that use Cas12a-sensitive hydrogels to convert DNA inputs into a variety of visual and electronic readouts for use in diagnostics. Following the initial validation of the gRNA and Cas12a components (1 d), the synthesis and testing of either PEG-DNA or PA-DNA hydrogels require 3-4 d of laboratory time. Optional extensions, including the release of primary human cells or the design of the paper-based diagnostic, require an additional 2-3 d each.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas e Procedimentos Diagnósticos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Materiais Inteligentes/química , Resinas Acrílicas/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , DNA/química , DNA/genética , Endodesoxirribonucleases/metabolismo , Humanos , Células K562 , Polietilenoglicóis/química , RNA Guia/genética
16.
Int J Nanomedicine ; 15: 5217-5226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801687

RESUMO

Aim: Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs) is commonly associated with gastric irritation and gastric ulceration. Therefore, the aim of study was to develop a novel oral drug delivery system with minimum gastric effects and improved dissolution rate for aceclofenac (ACF), a model BCS class-II drug. Methods: Self-emulsifying drug delivery systems (SEDDS) were formulated to increase the solubility and ultimately the oral bioavailability of ACF. Oleic acid was used as an oil phase, Tween 80 (T80) and Kolliphor EL (KEL) were used as surfactants, whereas, polyethylene glycol 400 (PEG 400) and propylene glycol (PG) were employed as co-surfactants. Optimized formulations (F1, F2, F3 and F4) were analyzed for droplet size, poly dispersity index (PDI), cell viability studies, in vitro dissolution in both simulated gastric fluid and simulated intestinal fluid, ex vivo permeation studies and thermodynamic stability. Results: The optimized formulations showed mean droplet sizes in the range of 111.3 ± 3.2 nm and 470.9 ± 12.52 nm, PDI from 244.6 nm to 389.4 ± 6.51 and zeta-potential from -33 ± 4.86 mV to -38.5 ± 5.15 mV. Cell viability studies support the safety profile of all formulations for oral administration. The in vitro dissolution studies and ex vivo permeation analysis revealed significantly improved drug release ranging from 95.68 ± 0.02% to 98.15 ± 0.71% when compared with control. The thermodynamic stability studies confirmed that all formulations remain active and stable for a longer period. Conclusion: In conclusion, development of oral SEDDS might be a promising tool to improve the dissolution of BCS class-II drugs along with significantly reduced exposure to gastric mucosa.


Assuntos
Diclofenaco/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Disponibilidade Biológica , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Diclofenaco/administração & dosagem , Diclofenaco/farmacocinética , Liberação Controlada de Fármacos , Emulsões/administração & dosagem , Excipientes/química , Humanos , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Polietilenoglicóis/química , Polissorbatos/química , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacocinética , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química
17.
Int J Nanomedicine ; 15: 5279-5288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801691

RESUMO

Introduction: Today, a new paradigm has emerged for cancer treatment introducing combination therapies. Doxil, a liposomal doxorubicin serving as a chemotherapeutic agent, is an effective immunogenic killer of cancer cells. Anti-CTLA-4 has been approved for the treatment of some cancers, including melanoma, but side effects have limited its therapeutic potential. Methods: In this study, two approaches were utilized to increase treatment efficiency and decrease the side effects of anti-CTLA-4, combining it with chemotherapy and encapsulation in a PEGylated liposome. A different sequence of anti-CTLA-4 and Doxil was assessed in combination therapy using non-liposomal and liposomal anti-CTLA-4. Results: Our results showed that liposomal anti-CTLA-4 reduced the size of established tumors and increased survival in comparison with non-liposomal anti-CTLA-4 in a well-established B16 mouse melanoma model. In combination therapy with Doxil, only the administration of anti-CTLA-4 before Doxil showed synergism in both non-liposomal and liposomal form and increased the CD8+/regulatory T cell ratio. Discussion: In summary, our results demonstrate the potential of utilizing a nanocarrier system for the delivery of checkpoint blockers, such as anti-CTLA-4 which further showed potential in a combination therapy, especially when administered before chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Antígeno CTLA-4/imunologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Feminino , Lipossomos/química , Camundongos Endogâmicos C57BL , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Linfócitos T Reguladores/efeitos dos fármacos
18.
Int J Nanomedicine ; 15: 4151-4169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606670

RESUMO

Purpose: Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods: PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results: The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion: The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.


Assuntos
Astrágalo (Planta)/química , Neoplasias da Mama/terapia , Ouro/química , Nanopartículas Multifuncionais/química , Nanotubos/química , Polissacarídeos/química , Terapia por Ultrassom , Animais , Antígenos CD/metabolismo , Apoptose , Morte Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoglobulina G/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos BALB C , Fagocitose , Técnicas Fotoacústicas , Poliésteres/síntese química , Poliésteres/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Coelhos , Nanomedicina Teranóstica , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Int J Nanomedicine ; 15: 4591-4606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612358

RESUMO

Objective: Artemisinin (ART) is a natural anti-malarial sesquiterpene lactone which has the ability to treat and activate the CLRN1 pathway to play a pivotal role in hearing loss and hair cell function. To investigate the therapeutic effect of ART in hearing loss induced by gentamicin (GM), an ART-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) mPEG-PCL nanoparticle-based photosensitive hydrogel was developed and tested in this study. Materials and Methods: Artemisinin-loaded mPEG-PCL nanoparticles (mPEG-PCL-ART-NPs) were prepared by a double emulsion method and the formulation was optimized by an orthogonal experimental design. The particle size, zeta potential, morphology and in vitro dissolution of the mPEG-PCL-ART-NPs were well characterized. Biocompatibility of the mPEG-PCL-ART-NPs were tested on HeLa cells with an MTT assay. The photo-crosslinkable biodegradable gelatin methacrylate (GelMA) hydrogel was prepared and its physicochemical properties (such as substitution, photocrosslinking efficiency, cell viability morphology, mechanical and swelling properties) were evaluated. Finally, mPEG-PCL-ART-FITC-NPs, loaded mPEG-PCL-ART-NPs, and loaded mPEG-PCL-ART-NPs-GelMA hydrogels were fabricated and a GM toxicity-induced guinea pig ear damage model was established to determine the effectiveness of the materials on returning auditory function and cochlea pathomorphology. Results: The zeta potential of the mPEG-PCL-ART-NPs was about -38.64 ± 0.21 mV and the average size was 167.51 ± 1.87 nm with an encapsulation efficacy of 81.7 ± 1.46%. In vitro release studies showed that the mPEG-PCL-ART-NPs possessed a sustained-release effect and the MTT experiments showed good biocompatibility properties of the drug-loaded nanoparticles. The results indicated that the 5% GelMA with MA-4% hydrogel had a better crosslinking density and 3D structure for drug loading and drug delivery than controls. Skin penetration results showed that the mPEG-PCL-ART-NPs increased adhesive capacity and avoided fast diffusion in the skin. Most importantly, auditory brainstem response results indicated that the mPEG-PCL-ART-NPs-GelMA hydrogel alleviated hearing loss induced by GM. Conclusion: These results suggested that the presently fabricated mPEG-PCL-ART-NPs-GelMA hydrogels are promising formulations for the treatment of hearing loss induced by GM and lay the foundation for further clinical research of inner ear induction therapy.


Assuntos
Artemisininas/administração & dosagem , Artemisininas/farmacologia , Gentamicinas/efeitos adversos , Perda Auditiva/tratamento farmacológico , Hidrogéis/administração & dosagem , Animais , Artemisininas/farmacocinética , Sistemas de Liberação de Medicamentos , Etilenoglicóis/química , Gelatina , Cobaias , Células HeLa , Perda Auditiva/induzido quimicamente , Humanos , Hidrogéis/química , Metacrilatos/química , Nanopartículas/química , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química
20.
Int J Nanomedicine ; 15: 4639-4657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636623

RESUMO

Background: ß-Glucosidase (ß-Glu) can activate amygdalin to kill prostate cancer cells, but the poor specificity of this killing effect may cause severe general toxicity in vivo, limiting the practical clinical application of this approach. Materials and Methods: In this study, starch-coated magnetic nanoparticles (MNPs) were successively conjugated with ß-Glu and polyethylene glycol (PEG) by chemical coupling methods. Cell experiments were used to confirm the effects of immobilized ß-Glu on amygdalin-mediated prostate cancer cell death in vitro. Subcutaneous xenograft models were used to carry out the targeting experiment and magnetically directed enzyme/prodrug therapy (MDEPT) experiment in vivo. Results: Immobilized ß-Glu activated amygdalin-mediated prostate cancer cell death. Tumor-targeting studies showed that PEG modification increased the accumulation of ß-Glu-loaded nanoparticles in targeted tumor tissue subjected to an external magnetic field and decreased the accumulation of the nanoparticles in the liver and spleen. Based on an enzyme activity of up to 134.89 ± 14.18mU/g tissue in the targeted tumor tissue, PEG-ß-Glu-MNP/amygdalin combination therapy achieved targeted activation of amygdalin and tumor growth inhibition in C57BL/6 mice bearing RM1 xenografts. Safety evaluations showed that this strategy had some impact on liver and heart function but did not cause obvious organ damage. Conclusion: All findings indicate that this magnetically directed enzyme/prodrug therapy strategy has the potential to become a promising new approach for targeted therapy of prostate cancer.


Assuntos
Amigdalina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Nanopartículas/química , Neoplasias da Próstata/tratamento farmacológico , beta-Glucosidase/metabolismo , Animais , Linhagem Celular Tumoral , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Campos Magnéticos , Fenômenos Magnéticos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Polietilenoglicóis/química , Pró-Fármacos/farmacologia , Neoplasias da Próstata/patologia , Amido/química , beta-Glucosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA