RESUMO
Increasing plants' photosynthetic efficiency is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthesis is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineering, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticles for enhancing the carboxylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their ability to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants that can potentially increase photosynthetic efficiency and overall plants' CO2 storage.
Assuntos
Quitosana , Nanopartículas , Dióxido de Carbono , Polietilenoimina , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese , Plantas/metabolismo , Folhas de Planta/metabolismoRESUMO
The rapid progress of nanotechnology has led to use different nanomaterials for biomedical applications. Among them, graphene-encapsulated magnetic nanoparticles (GEMNS) are recognized as next generation carbon nanomaterials in translation cancer research. In this study, we utilized green fluorescence protein (GFP) expression plasmid DNA (pDNA) and GEMNS decorated with branched polyethyleneimine (PEI) to yield a novel transporter (GEMNS-PEI/pDNA) for gene delivery into melanoma cells (B16F10). The efficiency of transfection was examined using PCR and confocal microscopy. The studies show that the as-designed GEMNS-PEI construct is successfully used to transfect the melanoma cells with pDNA and it should be considered as a potent non-viral vector for introducing naked nucleic acids into eucaryotic cells.
Assuntos
Grafite , Melanoma , Nanopartículas , Humanos , Ferro , Técnicas de Transferência de Genes , Transfecção , Plasmídeos , DNA/metabolismo , PolietilenoiminaRESUMO
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, which is ultimately treated by the insulin (INS). However, the subcutaneous (s. c.) injection of insulin solution faces the problems of pain and unsatisfactory patient compliance. In this study, the long-acting formulations of insulin are propsed to treat the T2DM and prevent the associated complications. The chitosan (CS) and/or branched polyethyleneimine (bPEI) nanoparticles (bPEI-INS NPs, CS-bPEI-INS NPs) were constructed to load insulin. The long -acting nanoparticles successfully achieved the sustained release of the INS in vitro and in vivo. After s. c. administration, the CS-bPEI-INS NPs greatly improved the INS bioavailability. As a result, the CS-bPEI-INS NPs produced sustained glucose-lowering effects, promising short-term and long-term hypoglycemic efficacy in the T2DM model. Furthermore, the treatment of the CS-bPEI-INS NPs greatly protected the islet in the pancreas and prevented the associated complications of the T2DM, such as cardiac fibrosis in the myocardial interstitium and the perivascular area. In a word, the CS-bPEI-INS NPs was an encouraging long-acting formulation of insulin and had great potential in the treatment of T2DM.
Assuntos
Quitosana , Diabetes Mellitus Tipo 2 , Nanopartículas , Humanos , Insulina , Polietilenoimina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Portadores de FármacosRESUMO
Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.
Assuntos
Fibroínas , Polietilenoimina , Ratos , Embrião de Galinha , Animais , Polietilenoimina/farmacologia , Fibroínas/farmacologia , DNA/genética , Angiopoietina-1/genética , Ratos Sprague-Dawley , Plasmídeos/genética , Transfecção , Técnicas de Transferência de GenesRESUMO
Cationic polyethylenimine (PEI)-based nonviral gene carriers have been desirable to overcome the limitations of viral vectors in gene therapy. A range of PEI derivatives were designed, synthesized, and evaluated for nonviral delivery applications of plasmid DNA (pDNA). Linolenic acid, lauric acid, and oleic acid were covalently conjugated with low-molecular-weight PEI (Mw â¼ 1200 Da) via two different linkers, gallic acid (GA) and p-hydroxybenzoic acid (PHPA), that allows a differential loading of lipids per modified amine (3 vs 1, respectively). 1H NMR spectrum confirmed the expected structure of the conjugates as well as the level of lipid substitution. SYBR Green binding assay performed to investigate the 50% binding concentration (BC50) of lipophilic polymers to pDNA revealed increased BC50 with an increased level of lipid substitution. The particle analysis determined that GA- and PHPA-modified lipopolymers gave pDNA complexes with â¼300 and â¼100 nm in size, respectively. At the polymer/pDNA ratio of 5.0, the ζ-potentials of the complexes were negative (-6.55 to -10.6 mV) unlike the complexes with the native PEI (+11.2 mV). The transfection experiments indicated that the prepared lipopolymers showed higher transfection in attachment-dependent cells than in suspension cells based on the expression of the reporter green fluorescent protein (GFP) gene. When loaded with Cy3-labeled pDNA, the lipopolymers exhibited effective cellular uptake in attachment-dependent cells while the cellular uptake was limited in suspension cells. These results demonstrate the potential of lipid-conjugated PEI via GA and PHPA linkers, which are promising for the modification of anchorage-dependent cells.
Assuntos
Nanopartículas , Polietilenoimina , Polietilenoimina/química , Transfecção , DNA/química , Nanopartículas/química , Terapia Genética , LipídeosRESUMO
Nitric oxide (NO), a small free radical molecule, turned out to be pervasive in biology and was shown to have a substantial influence on a range of biological activities, including cell growth and apoptosis. This molecule is involved in signaling and affects a number of physiologic functions. In recent decades, several processes related to cancer, such as angiogenesis, programmed cell death, infiltration, cell cycle progression, and metastasis, have been linked with nitric oxide. In addition, other parallel work showed that NO also has the potential to operate as an anti-cancer agent. As a result, it has gained attention in cancer-related therapeutics. The nitric oxide synthase enzyme family (NOS) is required for the biosynthesis of nitric oxide. It is becoming increasingly popular to develop NO-releasing materials as strong tumoricidal therapies that can deliver sustained high concentrations of nitric oxide to tumor sites. In this paper, we developed NO-releasing materials based on sodium alginate hydrogel. In this regard, alginate hydrogel discs were modified by adsorbing layers of polyethyleneimine and iNOS-oxygenase. These NO-releasing hydrogel discs were prepared using the layer-by-layer film building technique. The iNOS-oxygenase is adsorbed on the positively charged polyethyleneimine (PEI) matrix layer, which was formed on a negatively charged sodium alginate hydrogel. We show that nitric oxide is produced by enzymes contained within the hydrogel material when it is exposed to a solution containing all the components necessary for the NOS reaction. The electrostatic chemical adsorption of the layer-by-layer process was confirmed by FTIR measurements as well as scanning electron microscopy. We then tested the biocompatibility of the resulting modified sodium alginate hydrogel discs. We showed that this NOS-PEI-modified hydrogel is overall compatible with cell growth. We characterized the NOS/hydrogel films and examined their functional features in terms of NO release profiles. However, during the first 24 h of activity, these films show an increase in NO release flux, followed by a gradual drop and then a period of stable NO release. These findings show the inherent potential of using this system as a platform for NO-driven modulation of biological functions, including carcinogenesis.
Assuntos
Neoplasias , Óxido Nítrico , Humanos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Polietilenoimina/química , Hidrogéis , Alginatos , Óxido Nítrico Sintase/metabolismo , Oxigenases/metabolismoRESUMO
As an alternative strategy for cancer treatment, the combination of cancer nanomedicine and immunotherapy is promising with regard to efficacy and safety; however, precise modulation of the activation of antitumor immunity remains challenging. Therefore, the aim of the present study was to describe an intelligent nanocomposite polymer immunomodulator, drug-free polypyrrole-polyethyleneimine nanozyme (PPY-PEI NZ), which responds to the B-cell lymphoma tumor microenvironment, for precision cancer immunotherapy. Earlier engulfment of PPY-PEI NZs in an endocytosis-dependent manner resulted in rapid binding in four different types of B-cell lymphoma cells. The PPY-PEI NZ effectively suppressed B cell colony-like growth in vitro accompanied by cytotoxicity via apoptosis induction. During PPY-PEI NZ-induced cell death, mitochondrial swelling, loss of mitochondrial transmembrane potential (MTP), downregulation of antiapoptotic proteins, and caspase-dependent apoptosis were observed. Deregulated AKT and ERK signaling contributed to glycogen synthase kinase-3-regulated cell apoptosis following deregulation of Mcl-1 and MTP loss. Additionally, PPY-PEI NZs induced lysosomal membrane permeabilization while inhibiting endosomal acidification, partly protecting cells from lysosomal apoptosis. PPY-PEI NZs selectively bound and eliminated exogenous malignant B cells in a mixed culture system with healthy leukocytes ex vivo. While PPY-PEI NZs showed no cytotoxicity in wild-type mice, they provided long-term and efficient inhibition of the growth of B-cell lymphoma-driven nodules in a subcutaneous xenograft model. This study explores a potential PPY-PEI NZ-based anticancer agent against B-cell lymphoma.
Assuntos
Antineoplásicos , Linfoma de Células B , Linfoma , Humanos , Animais , Camundongos , Polietilenoimina/farmacologia , Polímeros , Pirróis , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfoma de Células B/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Pharmaceuticals have been continuously detected from surface water and groundwater. In order to improve the rejection performance of pharmaceuticals by a nanofiltration membrane (NF), a positively charged membrane was prepared by co-deposition of natural gallic acid and polyethyleneimine on the polyacrylonitrile hydrolysis membrane. Effects of gallic acid concentration, polyethylene imine concentration, reaction time, and the molecular weight of polyethylene imine were documented. The physical and chemical properties of the membrane were also investigated by surface morphology, hydrophilicity, surface charge, and molecular weight cut-off. The optimized membrane had a molecular weight cut-off of about 958 Da and possessed a pure water permeability of 74.21 L·m-2·h-1·MPa-1. The results exhibited salt rejection in the following order: MgCl2 > CaCl2 > MgSO4 > Na2CO3 > NaCl > Na2SO4, while the rejection ability of pharmaceuticals is as follows: amlodipine > atenolol > carbamazepine > ibuprofen, suggesting that the positively charged membrane has enhanced retention to both divalent cations and charged pharmaceuticals. In addition, the antibacterial membrane was obtained by loading silver nanoparticles onto the positively charged membrane, which greatly improved the antibacterial ability of the membrane.
Assuntos
Nanopartículas Metálicas , Nanocompostos , Polietilenoimina , Prata , Membranas Artificiais , Antibacterianos/farmacologia , Antibacterianos/química , Água , Preparações FarmacêuticasRESUMO
This research intended to report amine-functionalized multiwall carbon nanotubes (MWCNTs) prepared by a simple method for efficient and rapid removal of Reactive Yellow 2 (RY2) from water. EDS analysis showed that the N content increased from 0 to 2.42% and from 2.42 to 8.66% after modification by 3-Aminopropyltriethoxysilane (APTES) and polyethylenimine (PEI), respectively. BET analysis displayed that the specific surface area, average pore size, and total pore volume were reduced from 405.22 to 176.16 m2/g, 39.67 to 6.30 nm, and 4.02 to 0.28 cm3/g, respectively. These results proved that the PEI/APTES-MWCNTs were successfully prepared. pH edge experiments indicated that pH 2 was optimal for RY2 removal. At pH 2 and 25 °C, the time required for adsorption equilibrium was 10, 15, and 180 min at initial concentrations of 50, 100, and 200 mg/L, respectively; and the maximum RY2 uptake calculated by the Langmuir model was 714.29 mg/g. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic. Moreover, 0-0.1 mol/L of NaCl showed negligible effect on RY2 removal by PEI/APTES-MWCNTs. Five adsorption/desorption cycles confirmed the good reusability of PEI/APTES-MWCNTs in RY2 removal. Overall, the PEI/APTES-MWCNTs are a potential and efficient adsorbent for reactive dye wastewater treatment.
Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Nanotubos de Carbono/química , Polietilenoimina/química , Adsorção , Água , Poluentes Químicos da Água/química , CinéticaRESUMO
Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 µW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 µW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.
Assuntos
Inteligência Artificial , Condução de Veículo , Humanos , Dióxido de Silício , Fontes de Energia Elétrica , Óxidos , PolietilenoiminaRESUMO
Herein, polyethyleneimine (PEI)-grafted nitrogen-doping magnetic hydrochar (PEIMW@MNHC) was synthesized for hexavalent chromium (Cr(VI)) and bisphenol A (BPA) elimination from water. Characterizations exhibited that abundant amino functional groups, intramolecular heterocyclic N, azo and Fe-NX structures were successfully introduced into the inherent structure of hydrochar. The obtained PEIMW@MNHC presented maximum uptake of 205.37 and 180.79 mg/g for Cr(VI) and BPA, respectively, and was highly tolerant to various co-existing ions. Mechanism investigation revealed that the protonated amino, intramolecular heterocyclic N and Fe(II) participated in Cr(VI) reduction, and the N/O-containing groups and Fe(III) fixed Cr(III) onto PEIMW@MNHC by the formation of complexes and precipitates. On the other hand, azo, Fe-NX and graphitic N structures contributed to the removal of BPA via pore filling, hydrogen bonding and π-π interactions. Additionally, PEIMW@MNHC maintained over 85.0% removal efficiency for Cr(VI) and BPA after four cycles, manifesting that PEIMW@MNHC was an ideal adsorbent with outstanding practical application potential.
Assuntos
Polietilenoimina , Poluentes Químicos da Água , Polietilenoimina/química , Adsorção , Compostos Férricos , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Água/química , Cromo/química , Cinética , Fenômenos MagnéticosRESUMO
GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.
Assuntos
Asma , Pulmão , Humanos , RNA Interferente Pequeno , RNA de Cadeia Dupla , Interferência de RNA , Polietilenoimina , Transferrina , Fator de Transcrição GATA3/genéticaRESUMO
Crystalline drugs with low solubility have the potential to benefit from delivery in the amorphous form. The polymers used in amorphous solid dispersions (ASDs) influence their maximum drug loading, solubility, dissolution rate, and physical stability. Herein, the influence of hydrophobicity of crosslinked polyethylenimine (PEI) is investigated for the delivery of the BCS class II nonsteroidal anti-inflammatory drug flufenamic acid (ffa). Several synthetic variables for crosslinking PEI with terephthaloyl chloride were manipulated: solvent, crosslinking density, reactant concentration, solution viscosity, reaction temperature, and molecular weight of the hyperbranched polymer. Benzoyl chloride was employed to cap amine groups to increase the hydrophobicity of the crosslinked materials. Amorphous deprotonated ffa was present in all ASDs; however, the increased hydrophobicity and reduced basicity from benzoyl functionalization led to a combination of amorphous deprotonated ffa and amorphous neutral ffa in the materials at high drug loadings (50 and 60 wt %). All ASDs demonstrated enhanced drug delivery in acidic media compared to crystalline ffa. Physical stability testing showed no evidence of crystallization after 29 weeks under various relative humidity conditions. These findings motivate the broadening of polymer classes employed in ASD formation to include polymers with very high functional group concentrations to enable loadings not readily achieved with existing polymers.
Assuntos
Anti-Inflamatórios não Esteroides , Polietilenoimina , Preparações Farmacêuticas , Cristalização , Ácido Flufenâmico , Polímeros , SolubilidadeRESUMO
Heavy metals and azo dyes caused huge harm to the aqueous system and human health. A magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite (MCPS) was designed and prepared to simultaneously remove aqueous same ionic type heavy metals and azo dyes. In mono-polluted system, the optimal pH for Cr(VI), MO (methyl orange), Cu(â ¡) and MB (methylene blue) were 3, 2, 6 and 12 with a saturated adsorption capacity of 87.53, 66.41, 351.03 and 286.54 mg/g, respectively. Pseudo-second-order was suitable to describe the adsorption kinetics of them and the adsorption isotherms were more consistent with the Langmuir isotherm model being a spontaneous, endothermic, and entropy-increasing process. In binary-polluted system, MCPS possessed simultaneous adsorption for Cr (â ¥)-MO and Cu(â ¡)-MB pollutants at their optimal pH, in addition, whether in anionic or cationic solution, the removal of heavy metals were promoted with the add of azo dyes but the removal of azo dyes were suppressed with the add of heavy metals. Both Cr (â ¥)-MO and Cu(â ¡)-MB pollutants could be effectively adsorbed and desorbed from MCPS by changing the pH of the aqueous solution to realize recyclability. Lastly, removal mechanism was revealed in detail by FT-IR, EDS and XPS.
Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Humanos , Quitosana/química , Polietilenoimina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes/química , Poluentes Químicos da Água/análise , Metais Pesados/química , Água/química , Cinética , Adsorção , Compostos Azo/química , Fenômenos Magnéticos , Concentração de Íons de HidrogênioRESUMO
Melanoidins are hazardous dark-coloured substances contained in molasses-based distillery wastewater. Adsorption is an effective approach to eliminate melanoidins from wastewater. However, melanoidin adsorption capacities of available adsorbents are unsatisfactory, which seriously limits their practical application. A hyperbranched polyethyleneimine-functionalised chitosan aerogel (HPCA) was fabricated as an effective adsorbent for melanoidin scavenging. HPCA demonstrated superior melanoidin adsorption efficiency because of its high specific surface area, abundant amino functional groups, and high hydrophilicity. Melanoidin removal rate of HPCA was 94.95%, which remained at 91.45% after 5 cycles. Notably, using the Langmuir isothermal model, the maximum melanoidin adsorption capacity of HPCA was determined to be 868.36 mg/g, surpassing those of most of previously reported adsorbents. Toxicity experiments indicated that HPCA can be considered a safe adsorbent with excellent biocompatibility that hardly threatens aquatic organisms. The efficient melanoidin removal of HPCA was attributed to electrostatic attraction, H-bonding, and van der Waals force. However, the adsorption might be predominantly controlled by electrovalent interaction between protonated amino groups of HPCA and carboxyl/carboxylate groups of melanoidins. Two novel models, namely, external diffusion resistance-internal diffusion resistance mixed model and adsorption on active site model, were employed to describe the dynamic mass transfer characteristics of melanoidin adsorption by HPCA.
Assuntos
Quitosana , Poluentes Químicos da Água , Águas Residuárias , Polietilenoimina , Polímeros/química , Adsorção , CinéticaRESUMO
To improve the antibacterial and physical properties of corn starch/chitosan films effectively, starch/chitosan/polyethyleneimine (PEI) blend films crosslinked by citric acid (labeled SCPC) with different contents (2.5 %, 5.0 %, 7.5 % and 10.0 %) were prepared by the solution casting method. The films were characterized in detail. The results showed that the addition of 3.75 % PEI improved the tensile strength and elongation at break of the starch/chitosan film simultaneously, but the thermal stability decreased. After CA was incorporated, the tensile strength and thermal stability of the films were enhanced significantly. FTIR, XRD, and 1H NMR analyses revealed strong interactions among CA, PEI and starch-chitosan. All films showed smooth and homogenous fragile cross-sections. The water vapor permeability of the film decreased overall after PEI and CA addition. Moisture uptake (MU) accelerated after PEI addition, but the balanced MU was reduced by CA cross-linking. All films showed an inhibitory effect on E. coli and S. aureus, and CA incorporation significantly improved the inhibition ability of the film. The SCPC film with 3.75 % PEI and 5.0 % CA addition has the best comprehensive properties, which endowed its application in the bioactive packaging field.
Assuntos
Quitosana , Amido , Amido/química , Quitosana/química , Zea mays/química , Polietilenoimina/farmacologia , Escherichia coli , Ácido Cítrico/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Permeabilidade , Embalagem de AlimentosRESUMO
As a representative flavonoid, morin exhibits multi-biological activities, but its abuse endangers human health. Developing advanced technology for morin determination is urgently needed. In this study, a dual-responsive approach was reported for morin based on the complexing of carbon quantum dots (CQDs) and polyethyleneimine (PEI). The CQDs were fabricated via an improved hydrothermal method employing tyrosine and malic acid. Binding with PEI induced an 8-fold emission enhancement and a slight red-shift to 445 nm of CQDs because of the complexing of PEI and CQDs. Further morin introduction led to the blue emission (445 nm) quenching of CQDs-PEI and a yellow emission (560 nm) generation, which contributed a ratiometric fluorescence approach for morin determination between 2.0 and 32 µM, with a limit of detection (LOD) of 45 nM. Meanwhile, under sunlight the color of CQDs-PEI became yellow upon morin addition, which developed a colorimetric method for morin determination in a wide range between 2.0 and 100 µM (LOD = 69 nM). The developed dual-responsive method either displayed accurate results for morin in diluted human and bovine serum, being potential for actual sample analysis. Finally, a visual detection based on the smartphone was constructed and applied for the real-time determination of morin.
Assuntos
Pontos Quânticos , Humanos , Carbono , Colorimetria/métodos , Polietilenoimina , Limite de Detecção , Corantes FluorescentesRESUMO
Carbonized polymer dots (CPDs) with satisfactory excitation-dependent-emission and biocompatibility had great potential in anti-counterfeiting fibres field. However, it was difficult for CPDs to combined into the fibres due to the unstable interaction between CPDs and spinnable polymer matrix. Polyethyleneimine (PEI) was used to modify CPDs (namely PEI-CPDs) for achieving stable interactions with sodium alginate (SA) by a simple method, which including the physical interaction between the amino groups of PEI-CPDs and carboxyl groups of SA and the chain entanglement between two types of polymer chains. Then alginate fibres based on PEI-CPDs (PEI-CPDs/CaALG fibres) were successfully prepared by wet-spinning for the first time with less loss of PEI-CPDs. The high mechanical strength, excellent thermal stability and good biocompatibility achieved by PEI-CPDs/CaALG fibres. Furthermore, the fibres exhibited the excitation-dependent-emission property. Anti-counterfeiting of the fibres was conducted on both textile and papers, which showed higher security than the existing anti-counterfeiting fibres.
Assuntos
Alginatos , Polietilenoimina , Polímeros , CorantesRESUMO
Developing affordable and effective carbon dioxide (CO2) capture technology has attracted substantial intense attention due to the continued growth of global CO2 emissions. The low-cost and biodegradable cellulosic materials are developed into CO2 adsorbent recently. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel (EBPCa) was synthesized from alkaline cellulose solution, epoxy-functionalized polyethyleneimine (EB-PEI), and epichlorohydrin (ECH) through the freezing-thawing processes and freeze-drying. The Fourier transform infrared spectroscopy confirmed that the cellulose aerogel was successfully modified by EB-PEI. The X-ray photoelectron spectroscopy analyses confirmed the presence of N 1s and Cl 2p in EBPCa, meaning that the chlorine of ECH and the amino groups of EB-PEI exist in the cellulose surface. The obtained sample has a rich porous structure with a specific surface area in the range of 97.5-149.5 m2/g. Owing to its uniformly three-dimensional porous structure, the sample present preferable rigidity and carrying capacity, which 1 g of sample could easily carry the weight of a 3000 ml Erlenmeyer flask filled with water (total 4 kg). The sample showed good adsorption performance, with a maximum adsorption capacity of 6.45 mmol/g. This adsorbent has broad prospects in the CO2 capture process.
Assuntos
Dióxido de Carbono , Celulose , Celulose/química , Dióxido de Carbono/química , Polietilenoimina/química , Epicloroidrina , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , CloretosRESUMO
Functionalization and various applications of biomaterials have progressively gained a major interest due to the cost-effectiveness, renewability, and biodegradability of these substrates. The current work focalized on the functionalization of microcrystalline cellulose with polyethyleneimine solution (3 %, 5 %, and 10 %) and hydrazine sulfate salt (1:1, 1:2, 2:1) using an impregnation method. Untreated and treated samples were characterized using FT-IR, SEM, XRD, TGA, and DTA analyses. The crystallinity index values for control microcrystalline cellulose, cellulose-polyethyleneimine, and cellulose-hydrazine were 57.13.8 %, 57.29 %, and 52.62 %, respectively. Cellulose-polyethyleneimine (5 %) and cellulose-hydrazine (1:1) displayed the highest adsorption capacities for calmagite (an anionic dye). At equilibrium, the maximum adsorption capacities for calmagite achieved 104 mg/g for cellulose-polyethyleneimine (5 %), 45 mg/g for cellulose-hydrazine (1:1), and only 12.4 mg/g for untreated cellulose. Adsorption kinetics complied well with the pseudo-second-order kinetic model. The adsorption isotherm fitted well with the Langmuir isotherm. Overall, the functionalized cellulosic samples could be considered potential materials for the treatment of contaminated waters.