Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.979
Filtrar
1.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024075
2.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: covidwho-834865
3.
Molecules ; 25(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911757

RESUMO

The epidemic, caused by SARS-CoV-2 at the beginning of 2020, led us to a serious change in our lifestyle that for about three months has confined us to our homes, far from our laboratory routine. In this period, the belief that the work of a researcher should never stop has been the driving force in writing the present paper. It aims at reviewing the recent scientific knowledge about in vitro experimental data that focused on the antiviral role of phenols and polyphenols against different species of coronaviruses (CoVs), pointing up the viral targets potentially involved. In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy.


Assuntos
Antivirais/farmacologia , Pesquisa Biomédica/tendências , Coronavirus/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Betacoronavirus/efeitos dos fármacos , Quimases/uso terapêutico , Humanos
4.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899754

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Chlamydomonas reinhardtii/genética , Infecções por Coronavirus/tratamento farmacológico , Lectinas/farmacologia , Pneumonia Viral/tratamento farmacológico , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Infecções por Coronavirus/prevenção & controle , Engenharia Genética/métodos , Humanos , Lectinas/química , Lectinas/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Pandemias , Polifenóis/química , Polifenóis/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Vírus da SARS/efeitos dos fármacos , Vírus da SARS/patogenicidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vacinas Virais/biossíntese , Vacinas Virais/farmacologia
5.
Molecules ; 25(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: covidwho-760942

RESUMO

The epidemic, caused by SARS-CoV-2 at the beginning of 2020, led us to a serious change in our lifestyle that for about three months has confined us to our homes, far from our laboratory routine. In this period, the belief that the work of a researcher should never stop has been the driving force in writing the present paper. It aims at reviewing the recent scientific knowledge about in vitro experimental data that focused on the antiviral role of phenols and polyphenols against different species of coronaviruses (CoVs), pointing up the viral targets potentially involved. In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy.


Assuntos
Antivirais/farmacologia , Pesquisa Biomédica/tendências , Coronavirus/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Betacoronavirus/efeitos dos fármacos , Quimases/uso terapêutico , Humanos
6.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: covidwho-750656

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Chlamydomonas reinhardtii/genética , Infecções por Coronavirus/tratamento farmacológico , Lectinas/farmacologia , Pneumonia Viral/tratamento farmacológico , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Infecções por Coronavirus/prevenção & controle , Engenharia Genética/métodos , Humanos , Lectinas/química , Lectinas/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Pandemias , Polifenóis/química , Polifenóis/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Vírus da SARS/efeitos dos fármacos , Vírus da SARS/patogenicidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vacinas Virais/biossíntese , Vacinas Virais/farmacologia
7.
Anticancer Res ; 40(10): 5427-5436, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988864

RESUMO

BACKGROUND/AIM: The tetrazolium-based MTT cytotoxicity assay is well established for screening putative anti-cancer agents. However, it has limitations including lack of reproducibility with glioma cells treated with polyphenols. The aim of this study was to evaluate whether a flow cytometric assay with the anthraquinone, DRAQ7, was a better alternative than the colorimetric MTT assay for measuring cell viability. MATERIALS AND METHODS: Two glioma cell lines (IPSB-18, U373) and 1 pancreatic cancer cell line (AsPC-1) were treated with 4 polyphenols, namely red grape seed extract, red clover extract, anthocyanin-rich extract and curcumin. Cell viability was assessed using MTT assay and DRAQ7 staining. RESULTS: Limitations of MTT assay included lack of sensitivity and interference with the structure and absorbance spectra of polyphenols. Also, DMSO was toxic to glioma cells. Microscopic observations of cells treated with polyphenols confirmed the range of IC50 values evaluated by DRAQ7, but not by the MTT assay. CONCLUSION: DRAQ7 is a better alternative than MTT for measuring viability of glioma cells treated with brightly coloured polyphenols.


Assuntos
Antraciclinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Polifenóis/farmacologia , Antraciclinas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Concentração Inibidora 50 , Sais de Tetrazólio/química , Tiazóis/química
8.
Int J Nanomedicine ; 15: 4969-4990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764930

RESUMO

Background: Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized >26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications. Methods: Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications. Results: Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 µM tannic acid, 200 µM resveratrol, 200 µM epicatechin gallate, 1000 µM gallic acid and 200 µM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) - like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure. Conclusion: Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polifenóis/química , Polifenóis/farmacologia , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Biflavonoides/química , Catequina/análogos & derivados , Catequina/química , Camundongos , Proantocianidinas/química , Taninos/química
9.
Life Sci ; 259: 118341, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32853653

RESUMO

Aging is a form of a gradual loss of physiological integrity that results in impaired cellular function and ultimately increased vulnerability to disease and death. This process is a significant risk factor for critical age-related disorders such as cancer, diabetes, cardiovascular disease, and neurological conditions. Several mechanisms contribute to aging, most notably progressive telomeres shortening, which can be counteracted by telomerase enzyme activity and increasing in this enzyme activity associated with partly delaying the onset of aging. Individual behaviors and environmental factors such as nutrition affect the life-span by impact the telomerase activity rate. Healthy eating habits, including antioxidant intakes, such as polyphenols, can have a positive effect on telomere length by this mechanism. In this review, after studying the underlying mechanisms of aging and understanding the relationships between telomeres, telomerase, and aging, it has been attempted to explain the effect of polyphenols on reversing the oxidative stress and aging process.


Assuntos
Antioxidantes/farmacologia , Plantago/efeitos dos fármacos , Polifenóis/farmacologia , Telômero/efeitos dos fármacos , Animais , Combinação de Medicamentos , Humanos , Extrato de Senna , Encurtamento do Telômero/efeitos dos fármacos
10.
Chem Biol Interact ; 330: 109228, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827518

RESUMO

This study aimed at exploring the potential mechanism of decreased in vivo exposure of the antiplatelet agent, ticagrelor and its active metabolite, AR-C124910XX, mediated by tea polyphenols, which was first revealed by our previous study, as well as predicting the in vivo drug-drug interaction (DDI) potential utilizing an in vitro to in vivo extrapolation (IVIVE) approach. The bidirectional transport and uptake kinetics of ticagrelor were determined using Caco-2 cells. Inhibition potency of major components of tea polyphenols, epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were obtained from Caco-2 cells, human intestinal and hepatic microsomes (HIMs and HLMs) in vitro. A mean efflux ratio of 2.28 ± 0.38 and active uptake behavior of ticagrelor were observed in Caco-2 cell studies. Further investigation showed that the IC50 values of EGCG and EGC on the uptake of ticagrelor were 42.0 ± 5.1 µM (95% CI 31.9-54.8 µM) and 161 ± 13 µM (95% CI 136-191 µM), respectively. EGCG and EGC also displayed moderate to weak reversible inhibition on the formation of AR-C124910XX and the inactive metabolite, AR-C133913XX in HIMs and HLMs, while no clinically significant time-dependent inhibition was observed for either compound. IVIVE indicated a significant inhibition effect of EGCG on the uptake process of ticagrelor, while no potential DDI risk was found based on microsomal data. A 45% decrease in ticagrelor in vivo exposure was mechanistically predicted by incorporating intestinal and hepatic metabolism as well as intestinal absorption. This dual inhibition of tea polyphenols on ticagrelor revealed the underlying potential of transporter-enzyme interplay, in which the altered uptake process was more critical.


Assuntos
Modelos Teóricos , Polifenóis/farmacologia , Chá/química , Ticagrelor/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Absorção Intestinal/efeitos dos fármacos , Cinética , Microssomos Hepáticos/metabolismo , Inibidores da Agregação de Plaquetas/farmacocinética , Antagonistas do Receptor Purinérgico P2Y/farmacocinética , Ticagrelor/metabolismo , Ticagrelor/farmacocinética
11.
Am J Physiol Endocrinol Metab ; 319(4): E689-E708, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755302

RESUMO

Much more serious than the previous severe acute respiratory syndrome (SARS) coronavirus (CoV) outbreaks, the novel SARS-CoV-2 infection has spread speedily, affecting 213 countries and causing ∼17,300,000 cases and ∼672,000 (∼+1,500/day) deaths globally (as of July 31, 2020). The potentially fatal coronavirus disease (COVID-19), caused by air droplets and airborne as the main transmission modes, clearly induces a spectrum of respiratory clinical manifestations, but it also affects the immune, gastrointestinal, hematological, nervous, and renal systems. The dramatic scale of disorders and complications arises from the inadequacy of current treatments and absence of a vaccine and specific anti-COVID-19 drugs to suppress viral replication, inflammation, and additional pathogenic conditions. This highlights the importance of understanding the SARS-CoV-2 mechanisms of actions and the urgent need of prospecting for new or alternative treatment options. The main objective of the present review is to discuss the challenging issue relative to the clinical utility of plants-derived polyphenols in fighting viral infections. Not only is the strong capacity of polyphenols highlighted in magnifying health benefits, but the underlying mechanisms are also stressed. Finally, emphasis is placed on the potential ability of polyphenols to combat SARS-CoV-2 infection via the regulation of its molecular targets of human cellular binding and replication, as well as through the resulting host inflammation, oxidative stress, and signaling pathways.


Assuntos
Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Fitoterapia/métodos , Pneumonia Viral/prevenção & controle , Polifenóis/uso terapêutico , Prevenção Primária/métodos , Betacoronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/história , História do Século XXI , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Pandemias/história , Pneumonia Viral/epidemiologia , Pneumonia Viral/história , Polifenóis/farmacologia , Replicação Viral/efeitos dos fármacos
12.
Am J Physiol Endocrinol Metab ; 319(4): E689-E708, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: covidwho-696089

RESUMO

Much more serious than the previous severe acute respiratory syndrome (SARS) coronavirus (CoV) outbreaks, the novel SARS-CoV-2 infection has spread speedily, affecting 213 countries and causing ∼17,300,000 cases and ∼672,000 (∼+1,500/day) deaths globally (as of July 31, 2020). The potentially fatal coronavirus disease (COVID-19), caused by air droplets and airborne as the main transmission modes, clearly induces a spectrum of respiratory clinical manifestations, but it also affects the immune, gastrointestinal, hematological, nervous, and renal systems. The dramatic scale of disorders and complications arises from the inadequacy of current treatments and absence of a vaccine and specific anti-COVID-19 drugs to suppress viral replication, inflammation, and additional pathogenic conditions. This highlights the importance of understanding the SARS-CoV-2 mechanisms of actions and the urgent need of prospecting for new or alternative treatment options. The main objective of the present review is to discuss the challenging issue relative to the clinical utility of plants-derived polyphenols in fighting viral infections. Not only is the strong capacity of polyphenols highlighted in magnifying health benefits, but the underlying mechanisms are also stressed. Finally, emphasis is placed on the potential ability of polyphenols to combat SARS-CoV-2 infection via the regulation of its molecular targets of human cellular binding and replication, as well as through the resulting host inflammation, oxidative stress, and signaling pathways.


Assuntos
Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Fitoterapia/métodos , Pneumonia Viral/prevenção & controle , Polifenóis/uso terapêutico , Prevenção Primária/métodos , Betacoronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/história , História do Século XXI , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Pandemias/história , Pneumonia Viral/epidemiologia , Pneumonia Viral/história , Polifenóis/farmacologia , Replicação Viral/efeitos dos fármacos
13.
Adv Exp Med Biol ; 1250: 159-176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32601944

RESUMO

Diabetes mellitus type 2 (type-2 diabetes) is a metabolic disorder characterized by the increased blood glucose concentration and insulin resistance in peripheral tissues (e.g., muscles and adipose tissue). The initiation of the pathological cascade of events that lead to type-2 diabetes has been subject of debate; however, it has been commonly accepted that the oversecretion of human islet amyloid polypeptide (hIAPP, a hormone co-secreted with insulin) by the pancreatic 𝛽-cells is the main trigger of type-2 diabetes. In fact, 90% of the type-2 diabetes patients present hIAPP deposits in the extracellular space of the 𝛽-cells. These hIAPP supramolecular arrangements (both fibrillar and oligomeric) have been reported to be the origin of cytotoxicity, which leads to 𝛽-cell dysfunction through a series of different mechanisms, including the interaction of hIAPP oligomers with the cell membrane that leads to the influx of Ca2+ and increase in the cellular oxidative stress, among others. This overview shows the importance of developing type-2 diabetes treatment strategies able to (1) remodel of the secondary structure of cytotoxic hIAPP oligomers entrapping them into off-pathway nontoxic species and (2) reestablish physiological levels of oxidative stress. Natural polyphenols are a class of antioxidant compounds that are able to perform both functions. Herein we review the published literature of the most studied polyphenols, in particular for their ability to remodel the hIAPP aggregation pathway, to rescue the in vitro pancreatic 𝛽-cell viability and function, as well as to perform under a complex biological environment, i.e., in vivo animal models and clinical trials. Overall, natural polyphenols are able to control the cytotoxic hIAPP aggregation and minimize hIAPP-mediated cellular dysfunction and can be considered as important lead compounds for the treatment of type-2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polifenóis , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/terapia , Modelos Animais de Doenças , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polifenóis/farmacologia
14.
Food Chem ; 333: 127528, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32682231

RESUMO

Endogenous lipase and lipoxygenase play important roles in accelerating lipid oxidation. Polyphenols are a series of commonly used chemicals for preserving fish and seafood products, due to their positive inhibitory effects on lipid oxidation. However, the mechanism involved is still unknown. The inhibitory effects of chlorogenic acid (CGA) on lipase and lipoxygenase were investigated and explored with multi- spectroscopic and molecular docking approaches. Results showed that CGA could inhibit the activities of lipase and lipoxygenase with concentration increased in a highly dose-dependent manner. CGA quenched intrinsic fluorescence intensities of enzymes by static quenching and binding with CGA which led to changes in 3D structures of enzymes. Results of the molecular docking confirmed binding modes, binding sites and major interaction forces between CGA and enzymes, which reduced the corresponding activity. Thus, this study could provide basic mechanisms of the inhibitory effects of polyphenols on lipid oxidation during food preservation.


Assuntos
Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Animais , Sítios de Ligação , Conservação de Alimentos , Lipase/antagonistas & inibidores , Lipase/química , Lipase/metabolismo , Lipoxigenase/química , Lipoxigenase/metabolismo , Oxirredução/efeitos dos fármacos , Polifenóis/farmacologia , Espectrometria de Fluorescência
15.
Food Chem ; 329: 127168, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512395

RESUMO

A polyphenols-rich extract was obtained from polyvinylpolypyrrolidone (PVPP) winery residue, and its neuroprotective effects and ability to modulate the kinetics of type 2 diabetes-relevant enzymes were characterized. The PVPP-white wine extract is a mixture of polyphenols (840.08 ± 161.25 µg/mg, dry weight) dominated by proanthocyanidins and hydroxycinnamic acids, affording strong antioxidant activity, as detected by the protection of membrane lipids against oxidation and superoxide radical anion scavenging activity. Regarding type 2 diabetes framework, the extract inhibits α-glucosidase (Ki = 166.9 µg/mL) and aldose reductase (Ki = 127.5 µg/mL) through non-competitive mechanisms. Despite the modest ability to inhibit rat brain acetylcholinesterase, it protects neuronal SH-SY5Y cells against oxidative damage promoted by glutamate, decreasing reactive oxygen species generation and preserving cell redox state. Thus, PVPP-white wine extract has potential to support the development of functional foods and/or nutraceuticals aiming neuroprotection and glucose homeostasis regulation, with high relevance in Alzheimers disease and type 2 diabetes interlink.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Povidona/análogos & derivados , Vinho , Acetilcolinesterase , Aldeído Redutase/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Proteínas Ligadas por GPI/antagonistas & inibidores , Ácido Glutâmico/toxicidade , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/prevenção & controle , Oxirredução , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Povidona/química , Proantocianidinas/química , Proantocianidinas/farmacologia , Ratos , Vinho/análise
16.
PLoS One ; 15(6): e0234157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516332

RESUMO

Brazilian native fruits are a rich source of polyphenolic compounds that can act as anti-inflammatory and antioxidant agents. Here, we determined the polyphenolic composition, anti-inflammatory mechanism of action, antioxidant activity and systemic toxicity in Galleria mellonella larvae of Eugenia selloi B.D.Jacks. (synonym Eugenia neonitida Sobral) extract (Ese) and its polyphenol-rich fraction (F3) obtained through bioassay-guided fractionation. Phenolic compounds present in Ese and F3 were identified by LC-ESI-QTOF-MS. The anti-inflammatory activity of Ese and F3 was tested in vitro and in vivo through NF-κB activation, cytokine release and neutrophil migration assays. The samples were tested for their effects against reactive species (ROO•, O2•-, HOCl and NO•) and for their toxicity in Galleria mellonella larvae model. The presence of hydroxybenzoic acid, ellagitannins and flavonoids was identified. Ese and F3 reduced NF-κB activation, cytokine release and neutrophil migration, with F3 being three-fold more potent. Overall, F3 exhibited strong antioxidant effects against biologically relevant radicals, and neither Ese nor F3 were toxic to G. mellonella larvae. In conclusion, Ese and F3 revealed the presence of phenolic compounds that decreased the inflammatory parameters evaluated and inhibited reactive oxygen/nitrogen species. E. selloi is a novel source of bioactive compounds that may provide benefits for human health.


Assuntos
Eugenia/química , Frutas/química , Polifenóis/química , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL2/metabolismo , Depuradores de Radicais Livres/química , Depuradores de Radicais Livres/farmacologia , Depuradores de Radicais Livres/toxicidade , Lepidópteros/efeitos dos fármacos , Masculino , Camundongos , NF-kappa B/metabolismo , Polifenóis/toxicidade , Células RAW 264.7 , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Food Chem ; 331: 127362, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32590268

RESUMO

The polyphenol compositions of Thymus × citriodorus and Thymus vulgaris extracts as obtained by exhaustive hydroethanolic (HE) extraction and aqueous decoction (AD) were compared. In addition, their compositions and bioactivities were compared to those of Thymus pulegioides and Thymus mastichina, grown under the same edaphoclimatic conditions, and Thymus carnosus. Rosmarinic acid was the most abundant polyphenol followed by luteolin-hexuronide, salvianolic acids I and K. Cluster analysis suggests a similarity of the polyphenol composition of T. citriodorus and T. vulgaris. A significant antioxidant activity was observed and correlated with their polyphenol levels. The same being observed for the higher anti-proliferative activity/cytotoxicity of HE extracts on Caco-2 and HepG2 cells as compared to AD extracts. Significant association between the total phenolic compounds with the anti-proliferative activity, for both cell lines, was observed. These results support the importance of salvianolic acids levels in Thymus extracts and their in vitro anti-proliferative/cytotoxic activities.


Assuntos
Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Thymus (Planta)/química , Alcenos/análise , Antioxidantes/análise , Antioxidantes/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Cinamatos/análise , Análise por Conglomerados , Depsídeos/análise , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Células Hep G2 , Humanos , Extratos Vegetais/análise , Extratos Vegetais/farmacologia
18.
Chem Biol Interact ; 326: 109113, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360496

RESUMO

Apple polyphenols (AP) have attracted much attention due to their various bioactivities. In this study, the protective effect of AP against chronic ethanol exposure-induced neural injury as well as the possible mechanisms were investigated. Body weight, daily average food intake and daily average fluid intake were measured and daily average ethanol consumption was calculated. The influences of AP on motor behavior and memory were detected by locomotor activity test, rotarod test, beam walking test, and Y maze test and novel object recognition test, respectively. The changes of blood ethanol concentration and the oxidative stress were also measured. AP improved chronic ethanol exposure-induced the inhibition of body weight and the decrease of daily average food intake, but did not influence the daily average fluid intake and the daily average ethanol intake, indicating that the improve effect of AP did not result from the decrease of ethanol intake. Motor activity and motor coordination were not influenced after chronic ethanol exposure though the blood ethanol concentration was higher than that in control group. AP improved significantly chronic ethanol-induced the memory impairment and the hippocampal CA1 neurons damage. Further studies found that AP decreased the contents of NO and MDA and increased the levels of T-AOC and GSH in the hippocampus of rats. These results suggest that AP exerts a protective effect against chronic ethanol-induced memory impairment through improving the oxidative stress in the hippocampus.


Assuntos
Etanol/efeitos adversos , Neurônios/efeitos dos fármacos , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Malus , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 15(5): e0232599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428000

RESUMO

Ziziphus lotus L. (Lam.) and Z. mauritiana Lam., as a widespread species in Tunisia, are well known for their medicinal and food uses. The aim of the present study was to screen the content of total polyphenols, flavonoids, and condensed tannins together with the radical scavenging capacity and the antimicrobial activity of leaves, fruits and seeds extracts of Z. lotus and Z. mauritiana from different localities. Results showed that leaves extracts presented the highest phenolic compounds content for both species. Furthermore, LC-ESI-MS analysis allowed the identification of 28 bioactive compounds regardless of species and organs, with the predominance of quinic acid and rutin. Leaves extract of Z. mauritiana possessed the highest total antioxidant capacity. The antimicrobial tests showed that leaves extracts of Z. mauritiana and Z. lotus from Oued Esseder exhibited the highest activity against four bacterial strains (Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and Escherichia coli). The main results showed that the studied species of Ziziphus genus are an excellent source of natural bioactive molecules that could be an interesting material for industrial and food purposes.


Assuntos
Antibacterianos/análise , Antioxidantes/análise , Extratos Vegetais/química , Ziziphus/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Flavonoides/análise , Flavonoides/farmacologia , Humanos , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Polifenóis/análise , Polifenóis/farmacologia , Proantocianidinas/análise , Proantocianidinas/farmacologia
20.
Food Chem ; 326: 126968, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428854

RESUMO

An understanding of the antityrosinase capacity and polyphenols changes during hydrothermal treatments was crucial for application of asparagus. Therefore, asparagus extract was treated at a range of 80-160 °C for 30-150 min in a high temperature reactor. The results suggested that tyrosinase inhibition rate of untreated asparagus extract was recorded as 3.26% but significantly increased to 51.22% and 50.80% after heating for 90 min at 140 °C (lnR0 of 7.21) and 160 °C (lnR0 of 8.57), respectively. The generation and degradation of polyphenols followed the pseudo-first-order kinetic model. The coumaric acid content was increased from 35.03 µg/mL to 307.66 µg/mL at lnR0 of 8.16. The degradation of rutin in asparagus extract was far less compared to that of coumaric acid. Compounds formed were determined by UPLC-Q-TOF-MS yielding main fragments at m/z 451 and 601. In conclusion, hydrothermal treatment was a feasible method for increasing the antityrosinase capacity of asparagus.


Assuntos
Asparagus (Planta)/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Polifenóis/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indústria de Processamento de Alimentos/métodos , Cinética , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Rutina/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA