Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.778
Filtrar
1.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899754

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Chlamydomonas reinhardtii/genética , Infecções por Coronavirus/tratamento farmacológico , Lectinas/farmacologia , Pneumonia Viral/tratamento farmacológico , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Infecções por Coronavirus/prevenção & controle , Engenharia Genética/métodos , Humanos , Lectinas/química , Lectinas/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Pandemias , Polifenóis/química , Polifenóis/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Vírus da SARS/efeitos dos fármacos , Vírus da SARS/patogenicidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vacinas Virais/biossíntese , Vacinas Virais/farmacologia
2.
Food Funct ; 11(9): 7415-7420, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966484

RESUMO

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world at an unprecedented rate. In the present study, 4 marine sulfated polysaccharides were screened for their inhibitory activity against SARS-CoV-2, including sea cucumber sulfated polysaccharide (SCSP), fucoidan from brown algae, iota-carrageenan from red algae, and chondroitin sulfate C from sharks (CS). Of them, SCSP, fucoidan, and carrageenan showed significant antiviral activities at concentrations of 3.90-500 µg mL-1. SCSP exhibited the strongest inhibitory activity with IC50 of 9.10 µg mL-1. Furthermore, a test using pseudotype virus with S glycoprotein confirmed that SCSP could bind to the S glycoprotein to prevent SARS-CoV-2 host cell entry. The three antiviral polysaccharides could be employed to treat and prevent COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Feófitas/química , Polissacarídeos/farmacologia , Rodófitas/química , Pepinos-do-Mar/química , Animais , Antivirais/química , Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , Polissacarídeos/química , Tubarões , Sulfatos/química , Internalização do Vírus/efeitos dos fármacos
3.
Carbohydr Polym ; 247: 116740, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829859

RESUMO

Pulmonary fibrosis (PF) is a lung disease with highly heterogeneous and mortality rate, but its therapeutic options are now still limited. Corona virus disease 2019 (COVID-19) has been characterized by WHO as a pandemic, and the global number of confirmed COVID-19 cases has been more than 8.0 million. It is strongly supported for that PF should be one of the major complications in COVID-19 patients by the evidences of epidemiology, viral immunology and current clinical researches. The anti-PF properties of naturally occurring polysaccharides have attracted increasing attention in last two decades, but is still lack of a comprehensively understanding. In present review, the resources, structural features, anti-PF activities, and underlying mechanisms of these polysaccharides are summarized and analyzed, which was expected to provide a scientific evidence supporting the application of polysaccharides for preventing or treating PF in COVID-19 patients.


Assuntos
Betacoronavirus , Produtos Biológicos/uso terapêutico , Infecções por Coronavirus/complicações , Pandemias , Pneumonia Viral/complicações , Polissacarídeos/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Bleomicina/toxicidade , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Proteína Forkhead Box O3/fisiologia , Fungos/química , Ribonucleoproteína Nuclear Heterogênea D0/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Camundongos , Neutrófilos/efeitos dos fármacos , Fitoterapia , Plantas Medicinais/química , Polissacarídeos/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/prevenção & controle , RNA Longo não Codificante/antagonistas & inibidores , Ratos , Alga Marinha/química , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores
4.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731428

RESUMO

In 2020, the world is being ravaged by the coronavirus, SARS-CoV-2, which causes a severe respiratory disease, Covid-19. Hundreds of thousands of people have succumbed to the disease. Efforts at curing the disease are aimed at finding a vaccine and/or developing antiviral drugs. Despite these efforts, the WHO warned that the virus might never be eradicated. Countries around the world have instated non-pharmaceutical interventions such as social distancing and wearing of masks in public to curb the spreading of the disease. Antiviral polysaccharides provide the ideal opportunity to combat the pathogen via pharmacotherapeutic applications. However, a layer-by-layer nanocoating approach is also envisioned to coat surfaces to which humans are exposed that could harbor pathogenic coronaviruses. By coating masks, clothing, and work surfaces in wet markets among others, these antiviral polysaccharides can ensure passive prevention of the spreading of the virus. It poses a so-called "eradicate-in-place" measure against the virus. Antiviral polysaccharides also provide a green chemistry pathway to virus eradication since these molecules are primarily of biological origin and can be modified by minimal synthetic approaches. They are biocompatible as well as biodegradable. This surface passivation approach could provide a powerful measure against the spreading of coronaviruses.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Polissacarídeos/uso terapêutico , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Química Verde , Humanos , Nanopartículas , Nanotecnologia , Polissacarídeos/farmacologia
5.
PLoS One ; 15(8): e0237357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780763

RESUMO

Fermented feeds contain abundant organic acids, amino acids, and small peptides, which improve the nutritional status as well as the morphology and microbiota composition of the intestine. Ginseng polysaccharides exhibit several biological activities and contribute to improving intestinal development. Here, Xuefeng black-bone chickens were fed a basal diet fermented by Bacillus subtilis, Saccharomyces cerevisiae, Lactobacillus plantarum, and Enterococcus faecium, with or without ginseng polysaccharides. The 100% microbially fermented feed (Fe) and 100% microbially fermented feed and ginseng polysaccharide (FP) groups showed significantly increased villus height and villus height to crypt depth ratio, and decreased crypt depth in the jejunum. In the 100% complete feed and ginseng polysaccharide (Po) group, the villus height to crypt depth ratio was significantly increased, crypt depth was reduced, and villus height remained unaffected. Next, we studied the intestinal microbial composition of 32 Xuefeng black-bone chickens. A total of 10 phyla and 442 genera were identified, among which Firmicutes, Proteobacteria, and Bacteroidetes were the most dominant phyla. At the genus level, Sutterella and Asteroleplasma abundance increased and decreased, respectively, in the FP and Po groups. Sutterella abundance was positively correlated to villus height and villus height to crypt depth ratio, and negatively correlated to crypt depth, and Asteroleplasma abundance was positively correlated to crypt depth and negatively correlated to villus height to crypt depth ratio. At the species level, the FP group showed significantly increased Bacteroides_vulgatus and Eubacterium_tortuosum and decreased Mycoplasma_gallinarum and Asteroleplasma_anaerobium abundance, and the Po group showed significantly increased Mycoplasma_gallinarum and Asteroleplasma_anaerobium abundance. Moreover, bacterial abundance was closely related to the jejunum histomorphology. Asteroleplasma_anaerobium abundance was positively correlated with crypt depth and negatively correlated with villus height to crypt depth ratio. Mycoplasma_gallinarum abundance was positively correlated to villus height, and Bacteroides_vulgatus and Eubacterium_tortuosum abundance was positively correlated with villus height to crypt depth ratio and negatively correlated with crypt depth. Therefore, fermented feeds with ginseng polysaccharides may be used as effective alternatives to antibiotics for improving intestinal morphology and microbial composition.


Assuntos
Ração Animal , Galinhas , Fermentação , Intestinos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Panax/química , Polissacarídeos/farmacologia , Animais , Biodiversidade , Intestinos/citologia , Intestinos/microbiologia
6.
PLoS One ; 15(7): e0235515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692781

RESUMO

BACKGROUND: The skin provides a predominant barrier against chemical, physical and microbial incursion. The intemperate exposure to ultraviolet A (UVA) radiation can cause excessive cellular oxidative stress, leading to skin damage, proteins damage and mitochondrial dysfunction. There is sufficient evidences supporting the proposal that mitochondria is highly implicated in skin photo-damage. METHODS: In the present study, a polysaccharide isolated from Astragalus membranaceus was further purified to be an α-glucan, which was further investigated its beneficial influence on UVA-induced photo-damage in HaCaT cells. RESULTS: Our results showed that the purified Astragalus membranaceus polysaccharide (AP) can protect HaCaT cells from UVA-induced photo-damage through reducing UVA-induced intracellular ROS production and mitochondrial membrane potential, thereby altering ATP content. It was found that the UVA induced damage in HaCaT cells could be effectively restored by co-treatment with AP. CONCLUSIONS: AP exhibited promising potential for advanced application as multifunctional skin care products and drugs.


Assuntos
Astragalus propinquus/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Polissacarídeos/farmacologia , Protetores contra Radiação/farmacologia , Raios Ultravioleta/efeitos adversos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química , Protetores contra Radiação/química , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718020

RESUMO

The ongoing pandemic of coronavirus disease-2019 (COVID-19) is being caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The disease continues to present significant challenges to the health care systems around the world. This is primarily because of the lack of vaccines to protect against the infection and the lack of highly effective therapeutics to prevent and/or treat the illness. Nevertheless, researchers have swiftly responded to the pandemic by advancing old and new potential therapeutics into clinical trials. In this review, we summarize potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle. The review presents the structures, mechanisms, and reported results of clinical trials of potential therapeutics that have been listed in clinicaltrials.gov. Given the fact that some of these therapeutics are multi-acting molecules, other relevant mechanisms will also be described. The reviewed therapeutics include small molecules and macromolecules of sulfated polysaccharides, polypeptides, and monoclonal antibodies. The potential therapeutics target viral and/or host proteins or processes that facilitate the early stage of the viral infection. Frequent targets are the viral spike protein, the host angiotensin converting enzyme 2, the host transmembrane protease serine 2, and clathrin-mediated endocytosis process. Overall, the review aims at presenting update-to-date details, so as to enhance awareness of potential therapeutics, and thus, to catalyze their appropriate use in combating the pandemic.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Pandemias , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
Food Chem ; 330: 127257, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535321

RESUMO

Huangshui (HS), the by-product of Chinese Baijiu, has attracted considerable attention due to its nutrient and microbial composition; however, none of the studies has explored the polysaccharides in HS yet. Here, from HS, we isolated a novel polysaccharide, HSP-3, with an average molecular weight of 26.40 kDa. The structure was elucidated based on monosaccharide composition and methylation analysis, NMR, FT-IR, and AFM analysis. It is mainly composed of mannose (46.6%), galactose (17.3%), arabinose (11.2%), glucose (10.5%), xylose (8.2%), fucose (5.2%), and rhamnose (1.0%). The backbone of HSP-3 was made up of â†’ 2)-ß-d-Manp-(1 â†’ 2,6)-ß-d-Manp-(1 â†’ 6)-ß-d-Galp-(1 â†’ 3,6)-ß-d-Galp-(1 â†’ 4)-α-l-Rhap-(1 â†’ 3,4)-α-l-Rhap-(1 â†’ . Moreover, stimulation of the production of ROS, NO, TNF-α and IL-6, upregulation of the mRNA and protein expression levels of TNF-α and IL-6 in THP-1 cells, and enhanced the pinocytic and phagocytic capacities of THP-1 cells exhibited significant immunomodulatory properties of HSP-3. Altogether, this study suggests that HSP-3 could be used as an active component in functional foods.


Assuntos
Imunossupressores/farmacologia , Interleucina-6/metabolismo , Óxido Nítrico/biossíntese , Polissacarídeos/farmacologia , Rios/química , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Imunossupressores/química , Peso Molecular , Polissacarídeos/química , Células THP-1
9.
Artigo em Inglês | MEDLINE | ID: mdl-32450013

RESUMO

Because viruses still represent a significant threat to human and animal health worldwide, the development of effective weapons against viral infections remains a top priority for the biopharmaceutical industry. This article reviews the dietary and pharmaceutical applications of polysaccharides (PS), first of all chitosan, in the prevention and treatment of viral diseases, focusing more particularly on solid or gel micro/nanoparticulate systems. The intrinsic antiviral activity of PS and their immunostimulatory effects, implemented in animal and human diets, are first surveyed. Then the review discusses the potential of PS-based particles as carriers of antiviral drugs and vaccines, with emphasis on the adjuvant potency of PS in solid vaccine formulations. The gap between the abundance of academic studies in this area and the lack of actual antiviral formulations dispensed to human patients is underlined, notwithstanding a number of branded products on the market.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Polissacarídeos/administração & dosagem , Polissacarídeos/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Viroses/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Animais , Antivirais/administração & dosagem , Humanos , Polissacarídeos/farmacologia , Viroses/imunologia , Viroses/terapia
10.
Adv Exp Med Biol ; 1221: 567-603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274727

RESUMO

Despite the enormous progress made in recent years with antibodies, vaccines, antisense oligonucleotides, etc., the so-called "biological" approaches for tackling the control of various diseases, medicinal chemistry remains a bulwark to refer to for the development of new drugs. Also in the case of heparanase, medicinal chemistry has always been in the forefront to identify new inhibitors, through modification of natural macromolecules, e.g., sulfated polysaccharides like heparin, or of natural compounds isolated from bacteria or plants, or through rational design. In this chapter, the reader will find a detailed description of the most relevant small-molecule heparanase inhibitors reported so far in the scientific literature and in patent applications, with mention to the design strategy and to structure-activity relationships. Starting from heparanase inhibitors of natural origin and the attempts to improve their potency and selectivity, the reader will be guided through the major chemical classes of synthetic inhibitors, with representation of the structure of the most relevant compounds. The last paragraph is dedicated to a brief description of inhibitors that have reached clinical trials, highlighting their structure, mechanism, and improved derivatives.


Assuntos
Glucuronidase/antagonistas & inibidores , Heparina/análogos & derivados , Heparina/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Heparina/farmacologia , Humanos , Relação Estrutura-Atividade
11.
Mar Drugs ; 18(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331442

RESUMO

The enzymatic depolymerization of fucoidans from brown algae allowed the production of their standardized derivatives with different biological activities. This work aimed to compare the antiviral activities of native (FeF) and modified with enzyme (FeHMP) fucoidans from F. evanescens. The cytotoxicity and antiviral activities of the FeF and FeHMP against herpes viruses (HSV-1, HSV-2), enterovirus (ECHO-1), and human immunodeficiency virus (HIV-1) in Vero and human MT-4 cell lines were examined by methylthiazolyltetrazolium bromide (MTT) and cytopathic effect (CPE) reduction assays, respectively. The efficacy of fucoidans in vivo was evaluated in the outbred mice model of vaginitis caused by HSV-2. We have shown that both FeF and FeHMP significantly inhibited virus-induced CPE in vitro and were more effective against HSV. FeF exhibited antiviral activity against HSV-2 with a selective index (SI) > 40, and FeHMP with SI ˃ 20, when they were added before virus infection or at the early stages of the HSV-2 lifecycle. Furthermore, in vivo studies showed that after intraperitoneal administration (10 mg/kg), both FeF and FeHMP protected mice from lethal intravaginal HSV-2 infection to approximately the same degree (44-56%). Thus, FeF and FeHMP have comparable potency against several DNA and RNA viruses, allowing us to consider the studied fucoidans as promising broad-spectrum antivirals.


Assuntos
Antivirais/farmacologia , Fucus/química , Polissacarídeos/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Polissacarídeos/isolamento & purificação , Vírus de RNA/efeitos dos fármacos , Vaginite/tratamento farmacológico , Vaginite/virologia , Células Vero
12.
Minerva Gastroenterol Dietol ; 66(2): 172-176, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-7667

RESUMO

The outbreak of SARS-CoV-2 disease (COVID-19) is currently, March 2020, affecting more than 100,000 people worldwide and, according to the WHO (World Health Organization), a pandemic is shortly expected. The virus infects the lower respiratory tract and causes severe pneumonia and mortality in approximately 10% and 3-5%, respectively, of cases, mainly among the elderly and/or people affected by other diseases. AHCC is an α-glucan-based standardized mushroom extract that has been extensively investigated as an immunostimulant both in animals and/or in humans affected by West Nile virus, influenza virus, avian influenza virus, hepatitis C virus, papillomavirus, herpes virus, hepatitis B virus and HIV by promoting a regulated and protective immune response. Although the efficacy of AHCC has not yet been specifically evaluated with respect to SARS-CoV-2 disease, its action in promoting a protective response to a wide range of viral infections, and the current absence of effective vaccines, could support its use in the prevention of diseases provoked by human pathogenic coronavirus, including COVID-19.


Assuntos
Adjuvantes Imunológicos/farmacologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Polissacarídeos/farmacologia , Cogumelos Shiitake , Betacoronavirus/imunologia , Humanos , Micélio , Pandemias
13.
Drug Discov Ther ; 14(1): 8-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32147629

RESUMO

Natto is a well-known traditional Japanese food produced by fermenting soybeans with Bacillus subtilis var natto. Here we found that the water-soluble viscous fraction of natto inhibits sucrose- or glucose-induced hyperglycemia in silkworms. The water-soluble viscous fraction treated with DNase I, RNase A, and proteinase K, followed by phenol extraction also suppressed sucrose-induced hyperglycemia in silkworms. The enzyme-treated polysaccharide fraction of natto inhibits glucose uptake by Caco-2 cells, human intestinal epithelial cells. These findings suggest that the polysaccharide components of natto selected on the basis of their suppressive effects on sucrose-induced hyperglycemia in silkworms inhibit glucose uptake by human intestinal cells.


Assuntos
Bacillus subtilis , Alimentos e Bebidas Fermentados , Glucose/metabolismo , Hiperglicemia , Mucosa Intestinal/metabolismo , Polissacarídeos/farmacologia , Animais , Bombyx , Células CACO-2 , Alimentos e Bebidas Fermentados/microbiologia , Humanos , Hiperglicemia/terapia , Polissacarídeos/metabolismo , Alimentos de Soja , Sacarose
14.
Minerva Gastroenterol Dietol ; 66(2): 172-176, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32162896

RESUMO

The outbreak of SARS-CoV-2 disease (COVID-19) is currently, March 2020, affecting more than 100,000 people worldwide and, according to the WHO (World Health Organization), a pandemic is shortly expected. The virus infects the lower respiratory tract and causes severe pneumonia and mortality in approximately 10% and 3-5%, respectively, of cases, mainly among the elderly and/or people affected by other diseases. AHCC is an α-glucan-based standardized mushroom extract that has been extensively investigated as an immunostimulant both in animals and/or in humans affected by West Nile virus, influenza virus, avian influenza virus, hepatitis C virus, papillomavirus, herpes virus, hepatitis B virus and HIV by promoting a regulated and protective immune response. Although the efficacy of AHCC has not yet been specifically evaluated with respect to SARS-CoV-2 disease, its action in promoting a protective response to a wide range of viral infections, and the current absence of effective vaccines, could support its use in the prevention of diseases provoked by human pathogenic coronavirus, including COVID-19.


Assuntos
Adjuvantes Imunológicos/farmacologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Polissacarídeos/farmacologia , Cogumelos Shiitake , Betacoronavirus/imunologia , Humanos , Micélio , Pandemias
15.
BMC Complement Med Ther ; 20(1): 48, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046705

RESUMO

BACKGROUND: Radix isatidis has been used in China and other Asian countries for its antiviral and anti-inflammatory effects for thousands of years. However, the antiviral effect of Radix isatidis polysaccharide against pseudorabies virus (PRV) is still unknown. METHODS: The polysaccharide were isolated from extract of the roots of Radix isatidis. MTT assays were used to determine the preventive effect, inhibitory effect and antiviral effect of Radix isatidis polysaccharide on PRV in vitro. RESULTS: This study found that different concentrations of polysaccharides from this plant can inhibit PRV replication by 14.674-30.840%, prevent infection at rates of 6.668-14.923%, and kill this virus at rates of 32.214-67.422%. CONCLUSION: These results broaden the understanding of this traditional Chinese herb and provide a theoretical basis for further research. Moreover, Radix isatidis polysaccharide could be used for antiviral therapy.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , China , Herpesvirus Suídeo 1/fisiologia , Isatis/química , Masculino , Raízes de Plantas/química , Suínos , Testículo/citologia , Replicação Viral/efeitos dos fármacos
16.
Diab Vasc Dis Res ; 17(1): 1479164119896975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000529

RESUMO

Advanced glycation end-products, especially toxic advanced glycation end-products derived from glyceraldehyde (advanced glycation end-product-2) and glycolaldehyde (advanced glycation end-product-3), are biologically reactive compounds associated with diabetic complications. We previously demonstrated that toxic advanced glycation end-products were internalised into macrophage-like RAW264.7 cells through scavenger receptor-1 class A (CD204). Toxic advanced glycation end-product uptake was inhibited by fucoidan, a sulphated polysaccharide and antagonistic ligand for scavenger receptors, suggesting that sulphated polysaccharides are emerging candidates for treatment of advanced glycation end-product-related diseases. In this study, we compared the effects of six types of sulphated and non-sulphated polysaccharides on toxic advanced glycation end-product uptake in RAW264.7 cells. Fucoidan, carrageenan and dextran sulphate attenuated toxic advanced glycation end-product uptake. Fucoidan and carrageenan inhibited advanced glycation end-product-2-induced upregulation of SR-A, while advanced glycation end-product-3-induced upregulation of scavenger receptor-1 class A was only suppressed by fucoidan. Dextran sulphate did not affect scavenger receptor-1 class A levels in toxic advanced glycation end-product-treated cells. Chondroitin sulphate, heparin and hyaluronic acid failed to attenuate toxic advanced glycation end-product uptake. Heparin and hyaluronic acid had no effect on scavenger receptor-1 class A levels, while chondroitin sulphate inhibited advanced glycation end-product-3-induced upregulation of scavenger receptor-1 class A. Taken together, fucoidan and carrageenan, but not the other sulphated polysaccharides examined, had inhibitory activities on toxic advanced glycation end-product uptake and toxic advanced glycation end-product-induced upregulation of scavenger receptor-1 class A, possibly because of structural differences among sulphated polysaccharides.


Assuntos
Carragenina/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Receptores Depuradores Classe A/antagonistas & inibidores , Animais , Transporte Biológico , Sulfatos de Condroitina/farmacologia , Sulfato de Dextrana/farmacologia , Heparina/farmacologia , Ácido Hialurônico/farmacologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Receptores Depuradores Classe A/metabolismo
17.
Mar Drugs ; 18(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046368

RESUMO

Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Polissacarídeos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Fucus/química , Humanos , Mitocôndrias/efeitos dos fármacos , Peso Molecular , Osteossarcoma , Feófitas/química , Sargassum/química
18.
Mar Drugs ; 18(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936539

RESUMO

Marine organisms are sources of several natural compounds with potential clinical use. However, only a few marine-based pharmaceuticals have been approved for use due to limited knowledge on their biological activities. Here, we identified the functional role of fucoidan extracted from Fucus vesiculosus on ovarian cancer. Fucoidan increased the death of ES-2 and OV-90 cells, through a reduction in proliferation, cell cycle arrest, releases of cytochrome c, reactive oxygen species (ROS) generation, and endoplasmic reticulum (ER) stress. Additionally, fucoidan increased the concentration of cytosolic and mitochondrial calcium in both cells. The decrease of cell proliferation was controlled by the inactivation of PI3K and MAPK signaling cascades in ES-2 and OV-90 cells. In a toxicity assay with normal zebrafish larvae, fucoidan did not induce toxicity, cardiotoxicity, development, kinesis, and apoptosis at different concentrations. However, it disrupted tumor formation and vascular development in a zebrafish xenograft model and angiogenesis transgenic (Tg, fli1-eGFP) model, respectively. Collectively, the results indicate that fucoidan may be a novel pharmaceutical for the management of human ovarian cancer.


Assuntos
Cálcio/metabolismo , Fucus/química , Homeostase/efeitos dos fármacos , Polissacarídeos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Neovascularização Patológica/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Polissacarídeos/toxicidade , Testes de Toxicidade , Peixe-Zebra
19.
J Int Soc Sports Nutr ; 17(1): 3, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906976

RESUMO

BACKGROUND: Rating of Perceived Exertion (RPE) is a subjective scale to monitor overload and fatigue during exercise. Hypoxia may worsen the perception of fatigue, compromising the self-reported perception of effort and increasing RPE. The objective was to evaluate the effects of carbohydrate (CHO) supplementation on RPE during exercise in hypoxia simulating 4200 m. METHODS: Eight male physically active volunteers performed two exercises at 50% VO2peak and 1% slope: exercise in hypoxia + placebo or exercise in hypoxia + CHO (6% maltodextrin) with supplementation at 20, 40, and 60 min during exercise. Oxygen Saturation (SaO2%) was assessed at baseline and after exercise, while RPE and HR were measured each 10 min during the trial. RESULTS: SaO2% decreased after exercise in both conditions of hypoxia compared to rest. The RPE did not differ between groups. However, the RPE increased in hypoxia after 20 min of exercise in relation to 10 min. The Area Under the Curve (AUC) of RPE was lower in hypoxia + CHO compared to hypoxia. The AUC of the HR/RPE ratio in the hypoxia + CHO group was higher in relation to hypoxia. CONCLUSIONS: Our results indicate that CHO supplementation does not change RPE induced by 60 min of exercise at 50% VO2peak in hypoxia equivalent to 4200 m at the different times analyzed. However, in hypoxia + CHO the (AUC)-60 min of total RPE decreased during exercise, while the heart rate/RPE ratio improved, indicating lower RPE in the hypoxic environment.


Assuntos
Carboidratos/farmacologia , Suplementos Nutricionais , Exercício Físico , Hipóxia , Polissacarídeos/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Consumo de Oxigênio , Esforço Físico , Adulto Jovem
20.
Carbohydr Polym ; 231: 115732, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31888819

RESUMO

Cibotium barometz, an important traditional Chinese medicine, is used in strengthening bones and tendons. We found that C. barometz crude polysaccharides (CB70) could alleviate bone loss and markedly improve the biomechanical properties of OVX rats. Thus, to clarify biological active ingredient(s) of CB70, two homogeneous polysaccharides (CBP70-1-1 and CBP70-1-2) were purified from CB70. A combination of monosaccharide composition, FT-IR, GC-MS and NMR analysis indicated that CBP70-1-1 was composed of →6)-D-Galp-(1→, D-Glcp-(1→, →3,6)-D-Manp-(1→, →4)-D-Glcp-(1→ and →6)-D-Glcp-(1→ with relative molecular weights of 12,724 Da, and CBP70-1-2 was composed of →4)-D-Glcp-(1→, D-Glcp-(1→, →3,6)-D-Manp-(1→, →6)-D-Galp-(1→, →4,6)-D-Glcp-(1→ and →3)-L-Araf-(1→ with relative molecular weights of 3611 Da. Morphological analyses revealed that CBP70-1-1 and CBP70-1-2 appeared as a sheet that were irregular in size and shape, while the surface of CBP70-1-1 was full of sharp protuberances and CBP70-1-2 was smooth. Furthermore, the effects of CBP70-1-1 and CBP70-1-2 on the proliferation, differentiation and mineralization of mouse pre-osteoblastic MC3T3-E1 cells were assessed via CCK-8 assay, alkaline phosphatase activity assay, and alizarin red-based assay, respectively. These results revealed that CBP70-1-1 and CBP70-1-2 significantly promoted the proliferation, differentiation and mineralization of MC3T3-E1 cells, even better than E2. More importantly, quantitative real-time PCR and Western blot analysis indicated that CBP70-1-2 pronouncedly promoted the expression of osteogenic-related marker genes (Runx2, Osx, Ocn and Opn) and proteins (BMP2, RUNX2, OSX and p-SMAD1), which implies that the osteogenic activity of CBP70-1-2 is accomplished mainly by activating the BMP2/SMAD1 signaling pathway. These findings suggest CBP70-1-2 as a potential natural anti-osteoporotic agent for pharmacotherapy.


Assuntos
Embriófitas/química , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Polissacarídeos/química , Células 3T3 , Animais , Proteína Morfogenética Óssea 2/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Osteoporose/patologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Rizoma/química , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/genética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA