Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.979
Filtrar
1.
Sensors (Basel) ; 21(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071590

RESUMO

The rapid evolution of air sensor technologies has offered enormous opportunities for community-engaged research by enabling citizens to monitor the air quality at any time and location. However, many low-cost portable sensors do not provide sufficient accuracy or are designed only for technically capable individuals by requiring pairing with smartphone applications or other devices to view/store air quality data and collect location data. This paper describes important design considerations for portable devices to ensure effective citizen engagement and reliable data collection for the geospatial analysis of personal exposure. It proposes a new, standalone, portable air monitor, GeoAir, which integrates a particulate matter (PM) sensor, volatile organic compound (VOC) sensor, humidity and temperature sensor, LTE-M and GPS module, Wi-Fi, long-lasting battery, and display screen. The preliminary laboratory test results demonstrate that the PM sensor shows strong performance when compared to a reference instrument. The VOC sensor presents reasonable accuracy, while further assessments with other types of VOC are needed. The field deployment and geo-visualization of the field data illustrate that GeoAir collects fine-grained, georeferenced air pollution data. GeoAir can be used by all citizens regardless of their technical proficiency and is widely applicable in many fields, including environmental justice and health disparity research.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ciência do Cidadão , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-34071796

RESUMO

Fireworks are often used in celebration, causing short term, extremely high particulate matter air pollution. In recent years, the rapid development and expansion of low-cost air quality sensors by companies such as PurpleAir has enabled an understanding of air pollution at a much higher spatiotemporal resolution compared to traditional monitoring networks. In this study, real-time PM2.5 measurements from 751 PurpleAir sensors operating from June to July in 2019 and 2020 were used to examine the impact of 4th of July fireworks on hourly and daily PM2.5 concentrations at the census tract and county levels in California. American Community Survey (ACS) and CalEnviroScreen 3.0 data were used to identify correlations between PM2.5 measurements and socioeconomic status (SES). A two-step method was implemented to assure the quality of raw PM2.5 sensor data and sensor calibration against co-located reference instruments. The results showed that over 67% and 81% of counties experienced immediate impacts related to fireworks in 2019 and 2020, respectively. Relative to 2019, the peak PM2.5 concentrations on July 4th and 5th 2020 were, on average, over 50% higher in California, likely due to the COVID-19-related increase in the use of household-level fireworks. This increase was most pronounced in southern counties, which tend to have less strict firework-related regulations and a greater use of illegal fireworks. Los Angeles County experienced the highest July 4th daily PM2.5 levels both in 2019 (29.9 µg·m-3) and 2020 (42.6 µg·m-3). Spatial hot spot analyses generally showed these southern counties (e.g., Los Angeles County) to be regional air pollution hotspots, whereas the opposite pattern was seen in the north (e.g., San Francisco). The results also showed PM2.5 peaks that were over two-times higher among communities with lower SES, higher minority group populations, and higher asthma rates. Our findings highlight the important role that policy and enforcement can play in reducing firework-related air pollution and protecting public health, as exemplified by southern California, where policy was more relaxed and air pollution was higher (especially in 2020 when the 4th of July coincided with the COVID-19-lockdown period), and in disadvantaged communities where disparities were greatest.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , Políticas , SARS-CoV-2 , São Francisco
3.
Sensors (Basel) ; 21(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062961

RESUMO

Air pollution is a widespread problem due to its impact on both humans and the environment. Providing decision makers with artificial intelligence based solutions requires to monitor the ambient air quality accurately and in a timely manner, as AI models highly depend on the underlying data used to justify the predictions. Unfortunately, in urban contexts, the hyper-locality of air quality, varying from street to street, makes it difficult to monitor using high-end sensors, as the cost of the amount of sensors needed for such local measurements is too high. In addition, development of pollution dispersion models is challenging. The deployment of a low-cost sensor network allows a more dense cover of a region but at the cost of noisier sensing. This paper describes the development and deployment of a low-cost sensor network, discussing its challenges and applications, and is highly motivated by talks with the local municipality and the exploration of new technologies to improve air quality related services. However, before using data from these sources, calibration procedures are needed to ensure that the quality of the data is at a good level. We describe our steps towards developing calibration models and how they benefit the applications identified as important in the talks with the municipality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Inteligência Artificial , Calibragem , Cidades , Monitoramento Ambiental , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-34064956

RESUMO

BACKGROUND: The coronavirus disease in 2019 (COVID-19) heavily hit Italy, one of Europe's most polluted countries. The extent to which PM pollution contributed to COVID-19 diffusion is needing further clarification. We aimed to investigate the particular matter (PM) pollution and its correlation with COVID-19 incidence across four Italian cities: Milan, Rome, Naples, and Salerno, during the pre-lockdown and lockdown periods. METHODS: We performed a comparative analysis followed by correlation and regression analyses of the daily average PM10, PM2.5 concentrations, and COVID-19 incidence across four cities from 1 January 2020 to 8 April 2020, adjusting for several factors, taking a two-week time lag into account. RESULTS: Milan had significantly higher average daily PM10 and PM2.5 levels than Rome, Naples, and Salerno. Rome, Naples, and Salerno maintained safe PM10 levels. The daily PM2.5 levels exceeded the legislative standards in all cities during the entire period. PM2.5 pollution was related to COVID-19 incidence. The PM2.5 levels and sampling rate were strong predictors of COVID-19 incidence during the pre-lockdown period. The PM2.5 levels, population's age, and density strongly predicted COVID-19 incidence during lockdown. CONCLUSIONS: Italy serves as a noteworthy paradigm illustrating that PM2.5 pollution impacts COVID-19 spread. Even in lockdown, PM2.5 levels negatively impacted COVID-19 incidence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Incidência , Itália/epidemiologia , Material Particulado/análise , Cidade de Roma , SARS-CoV-2
5.
Artigo em Inglês | MEDLINE | ID: mdl-34069502

RESUMO

The COVID-19 pandemic has pointed to the need to increase our knowledge in fields related to human breathing. In the present study, temperature, relative humidity, carbon dioxide (CO2) concentration, and median particle size diameter measurements were taken into account. These parameters were analyzed in a computer classroom with 15 subjects during a normal 90-minute class; all the subjects wore surgical masks. For measurements, Arduino YUN, Arduino UNO, and APS-3321 devices were used. Natural ventilation efficiency was checked in two different ventilation scenarios: only windows open and windows and doors open. The results show how ventilation affects the temperature, CO2 concentration, and median particle diameter size parameters. By contrast, the relative humidity depends more on the outdoor meteorological conditions. Both ventilation scenarios tend to create the same room conditions in terms of temperature, humidity, CO2 concentration, and particle size. Additionally, the evolution of CO2 concentration as well as the particle size distribution along the time was studied. Finally, the particulate matter (PM2.5) was investigated together with particle concentration. Both parameters showed a similar trend during the time of the experiments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Humanos , Pandemias , Tamanho da Partícula , Material Particulado/análise , SARS-CoV-2 , Instituições Acadêmicas , Ventilação
6.
Chemosphere ; 278: 130429, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126680

RESUMO

Eighteen polycyclic aromatic hydrocarbons (PAHs), 24 n-alkanes, 7 hopanes, 2 cholestanes, inorganic ions, elements and carbon fractions were analyzed in real-world source samples of PM2.5 (fine particulate matter) from traffic emissions (gasoline vehicles-TGV, diesel vehicles-TDV, diesel ship-TDS, and heavy oil ships-THOS), coal combustion (coal-fired industrial boilers-CIB, power plants-CPP, and residential stoves-CRS), industrial process emissions (cement industry-IPCI, and steel industry-IPSI), and dust (soil dust-DSD, road dust-DRD, and construction dust-DCD). High molecular weight (sum of five to seven rings) PAHs accounted for higher fractions for TGV (80%) and THS (61%) than for TDV, TDS and coal combustion sources (31%-47%). Hopane ratios (C29αß/C30αß) in coal related sources were mostly higher than 1, whereas that of traffic emissions was lower than 1. The homohopane index [S/(S + R)], which is a useful index for identifying the maturity of fuels, ranked as TGV > THS > TDV and TDS > coal combustion. For n-alkane profiles, coal related sources showed peaks at C16-C19, TDV, TDS and THS showed similar peaks at C17-C25, but peaks for DSD (C30-C32), DRD (C17-C20, C24-25 and C30-C31), CRS (C16-C18 and C28-C29) and TGV (C24-C26) are different. Organic markers were selected which can best differentiate the subtypes within source categories by considering the component levels and variations. Through a comprehensive review, we showed that it is inadvisable to directly use diagnostic ratios for source attribution, although their trends can assist in identifying influential sources.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Carvão Mineral/análise , Poeira/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
7.
Chemosphere ; 278: 130502, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126698

RESUMO

Fine particles i.e., with an aerodynamic diameter lower than 2.5 µm (PM2.5) have potentially the most significant effects on human health compared to other air pollutants. The main objectives of this study were to i) investigate the temporal variations of ambient PM2.5 in Marseille (Southern France), where air pollution is again a major public health issue, and ii) estimate their short-term health effects and annual trend (Mann-Kendall test) over a 10-year period from 2010 to 2019. In Marseille, the main sources of PM2.5 could be related to road traffic, industrial complexes, and oil refineries surrounded the city. The number of premature deaths and hospital admissions attributable to ambient PM2.5 exposure for non-accidental causes, cardiovascular and respiratory diseases were estimated by using in-situ air quality data, city-specific relative risk values and baseline incidence. Despite significant reduction of PM2.5 (- 0.80 µg m-3 year-1), Marseille citizens were exposed to PM2.5 levels exceeding the World Health Organization (WHO) Air Quality Guideline for human health protection (10 µg m-3) during entire study period. Exposure to ambient PM2.5 substantially contributed to mortality and hospital admissions: 871 deaths for non-accidental causes, 515 deaths for cardiovascular diseases, 47 deaths for respiratory diseases, as well as 1034 hospital admissions for cardiovascular diseases and 834 for respiratory diseases were reported between 2010 and 2019. Compliance with WHO annual limit values can result in substantial socio-economic benefits by preventing premature deaths and hospital admissions. For instance, based on the value of a statistical life and average cost of a hospital admission, the associated benefit for healthcare would have been €131 million in 2019. Between 2010 and 2019, the number of PM2.5-related non-accidental deaths decreased by 1.15 per 105 inhabitants annually. Compared to 2010-2019, the restrictive measures associated to COVID-19 pandemic led to a reduction in PM2.5 of 11% in Marseille, with 2.6 PM2.5-related deaths averted in 2020.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Exposição Ambiental/análise , França/epidemiologia , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
8.
BMC Public Health ; 21(1): 1069, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090376

RESUMO

BACKGROUND: Ground-level ozone (O3) pollution is currently the one of the severe environmental problems in China. Although existing studies have quantified the O3-related health impact and economic loss, few have focused on the acute health effects of short-term exposure to O3 and have been limited to a single temporal and spatial dimension. METHODS: Based on the O3 concentration obtained from ground monitoring networks in 334 Chinese cities in 2015-2018, this study used a two-stage exposure parameter weighted Log-linear exposure-response function to estimate the cause-specific mortality for short-term exposure to O3. RESULTS: The value of statistical life (VSL) method that were used to calculate the economic loss at the city-level. Our results show that in China, the national all-cause mortality attributed to O3 was 0.27(95% CI: 0.14-0.55) to 0.39 (95% CI: 0.20-0.67) million across 2015-2018. The estimated economic loss caused by O3 was 387.76 (95% CI: 195.99-904.50) to 594.08 (95% CI: 303.34-1140.65) billion CNY, accounting for 0.52 to 0.69% of total reported GDP. Overall, the O3 attributed health and economic burden has begun to decline in China since 2017. However, highly polluted areas still face severe burden, and undeveloped areas suffer from high GDP losses. CONCLUSIONS: There are substantial health impacts and economic losses related to short-term O3 exposure in China. The government should pay attention to the emerging ozone pollution, and continue to strengthen the intervention in traditional priority areas while solving the pollution problem in non-priority areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Humanos , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise
9.
Medicine (Baltimore) ; 100(19): e25637, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34106591

RESUMO

ABSTRACT: Breast cancer has the highest incidence of cancer among women in Taiwan, and air pollutants have been documented to have multiple adverse effects on human health. There is no relevant data, there has been no research in Taiwan to discuss the relevance of air pollutants to breast cancer, and evidence is sparse and inconclusive.Air quality data used in this study was collected from the 78 air quality monitoring stations situated in 74 municipalities in Taiwan during 2000 to 2011. The daily measurements taken at each monitoring station represented the level of exposure for each participant residing in that zone. The air pollution concentration is partitioned based on the concentration level in Quartile. We calculate the annual average air pollutants concentration (CO, NO, NO2, PM2.5, THC, and CH4) and the long-term average exposure levels of these pollutants until diagnosis of breast cancer, ending the study period for each individual.Patients who were living in areas with the highest air pollutants concentration (Quartile 4) had the most people diagnosed with breast cancer (CO:1.47%, NO:1.41%, NO2:1.63%, PM2.5:0.91%, THC:1.53%, CH4:2.33%). The patients who were exposed to Quartile 1 level of CO, NO, and NO2 concentration were the oldest, and other patients who were exposed to Quartile 4 level of CO, NO, and NO2 concentration were living in the areas of highest urbanization. Participants exposed to Quartile 4 level concentrations of air pollutants were associated with highest hazards ratios for breast cancer incidences.Most participants who were exposed to the high concentration of air pollutants (CO, THC and CH4) had a significantly higher risk of breast cancer. If we can improve air pollution in the environment, we can reduce the incidence of breast cancer and save precious medical resources.


Assuntos
Poluição do Ar/efeitos adversos , Neoplasias da Mama/epidemiologia , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Neoplasias da Mama/diagnóstico , Monitoramento Ambiental , Feminino , Humanos , Pessoa de Meia-Idade , Material Particulado , Estudos Retrospectivos , Taiwan , Adulto Jovem
10.
BMJ Open ; 11(6): e047000, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117046

RESUMO

OBJECTIVE: To determine the association of meteorological factors and air pollutants (MFAPs) with fracture and to estimate the effect size/time lag. DESIGN: This is a nationwide population-based ecological study from 2008 to 2017. SETTING: Eight large metropolitan areas in Korea. PARTICIPANTS: Of 8 093 820 patients with fractures reported in the Korea National Health Insurance database, 2 129 955 were analysed after the data set containing patient data (age, sex and site of fractures) were merged with MFAPs. Data on meteorological factors were obtained from the National Climate Data Center of the Korea Meteorological Administration. Additionally, data on air pollutants (atmospheric particulate matter ≤2.5 µm in diameter (PM2.5), PM10, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide) were obtained from the Air Korea database. PRIMARY AND SECONDARY OUTCOME MEASURES: We hypothesised that there would be an association between MFAPs and the incidence of fracture. A generalised additive model was used while factoring in the non-linear relationship between MFAPs and fractures as well as a time lag ≤7 days. Multivariate analysis was performed. Backward elimination with an Akaike information criterion was used to fit the multivariate model. RESULTS: Overall, in eight urban areas, 2 129 955 patients with fractures were finally analysed. These included 370 344, 187 370, 173 100, 140 358, 246 775, 6501, 228 346, 57 183 and 719 978 patients with hip, knee, shoulder, elbow, wrist, hand, ankle, foot and spine fractures, respectively. Various MFAPs (average temperature, daily rain, wind speed, daily snow and PM2.5) showed significant association with fractures, with positive correlations at time lags 7, 5-7, 5-7, 3-7 and 6-7 days, respectively. CONCLUSIONS: Various MFAPs could affect the occurrence of fractures. The average temperature, daily rain, wind speed, daily snow and PM2.5 were most closely associated with fracture. Thus, improved public awareness on these MFAPs is required for clinical prevention and management of fractures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Humanos , Conceitos Meteorológicos , Material Particulado/efeitos adversos , Material Particulado/análise , República da Coreia/epidemiologia
11.
Chemosphere ; 279: 130757, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134429

RESUMO

The use of biological reactors to remove volatile organic compounds (VOCs) from waste gas streams has proven to be a cost-effective and sustainable technique. However, hydrophobic VOCs exhibit low removal, mainly due to their limited bioavailability for the microorganisms. Different strategies to enhance their removal in bio(trickling)filters have been developed with promising results. In this review, two strategies, i.e. the use of surfactants and hydrophilic compounds, for enhancing the removal of hydrophobic VOCs in bio(trickling)filters are discussed. The complexity of the processes and mechanisms behind both strategies are addressed to fully understand and exploit their potential and rapid implementation at full-scale. Mass transfer and biological aspects are discussed for each strategy, and an in-depth comparison between studies carried out over the last two decades has been performed. This review identifies additional strategies to further improve the application of (bio)surfactants and/or hydrophilic VOCs, and it provides recommendations for future studies in this field.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Reatores Biológicos , Filtração , Interações Hidrofóbicas e Hidrofílicas , Tensoativos , Compostos Orgânicos Voláteis/análise
12.
Chemosphere ; 279: 130919, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134441

RESUMO

PM2.5 pollution is a widespread environmental and health problem, particularly in China. Besides leading to well-known diseases in the respiratory system, PM2.5 can also alter immune function to induce or aggravate allergic diseases. To determine whether there are temporal and spatial differences in the allergic responses to PM2.5, monthly samples were collected from four regions (urban, industrial, suburban, and rural areas) through a whole year in Nanjing city, China. Inorganic chemical components (metals and water-soluble ions) of PM2.5 were analyzed, and the rat basophil cells (RBL-2H3) exposed to PM2.5 were assessed through quantitative measures of degranulation (ß-hex and histamine) and pro-inflammation cytokine (IL-4 and TNF-α) expression. The highest levels of ß-hex were measured in winter and spring PM2.5 from urban and industrial areas, or autumn PM2.5 from suburban and rural areas. With respect to histamine, autumn PM2.5 samples were most potent irrespective of the location. Autumn and winter PM2.5 induced higher levels of IL-4 than spring and summer samples. However, spring and autumn PM2.5 caused higher levels of TNF-α. The concentrations of water-soluble ions (NH4+, K+ and Cl-), as well as heavy metals (Pb and Cr), were directly and statistically correlated to the inflammation observed in vitro. In general, the differences between regional and seasonal PM2.5 in stimulating cell degranulation may depend on endotoxin and airborne allergen content of PM2.5. The heavy metals and water-soluble ions in PM2.5 were mostly anthropogenic, which increased the particles' mass-based cellular inflammatory potential, therefore, their health risks, e.g. from vehicular exhaust, coal, and biomass combustion, cannot be ignored.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Material Particulado/toxicidade , Ratos , Estações do Ano
13.
Environ Monit Assess ; 193(7): 419, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120251

RESUMO

Elevated exposure to ambient manganese (Mn) is associated with adverse health outcomes. In Marietta, Ohio, the primary source of ambient Mn exposure is from the longest operating ferromanganese refinery in North America. In this study, the US EPA air dispersion model, AERMOD, was used to estimate ambient air Mn levels near the refinery for the years 2008-2013. Modeled air Mn concentrations for 2009-2010 were compared to concentrations obtained from a stationary air sampler. Census block population data were used to estimate population sizes exposed to an annual average air Mn > 50 ng/m3, the US EPA guideline for chronic exposure, for each year. Associations between modeled air Mn, measured soil Mn, and measured indoor dust Mn in the modeled area were also examined. Median modeled air Mn concentrations ranged from 6.3 to 43 ng/m3 across the years. From 12,000-56,000 individuals, including over 2000 children aged 0-14 years, were exposed to respirable annual average ambient air Mn levels exceeding 50 ng/m3 in five of the six years. For 2009-2010, the median modeled air Mn concentration at the stationary site was 20 ng/m3, compared to 18 ng/m3 measured with the stationary air sampler. All model performance measures for monthly modeled concentrations compared to measured concentrations were within acceptable limits. The study shows that AERMOD modeling of ambient air Mn is a viable method for estimating exposure from refinery emissions and that the Marietta area population was at times exposed to Mn levels that exceeded US EPA guidelines.


Assuntos
Poluentes Atmosféricos , Manganês , Poluentes Atmosféricos/análise , Criança , Monitoramento Ambiental , Humanos , Ferro , Manganês/análise , Ohio
14.
Sci Total Environ ; 784: 147018, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088028

RESUMO

Fine particulate matter (PM2.5) is able to pass through the respiratory barrier to enter the circulatory system and can consequently spread to the whole body to cause toxicity. Although our previous studies have revealed significantly altered levels of phosphorylcholine-containing lipids in the lungs of rats after chronic inhalation exposure to PM2.5, the effects of PM2.5 on phosphorylcholine-containing lipids in the extrapulmonary organs have not yet been elucidated. In this study, we examined the lipid effects of chronic PM2.5 exposure on various organs and serum by using a rat inhalation model followed by a mass spectrometry-based lipidomic approach. Male Sprague-Dawley rats were continuously exposed at the whole body level to nonfiltered and nonconcentrated ambient air from the outside environment of Taipei city for 8 months, while the control rats inhaled filtered air simultaneously. After exposure, serum samples and various organs, including the testis, pancreas, heart, liver, kidney, spleen, and epididymis, were collected for lipid extraction and analysis to examine the changes in phosphorylcholine-containing lipids after exposure. The results from the partial least squares discriminant analysis models demonstrated that the lipid profiles in the PM2.5 exposure group were different from those in the control group in the rat testis, pancreas, heart, liver, kidney and serum. The greatest PM2.5-induced lipid effects were observed in the testes. Decreased lyso-phosphatidylcholines (PCs) as well as increased unsaturated diacyl-PCs and sphingomyelins in the testes may be related to maintaining the membrane integrity of spermatozoa, antioxidation, and cell signaling. Additionally, our results showed that decreased PC(16:0/18:1) was observed in both the serum and testes. In conclusion, exposure to chronic environmental concentrations of PM2.5 caused lipid perturbation, especially in the testes of rats. This study highlighted the susceptibility of the testes and suggested possible molecular events for future study.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Cidades , Lipídeos/análise , Masculino , Material Particulado/análise , Material Particulado/toxicidade , Ratos , Ratos Sprague-Dawley
15.
Sci Total Environ ; 784: 147106, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088062

RESUMO

Fine particle matter (PM2.5) is recognized as atrial fibrillation (AF) risk factor, especially for older adults. However, studies on the relationship between PM2.5 and AF were inconsistent. Herein, we present a systematic review to further assess the correlation between PM2.5 and AF in older adults (average age > 50 years old). A comprehensive search was conducted with the keywords in PubMed (675 records), Web of Science (1130 records), Embase (82 records), and the Cochrane Library (42 records). Using Stata12.0 software to test the heterogeneity between studies, and select the corresponding model to calculate the comprehensive effect value, odds ratio (OR, odds ratio), the pooled %-change (percentage change) and its 95% confidence interval (CL, confidence interval). A total of 16 observational studies were included, involving 10,580,394 participants, the results showed that PM2.5 had an adverse effects on AF in older adults. An association was found between exposure to PM2.5 (per 10 µg/m3 increase) and AF in older adults, with the corresponding pooled OR (1.11, 95% CI: 1.03-1.19) and pooled %-change (1.01%, 95% CI: 0.14%-1.88%). Our study indicated that PM2.5 exposure was significantly related to increased incidence of AF in older adults. Both the pooled OR and %-change value were higher in areas with higher levels of PM2.5(≥25 µg/m3).


Assuntos
Poluentes Atmosféricos , Fibrilação Atrial , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/epidemiologia , Humanos , Incidência , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Material Particulado/análise , Fatores de Risco
16.
Sci Total Environ ; 783: 147063, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088128

RESUMO

Given the high ozone concentrations observed in the Mediterranean region during summer, it is crucial to extend our knowledge on the potential ozone impacts on forest health with in situ studies, especially to protect typical endemic forests of the Mediterranean basin. This study is focused on ozone measurements and exposures over the Eastern Adriatic coast and on the calculation of different O3 metrics, i.e., accumulated exposure AOT40 (AOT40dir, AOT40ICP, AOT40pheno) and stomatal O3 fluxes with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (PODY, with Y = 0, 1, 2 nmol O3 m-2 s-1) used for forest protection. Finally, we provide an assessment of the relationships between the forest response indicators and environmental variables. Passive ozone measurements and monitoring of forest health indicators, namely growth and crown defoliation, were performed for Quercus ilex, Quercus pubescens, Pinus halepensis, and Pinus nigra forests. Results showed that, for all the analysed species, ozone levels were close to reached the upper plausibility limits for passive monitoring of air quality at forest sites (100 ppb), with the highest values found on P. halepensis in the summer period. O3 metrics based on exposure were found to be higher in pine plots than in oak plots, while the highest values of uptake-based metrics were found on P. nigra. Regarding relationships between environmental variables and forest-health response indicators, the crown defoliation was significantly correlated with the soil water content at various depth while the tree growth was correlated with the different O3 metrics. The most important predictors affecting tree growth of Q. pubescens and Q. ilex were AOT40pheno and AOT40dir and POD0 for P. nigra.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Ecossistema , Florestas , Região do Mediterrâneo , Ozônio/análise , Folhas de Planta/química , Árvores
17.
Sci Total Environ ; 783: 146988, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088142

RESUMO

p-Dichlorobenzene (DCB) and naphthalene (NP) used as moth repellents in indoor environments are suspected to be carcinogenic. To evaluate their adverse effects on health with chronic exposure in the general population, especially children, we need to know their amounts absorbed by the body and the relationships between their amounts and air quality in residences. At present, little is known worldwide about them. This study examined the daily intakes of DCB and NP by Japanese children via all exposure pathways and the contribution of indoor air quality to the intakes. First-morning void urine samples from the subjects aged 6 to 15 years and air samples in their bedrooms were collected. Airborne NP and DCB and their urinary metabolites were measured. Significant correlations were detected between their airborne concentrations and the urinary excretion amounts of their corresponding metabolites. The absorption amounts of DCB and NP by inhalation of the children while at home were calculated to be 26 and 2.0 ng/kg b.w./h, respectively, as median values. The daily intake was estimated to be 2.4 and 0.90 µg/kg b.w./d (median), respectively. The fractions (median) of inhalation absorption amounts to overall absorption amounts for DCB and NP were 30% and 5%, respectively. In children living in residences where the indoor air concentrations of these compounds were more than half the level of each guideline value for indoor air quality, the main exposure route for their absorption was considered to be inhalation while at home. The indoor concentrations of DCB exceeded the lifetime excess cancer risk level of 10-4 in 22% of the residences and 10-3 in 9% of them. Our findings indicate the need to further reduce airborne concentrations of DCB in Japanese residences to prevent its adverse effects on the health of Japanese children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Mariposas , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Animais , Criança , Clorobenzenos , Humanos , Exposição por Inalação , Japão , Naftalenos
18.
Sci Total Environ ; 783: 147060, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088160

RESUMO

BACKGROUND: Compared with mortality and hospital admission, emergency ambulance calls (EACs) could be a more accurate outcome indicator to reflect the health effects of short-term air pollution exposure. However, such studies have been scarce, especially on a multicity scale in China. METHODS: We estimated the associations of different diameter particles [i.e., inhalable particulate matter (PM10), coarse particulate matter (PMc), and fine particulate matter (PM2.5)] with EACs for all-cause, cardiovascular, and respiratory diseases in seven Chinese cities. We collected data on EACs and air pollution from 2014 to 2019. We used generalized additive models and random-effects meta-analysis to examine the city-specific and overall associations. Stratified analyses were conducted to examine the effect modifications of gender, age, and season. RESULTS: Significant associations of PM10 and PM2.5 with EACs were observed, while the PMc associations were positive but not statistically significant in most analyses. Specifically, each 10 µg/m3 increase in 2-day moving average concentration of PM10 was associated with a 0.25% [95% confidence interval (CI): 0.04%, 0.47%] increase in all-cause EACs, 0.13% (95% CI: -0.01%, 0.26%) in cardiovascular EACs, and 0.35% (95% CI: 0.04%, 0.66%) in respiratory EACs. The corresponding increases in daily EACs for PM2.5 were 0.30% (95% CI, 0.03%, 0.57%), 0.13% (95% CI, -0.07%, 0.33%), and 0.46% (95% CI, 0.01%, 0.92%). Season of the year also modifies the association between particulate matter pollution and EACs. CONCLUSIONS: Short-term exposure to PM10 and PM2.5 were positively associated with daily all-cause and respiratory-related EACs. The associations were stronger during warm season than cold season. Our findings suggest that the most harmful fraction of particulate matter pollution is PM2.5, which has important implications for current air quality guidelines and regulations in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ambulâncias , China , Cidades , Exposição Ambiental/análise , Material Particulado/análise
19.
Environ Monit Assess ; 193(6): 375, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061237

RESUMO

Traditionally, the equipment used to measure air pollution is expensive and placed around cities or in mobile laboratories. It might only represent a certain area and not the entire city due to the locations and limited number of monitoring stations. Nowadays, a mobile sensing is becoming an alternative option to monitor air quality in urban environment due to its ease of use, high flexibility, and low price. This paper develops a vehicular-based mobile monitoring system for real time air quality sensing and visualization across large cities with high spatial resolution. The commercially available low-cost CO, NO[Formula: see text], NH[Formula: see text] O[Formula: see text], CH[Formula: see text], SO[Formula: see text], PM[Formula: see text], temperature and humidity sensors along with the microcontroller and GPS were integrated in a sensing device installed on the roof of taxi and sport utility vehicle (SUV). The developed device was calibrated through a reference monitoring station and validated through field measurement. We first split the entire city with a uniform grid discretization. We then propose a data processing methodology based on machine learning algorithms for generating 250 representative data set from 286 million data which is collected using the vehicular based mobile sensors. Next we present the representativeness of the data set by comparison of stationary data and mobile data. We also describe the analytical results and spatial distribution with high spatial resolution throughout the city. In addition, the collected mobile sensor data is also used to show that the significant differences and spatial variability in mean levels per street. Finally, we conclude that the proposed mobile monitoring system using high spatial resolution can effectively map the air quality in metropolitan environment and provide detail about the spatial variability that cannot be done with stationary monitoring systems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Material Particulado/análise
20.
Environ Monit Assess ; 193(6): 374, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061261

RESUMO

The objective of this paper is to provide an estimation of air emissions (CO2, NOx, SOx and PM) released by port assistant vessels at port level. The methodology is based on the "full bottom-up" approach and starts by assessing the fuel consumed by each tug ship during its individual port exercises (movements during docking and undocking of merchant vessels). The scenario selected for the analysis and measurements is one of the most significant Port of the Mediterranean Sea, where seven auxiliary vessels were monitored for 407 calls. The analysis also gathers real-time data from the Automatic ship Identification System (AIS), tug ship particulars from IHS sea-web database ( www.maritime.ihs.com ) and emission factors established by the International Maritime Organization (IMO). The research findings show that the key indicators are inventory emissions per dock, types of towed vessels and docking and undocking manoeuvres. This paper also presents an action protocol for the assessment of the inventory of emissions produced by the main engines of tug ships operating inside ports, which can be extrapolated to other ports operating with tug ships of the same technical characteristics. Evaluating, therefore, the amounts emitted of nitrogen oxides, sulphur oxides, carbon dioxide and particulate matter.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Mar Mediterrâneo , Material Particulado/análise , Navios , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...