Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.657
Filtrar
1.
BMC Public Health ; 20(1): 1524, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032561

RESUMO

BACKGROUND: Arrhythmia is a common cardiovascular event that is associated with increased cardiovascular health risks. Previous studies that have explored the association between air pollution and arrhythmia have obtained inconsistent results, and the association between the two in China is unclear. METHODS: We collected daily data on air pollutants and meteorological factors from 1st January 2014 to 31st December 2016, along with daily outpatient visits for arrhythmia in Hangzhou, China. We used a quasi-Poisson regression along with a distributed lag nonlinear model to study the association between air pollution and arrhythmia morbidity. RESULTS: The results of the single-pollutant model showed that each increase of 10 µg/m3 of Fine particulate matter (PM2.5), Coarse particulate matter (PM10), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), and Ozone (O3) resulted in increases of 0.6% (- 0.9, 2.2%), 0.7% (- 0.4, 1.7%), 11.9% (4.5, 19.9%), 6.7% (3.6, 9.9%), and - 0.9% (- 2.9, 1.2%), respectively, in outpatient visits for arrhythmia; each increase of 1 mg/m3 increase of carbon monoxide (CO) resulted in increase of 11.3% (- 5.9, 31.6%) in arrhythmia. The short-term effects of air pollution on arrhythmia lasted 3 days, and the most harmful effects were observed on the same day that the pollution occurred. Results of the subgroup analyses showed that SO2 and NO2 affected both men and women, but differences between the sexes were not statistically significant. The effect of SO2 on the middle-aged population was statistically significant. The effect of NO2 was significant in both the young and middle-aged population, and no significant difference was found between them. Significant effects of air pollution on arrhythmia were only detected in the cold season. The results of the two-pollutants model and the single-pollutant model were similar. CONCLUSIONS: SO2 and NO2 may induce arrhythmia, and the harmful effects are primarily observed in the cold season. There is no evidence of PM2.5, PM10, CO and O3 increasing arrhythmia risk. Special attention should be given to sensitive populations during the high-risk period.


Assuntos
Poluição do Ar/efeitos adversos , Assistência Ambulatorial/estatística & dados numéricos , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/terapia , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estações do Ano
3.
Nat Commun ; 11(1): 5172, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057164

RESUMO

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/economia , Betacoronavirus , Dióxido de Carbono/economia , Infecções por Coronavirus/economia , Infecções por Coronavirus/prevenção & controle , Monitoramento Ambiental , Combustíveis Fósseis/análise , Combustíveis Fósseis/economia , Humanos , Indústrias/economia , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/economia , Pandemias/economia , Pandemias/prevenção & controle , Pneumonia Viral/economia , Pneumonia Viral/prevenção & controle
4.
Chemosphere ; 258: 127420, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947658

RESUMO

To reduce nitrogen oxides (NOx) emissions in the combustion process, the structure and parameters of a 4500 t d-1 precalciner were optimized. The precalciner model was established using ANSYS FLUENT software (version 14.5). The effects of raw material angle, tertiary air velocity, and tertiary air temperature on NO concentration were studied. A Box-Behnken design (BBD) with three factors was employed to establish a two-order response model based on response surface methodology. The results showed that the simulated total NO concentration at outlet was 526 ppm. Compared to the monitoring data of 496 ppm, the error was within an acceptable range. The raw material angle primarily affected the generated location and rate of NO. The NO concentration at the precalciner outlet increased from 124 ppm to 220 ppm, when the tertiary air velocity increased from 22 m s-1 to 38 m s-1. When the temperature was 1123 K, the NO concentration rose to the highest value of 211 ppm. The interaction between the tertiary air velocity and tertiary air temperature was insignificant, while the other interactions were significant (P < 0.05). Finally, a new response surface model was obtained through optimization, which can accurately predict NO concentration. The optimum conditions for low NOx combustion were a raw material angle of 70°, tertiary air velocity of 26 m s-1, and tertiary air temperature of 1280 K.


Assuntos
Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Temperatura
5.
Chemosphere ; 258: 127312, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947663

RESUMO

As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were characterized for their chemical compositions, including mercury (HgPM), as well as organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-associated organic contaminants. Results showed that average HgPM concentration over the entire sampling period was found to be 13.4 ± 12 pg m-3. Seasonal variation in the HgPM concentration was observed with lower values in spring and summer and higher values in winter and autumn due to the variation of meteorological conditions together with the emission sources. Principal component analysis suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic HgPM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts of atmospheric PM from Bizerte city (388.3-1543.6 fg m-3), and shows significant positive correlations with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants, with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and utility of the use of bioassays in risk assessment of complex environmental samples.


Assuntos
Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Agricultura , Poluentes Atmosféricos/análise , Cidades , Clima , Dioxinas/análise , Humanos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Receptores de Hidrocarboneto Arílico , Estações do Ano , Tunísia
6.
Chemosphere ; 258: 127333, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947666

RESUMO

Increasing use of current-use pesticides (CUPs) in Africa raises environmental and public health concerns. But there is a large uncertainty about their occurrence and the composition of pesticide mixtures on this continent. This paper investigates the presence of 27 CUPs in air across 20 sampling sites in Africa. 166 passive air samples, consisting of polyurethane foam (PUF), were collected in 12 African countries between 2010 and 2018. Samples were extracted with methanol and analyzed via high-performance liquid chromatography coupled with tandem mass spectrometry. The detection frequencies of CUPs per site were compared to land use patterns and sampling years, while their similarities were assessed using hierarchical cluster analysis. Overall, 24 CUPs were detected at least once. In 93% of all samples, at least one CUP was detected, while 78% of the samples had mixtures of two or more CUPs (median 3, interquartile range 5). Atrazine and chlorpyrifos were detected in 19 out of 20 sampling sites. Carbaryl, metazachlor, simazine, tebuconazole and terbuthylazine had the highest detection frequencies at sampling sites dominated by croplands. Across all the sampling years, 16 CUPs were present. Seven CUPs were newly detected from 2016 onwards (azinfos-methyl, dimetachlor, chlorsulfuron, chlortoluron, isoproturon, prochloraz and pyrazon), while metamitron was only present before 2012. Sites within a radius of about 200 km showed similarities in detected CUP mixtures across all samples. Our results show the presence of CUP mixtures across multiple agricultural and urban locations in Africa which requires further investigation of related environmental and human health risks.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Praguicidas/análise , África , Agricultura , Atrazina/análise , Clorpirifos/análise , Humanos , Poliuretanos
7.
Chemosphere ; 258: 127310, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947673

RESUMO

We characterized the aerosol composition and sources of particulate matter (PM) in Sanmenxia, a polluted city located in the Fen-Wei Plain region of Central China. The PM2.5 concentration decreased by 18% from 72 µg m-3 in 2014 to 59 µg m-3 in 2019. All chemical species presented pronounced seasonal variations, with their highest concentrations in winter due to enhanced emissions and the frequent stagnant meteorological conditions. Nitrate was the major fraction of PM2.5 during all seasons (35-41%) except summer (25%), while sulfate was a dominant species in summer (29%) compared to other seasons (16-18%) from July 2018 to June 2019. The detailed analysis of a wintertime severe haze episode that lasted for approximately half a month demonstrated that secondary aerosols, including secondary organic aerosol, sulfate, nitrate, and ammonium, contributed 89% to non-refractory PM1 (NR-PM1), indicating the remarkable role of secondary aerosol formation in air pollution in Sanmenxia. Positive matrix factorization analysis further showed considerably enhanced low-volatility oxygenated organic aerosol (OA) and hydrocarbon-like OA during severe haze episodes, while significant contributions in semi-volatile oxygenated OA and coal combustion OA during clean periods. Severe pollution events in the city were generally associated with air masses from the southwest, and we also found that aerosol species, especially secondary aerosol species, showed distinct forenoon increases that were caused by the subsidence of air pollutants aloft. Our results highlight that future air quality improvement would benefit substantially from a more efficient control of gaseous precursors, particularly the NOx emissions from industry and vehicle emissions.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , China , Cidades , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluição Ambiental/análise , Hidrocarbonetos/química , Nitratos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
8.
Chemosphere ; 258: 127367, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947676

RESUMO

Due to their important roles in salt-producing acid-base reactions, new particle formation (NPF), and as precursors in secondary organic aerosol (SOA) producing reactions, the atmospheric concentrations of particulate volatile amines (dimethylamine (DMA), ethylamine, diethylamine (DEA), propylamine, and butylamine) at Seoul were analyzed and evaluated. To quantify the presence of volatile amines in particulate matter with aerodynamic diameters less than or equal to a nominal 2.5 µm (PM2.5), an efficient and rapid analytical method based on in-matrix ethyl chloroformate (ECF) derivatization followed by headspace solid-phase microextraction (HS-SPME) was developed and validated using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. The annual mean concentration of the total 5 target amines was 5.56±2.76 ng/m3 and the seasonal difference was small. The concentrations of particulate amines measured in this study were lower than those observed in Zongludak, Turkey, Nanjing, China, and Jeju, Korea but slightly higher than that reported in Kobe, Japan. The concentrations of the nitrosamines (nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA)), and of the nitramines (dimethylnitramine (DMN) and diethylnitramine (DEN)) measured along with those of the target amines were used in a simple linear regression analysis. It indicates the contribution of DMA to the formation of NDMA in all seasons (except the fall) and DEA to the formation of NDEA in the summer, while DMA and DEA did not significantly contribute to the formation of nitramines.


Assuntos
Poluentes Atmosféricos/análise , Aminas/análise , Monitoramento Ambiental , China , Dietilnitrosamina , Dimetilaminas , Dimetilnitrosamina/análise , Etilaminas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitrosaminas/análise , Material Particulado/análise , República da Coreia , Seul , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem
9.
Chemosphere ; 254: 126815, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957269

RESUMO

A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene (ISOP) oxidation was applied to study the spatial distribution of SOA, its components and precursors in Shaanxi in July of 2013. The emissions of biogenic volatile organic compounds (BVOCs) were generated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN), of which ISOP and monoterpene (MONO) were the top two, with 1.73 × 109 mol and 1.82 × 108 mol, respectively. The spatial distribution of BVOCs emission was significantly correlated with the vegetation coverage distribution. ISOP and its intermediate semi-volatile gases were up to ∼7.0 and ∼1.4 ppb respectively in the ambient. SOA was generally 2-6 µg/m3, of which biogenic SOA (BSOA) accounted for as high as 84% on average. There were three main BVOCs Precursors including ISOP (58%) and MONO (8%) emit in the studied domain, and ISOP (9%) transported. The Guanzhong Plain had the highest BSOA concentrations of 3-5 µg/m3, and the North Shaanxi had the lowest of 2-3 µg/m3. More than half of BSOA was due to reactive surface uptake of ISOP epoxide (0.2-0.7 µg/m3, ∼19%), glyoxal (GLY) (0.2-0.5 µg/m3, ∼11%) and methylglyoxal (MGLY) (0.4-1.4 µg/m3, ∼32%), while the remaining was due to the traditional equilibrium partitioning of semi-volatile components (0.1-1.2 µg/m3, ∼25%) and oligomerization (0.2-0.4 µg/m3, ∼12%). Overall, SOA formed from ISOP contributed 1-3 µg/m3 (∼80%) to BSOA.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar , Butadienos , China , Hemiterpenos , Monoterpenos/análise , Compostos Orgânicos Voláteis/análise
10.
Chemosphere ; 254: 126822, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957270

RESUMO

Atmosphere contamination management is one of the most important features in pollution risk management. The worldwide rise in tourism increases apprehension about its probable destructive conservation influence on various aspects of global conservation. One of the principal dangers increased by tourism-based modes of travel are nanoparticles (NPs) containing potentially hazardous elements (PHEs) contamination. One example of this is island destination of Lanzarote, in Spain's Canary Islands in which we examined contamination of the local atmosphere, water and soil. Important NPs containing PHEs, (e.g. arsenic, chromium, lead, and mercury), were found in this locale. It is reasonable to assume that this pollution poses an increased environmental danger to the local biome(s). Modes of transport (i.e. by car, airplane, bus) were shown to be an important contributor to this localized contamination as demonstrated by particulate matter (PM) readings collected near the island's airport. If no measures are taken to reduce vehicle and aircraft traffic, the tendency is to increase environmental degradation will continue unabated. As this particular area of Lanzarote is also one of wine production, increased pollution has the potential for negative impacts on the region's economy.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Nanopartículas/análise , Material Particulado/análise , Emissões de Veículos/análise , Aeronaves , Aeroportos , Atmosfera , Ecossistema , Poluição Ambiental , Geologia , Ilhas , Solo , Espanha
11.
Artigo em Inglês | MEDLINE | ID: mdl-32867037

RESUMO

Seoul, the most populous city in South Korea, has been practicing social distancing to slow down the spread of coronavirus disease 2019 (COVID-19). Fine particulate matter (PM2.5) and other air pollutants measured in Seoul over the two 30 day periods before and after the start of social distancing are analyzed to assess the change in air quality during the period of social distancing. The 30 day mean PM2.5 concentration decreased by 10.4% in 2020, which is contrasted with an average increase of 23.7% over the corresponding periods in the previous 5 years. The PM2.5 concentration decrease was city-wide and more prominent during daytime than at nighttime. The concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) decreased by 16.9% and 16.4%, respectively. These results show that social distancing, a weaker forcing toward reduced human activity than a strict lockdown, can help lower pollutant emissions. At the same time, synoptic conditions and the decrease in aerosol optical depth over the regions to the west of Seoul support that the change in Seoul's air quality during the COVID-19 social distancing can be interpreted as having been affected by reductions in the long-range transport of air pollutants as well as local emission reductions.


Assuntos
Poluição do Ar/análise , Infecções por Coronavirus/epidemiologia , Monitoramento Ambiental , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/análise , Betacoronavirus , Humanos , Pandemias , Material Particulado/análise , Seul
12.
Artigo em Inglês | MEDLINE | ID: mdl-32872261

RESUMO

Due to the suspension of traffic mobility and industrial activities during the COVID-19, particulate matter (PM) pollution has decreased in China. However, rarely have research studies discussed the spatiotemporal pattern of this change and related influencing factors at city-scale across the nation. In this research, the clustering patterns of the decline rates of PM2.5 and PM10 during the period from 20 January to 8 April in 2020, compared with the same period of 2019, were investigated using spatial autocorrelation analysis. Four meteorological factors and two socioeconomic factors, i.e., the decline of intra-city mobility intensity (dIMI) representing the effect of traffic mobility and the decline rates of the secondary industrial output values (drSIOV), were adopted in the regression analysis. Then, multi-scale geographically weighted regression (MGWR), a model allowing the particular processing scale for each independent variable, was applied for investigating the relationship between PM pollution reductions and influencing factors. For comparison, ordinary least square (OLS) regression and the classic geographically weighted regression (GWR) were also performed. The research found that there were 16% and 20% reduction of PM2.5 and PM10 concentration across China and significant PM pollution mitigation in central, east, and south regions of China. As for the regression analysis results, MGWR outperformed the other two models, with R2 of 0.711 and 0.732 for PM2.5 and PM10, respectively. The results of MGWR revealed that the two socioeconomic factors had more significant impacts than meteorological factors. It showed that the reduction of traffic mobility caused more relative declines of PM2.5 in east China (e.g., cities in Jiangsu), while it caused more relative declines of PM10 in central China (e.g., cities in Henan). The reduction of industrial operation had a strong relationship with the PM10 drop in northeast China. The results are crucial for understanding how the decline pattern of PM pollution varied spatially during the COVID-19 outbreak, and it also provides a good reference for air pollution control in the future.


Assuntos
Poluentes Atmosféricos/análise , Infecções por Coronavirus/epidemiologia , Monitoramento Ambiental , Material Particulado/análise , Pneumonia Viral/epidemiologia , Poluição do Ar/análise , Betacoronavirus , China , Cidades , Humanos , Pandemias
13.
PLoS One ; 15(9): e0237863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986700

RESUMO

The green development of coastal urban agglomerations, which are strategic core areas of national economic growth in China, has become a major focus of both academics and government agencies. In this paper, China's coastal urban agglomeration is taken as the research area, aiming at the serious air pollution problem of coastal urban agglomeration, geographic information system (ArcGIS10.2) spatial analysis and the spatial Dubin model were applied to National Aeronautics and Space Administration atmospheric remote sensing image inversion fine particulate matter (PM2.5) data from 2010-2016 to reveal the temporal and spatial evolution characteristics and Influence mechanism of PM2.5 in China's coastal urban agglomerations, with a view to providing a reference value for coordinating air pollution in the coastal cities of the world. From 2010-2016, the PM2.5 concentration in China's coastal urban agglomerations decreased as a whole, and large spatial differences in PM2.5 concentration were observed in China's coastal urban agglomerations; the core high-pollution areas were the Beijing-Tianjin-Hebei, Shandong Peninsula, and Yangtze River Delta urban agglomerations. Large spatial differences in PM2.5 concentration were also observed within individual urban agglomerations, with higher PM2.5 concentrations found in the northern parts of the urban agglomerations. Significant spatial autocorrelation and spatial heterogeneity were observed among PM2.5-polluted cities in China's coastal urban agglomerations. The northern coastal urban agglomerations formed a relatively stable and continuous high-pollution zone. The spatial Dubin model was used to analyze the driving factors of PM2.5 pollution in coastal urban agglomerations. Together, meteorological, socioeconomic, pollution source, and ecological factors affected the spatial characteristics of PM2.5 pollution during the study period, and the overall effect was a mixed effect with significant spatial variation. Among them, meteorological factors were the greatest driver of PM2.5 pollution. In the short term, the rapid increase in population density, industrial emissions, industrial energy consumption, and total traffic emissions were the important driving factors of PM2.5 pollution in the coastal urban agglomerations of China.


Assuntos
Poluição do Ar/análise , Ecossistema , Sistemas de Informação Geográfica , Urbanização , Poluentes Atmosféricos/análise , Algoritmos , China , Análise Fatorial , Produto Interno Bruto , Modelos Teóricos , Tamanho da Partícula , Material Particulado/análise , Fatores de Tempo
14.
Environ Monit Assess ; 192(10): 646, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32939661

RESUMO

We investigated the associations between the daily variations of coarse particulate matter (PM10) and/or sulfur dioxide (SO2) and hospital admissions for asthma and/or chronic obstructive pulmonary disease (COPD) diseases in Kirsehir, Center of Anatolia of Turkey. We analyzed the poison generalized linear model (GLM) to analyze the association between ambient air pollutants such as PM10 and SO2 and asthma and/or COPD admissions. We investigated single-lag days and multi-lag days for the risk increase in asthma, COPD, asthma, and/or COPD hospital admissions PM10, SO2, and PM10 with SO2 per 10 µg/m3. In single-lag day model a 10 µg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.027 (95% CI:1.022-1.033) and 1.069 (95% CI:1.062, 1.077) for asthma. A 10 µg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.029 (95% CI:1.022-1.035) and 1.065 (95% CI:1.056, 1.075) for COPD. A 10 µg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.028 (95% CI:1.024-1.032) and 1.068 (95% CI:1.062, 1.074) for asthma and/or COPD. It was found that some lag structures were related with PM10 and SO2. Significant lags were detected in some lag structures from the previous first day until the previous eighth day (lag 1 to lag 7) in the asthma, COPD, and asthma and/or COPD hospital admissions in the model created with PM10 with SO2 both in the single-lag day model and in the multi-lag day model. Our study that used GLM in time series analysis showed that PM10 and/or SO2 short-term exposure in single-lag day and multi-lag day models was related with increased asthma, COPD, and asthma and/or COPD hospital admissions in the city between 2016 and 2019 until the previous-eighth day.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Asma , Doença Pulmonar Obstrutiva Crônica , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Dióxido de Enxofre/análise , Turquia
16.
Georgian Med News ; (304-305): 117-121, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32965261

RESUMO

The state of environmental hygiene of the urban dwelling environment plays a great role in the population health formation. The atmospheric air pollutants are among the principal factors affecting the immune system and provoking the development of a whole series of diseases. A wide distribution in a risk assessment system has gained a bio-monitoring methodology-based analysis for detecting toxic substances in human bio-substrates. For this purpose, a hair microelement analysis was conducted by an X-ray-fluorescence spectrometry technique to detect the content of lead in the bodies of children living in Tbilisi City under different conditions of environmental hygiene (according to the atmospheric air pollution degree). The average content of lead in the body of the children under study (according to hair analysis results) was found to be less than the maximum allowable concentration (MAC). At that, the content of lead in the children of the experimental group is 2,6-times more as compared with the control group, which is statistically reliable (Р<0,005). A strong dependence of the body lead content dynamics on the state of air pollution with toxic substances in the dwelling areas of the children under study was found. The obtained results should be considered as one of the grounds for developing complex measures aimed at improving the large city environment, in particular the state of its atmospheric air.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Criança , Cidades , Monitoramento Ambiental , Poluição Ambiental , Humanos
17.
Environ Monit Assess ; 192(10): 655, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968858

RESUMO

It is known that some persistent organic pollutants (POPs) are used worldwide, and these pollutants are dangerous for human health. However, there are still countries where measurements of these pollutants have not been adequately measured. Although many studies have been published for determining the concentrations of POPs in Turkey, there are limited studies in Latin American countries like Peru. For this reason, it is essential both to conduct a study in Peru and to compare the study with another country. This study is aimed at determining the atmospheric POPs such as polycyclic aromatic hydrocarbon (PAH), organochlorine pesticide (OCP), and polychlorinated biphenyl (PCB) concentrations using passive air samplers in Yurimaguas (Peru) and Bursa (Turkey). Molecular diagnosis ratios and ring distribution methods were used to determine the sources of PAHs. According to these methods, coal and biomass combustions were among the primary sources of PAHs in Peru, while petrogenic and petroleum were the primary sources of PAHs in Turkey. Then, α-HCH/γ-HCH and ß-/(α+γ)-HCH ratios were used to determine the sources of OCPs. According to the α-HCH/γ-HCH ratios, the primary sources of OCPs in both countries were lindane. Similarly, according to ß-/(α+γ)-HCH ratios, the HCHs have been historically used in Peru while they were recently utilized in Turkey. Finally, homologous group distributions were used to determine the sources of PCBs. Similar distributions of homologous groups were observed in the sampling sites in both countries. Also, the homologous group distributions obtained have been determined that industrial activities could be effective in the sampling areas in both countries. When the cancer risks that could occur via inhalation were evaluated, no significant cancer risk has been determined in both countries.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Ambientais/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Humanos , Peru , Medição de Risco , Turquia
18.
Sci Total Environ ; 741: 140515, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887014

RESUMO

An ecologic analysis was conducted to explore the correlation between air pollution, and COVID-19 cases and fatality rates in London. The analysis demonstrated a strong correlation (R2 > 0.7) between increment in air pollution and an increase in the risk of COVID-19 transmission within London boroughs. Particularly, strong correlations (R2 > 0.72) between the risk of COVID-19 fatality and nitrogen dioxide and particulate matter pollution concentrations were found. Although this study assumed the same level of air pollution across a particular London borough, it demonstrates the possibility to employ air pollution as an indicator to rapidly identify the city's vulnerable regions. Such an approach can inform the decisions to suspend or reduce the operation of different public transport modes within a city. The methodology and learnings from the study can thus aid in public transport's response to COVID-19 outbreak by adopting different levels of human-mobility reduction strategies based on the vulnerability of a given region.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus , Cidades , Humanos , Londres , Dióxido de Nitrogênio/análise , Material Particulado/análise
19.
Environ Monit Assess ; 192(10): 624, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895739

RESUMO

Particulate matter (PM) concentrations are affected by anthropogenic emissions and sand transport jointly; however, the relative contributions from those two aspects are usually unknown. In our work, statistical analysis and back trajectories model were used to identify the dominant source in such area, by taking Yumen City as an example. We come to the conclusion that local emissions dominate the concentration of airborne pollutants, while sand transport plays a significant role on PM concentration. The conclusions were supported by the following results. (1) PM monthly mean concentrations at the two air quality stations, which are 70 km far away from each other, have the similar levels and variation trend; furthermore, a regression analysis of PM2.5 and PM10 daily concentrations between both stations indicated a significant correlation, suggesting that PM at both locations was influenced by the same emission sources; (2) statistical analysis results revealed that PM concentration has a positive correlation with wind speed, indicating the wind-blown dust and sand contribute mainly on PM concentration; (3) back-trajectory clustering analysis indicates that long-distance transport particulates from dust sources and their pathways had a significant impact on local PM concentrations.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluentes Ambientais , China , Cidades , Monitoramento Ambiental , Material Particulado/análise
20.
Environ Monit Assess ; 192(10): 627, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901375

RESUMO

Numerous health studies have linked the exposure to particulate matter with adverse health effects, while there is an increasing scientific interest in the particle metrics of surface area (SA) and lung-deposited SA (LDSA) concentration. In the present study, two integrated SA estimation methods, both based on widely used instrumentation, were applied at an urban traffic environment in Athens for a 6-month period. The first estimation method used the size distribution by number to estimate SA (average SA1 669.3 ± 229.0 µm2 cm-3), while the second method used a simple inversion scheme that incorporates number and mass concentrations (average SA2 1627.9 ± 562.8 µm2 cm-3). In pairwise comparisons, SA2 levels were found two times greater than the corresponding SA1, but exhibited a strong correlation (r = 0.73). SA1 and SA2 concentrations correlated well with the traffic-related pollutants NOx (r = 0.64 and 0.78) and equivalent black carbon (r = 0.53 and 0.51). The diurnal variation of SA1 concentrations by size range indicated traffic as a major controlling factor. Estimated LDSA (53.9 µm2 cm-3 on average) concentrations were also clearly affected by anthropogenic emissions with more pronounced associations in the 0.01-0.4 µm range (r = 0.66 with NOx and r = 0.65 with equivalent black carbon). Validating estimated LDSA through simultaneous measurements with a reference instrument revealed that the estimation method underestimates LDSA by a factor between 2 and 3, exhibiting, however, a high correlation (r = 0.79). Overall, the performance of estimation methods appear satisfactory and indicate that a trustworthy assessment of the temporal variability of SA and LDSA concentration metrics can be provided in real time, on the basis of relatively lower-cost instrumentation, especially in view of recent advances in particle sensing technologies.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Grécia , Material Particulado/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA