Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98.191
Filtrar
1.
World J Microbiol Biotechnol ; 36(2): 29, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016527

RESUMO

Short-chain halogenated aliphatic hydrocarbons (e.g. perchloroethene, trichloroethene) are among the most toxic environmental pollutants. Perchloroethene and trichloroethene can be dechlorinated to non-toxic ethene through reductive dechlorination by Dehalococcoides sp. Bioaugmentation, applying cultures containing organohalide-respiring microorganisms, is a possible technique to remediate sites contaminated with chlorinated ethenes. Application of site specific inocula is an efficient alternative solution. Our aim was to develop site specific dechlorinating microbial inocula by enriching microbial consortia from groundwater contaminated with trichloroethene using microcosm experiments containing clay mineral as solid phase. Our main goal was to develop fast and reliable method to produce large amount (100 L) of bioactive agent with anaerobic fermentation technology. Polyphasic approach has been applied to monitor the effectiveness of dechlorination during the transfer process from bench-scale (500 mL) to industrial-scale (100 L). Gas chromatography measurement and T-RFLP (Terminal Restriction Fragment Length Polymorphism) revealed that the serial subculture of the enrichments shortened the time-course of the complete dechlorination of trichloroethene to ethene and altered the composition of bacterial communities. Complete dechlorination was observed in enrichments with significant abundance of Dehalococcoides sp. cultivated at 8 °C. Consortia incubated in fermenters at 18 °C accelerated the conversion of TCE to ethene by 7-14 days. Members of the enrichments belong to the phyla Bacteroidetes, Chloroflexi, Proteobacteria and Firmicutes. According to the operational taxonomic units, main differences between the composition of the enrichment incubated at 8 °C and 18 °C occurred with relative abundance of acetogenic and fermentative species. In addition to the temperature, the site-specific origin of the microbial communities and the solid phase applied during the fermentation technique contributed to the development of a unique microbial composition.


Assuntos
Anaerobiose/fisiologia , Bactérias/metabolismo , Biodegradação Ambiental , Argila/química , Microbiota/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Chloroflexi/genética , Chloroflexi/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Fermentação , Firmicutes/genética , Firmicutes/metabolismo , Geobacter/genética , Geobacter/metabolismo , Água Subterrânea/microbiologia , Consórcios Microbianos , Polimorfismo de Fragmento de Restrição , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Tricloroetileno/química , Microbiologia da Água , Poluentes Químicos da Água/metabolismo
2.
Bioresour Technol ; 300: 122667, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901513

RESUMO

Coking wastewater (CWW) has long been a serious challenge for anaerobic treatment due to its high concentrations of phenolics and nitrogen-containing heterocyclic compounds (NHCs). Herein, we proposed and validated a new strategy of using zero-valent iron (ZVI) to strengthen the anaerobic treatment of CWW. Results showed that COD removal efficiencies was increased by 9.5-13.7% with the assistance of ZVI. GC-MS analysis indicated that the removal of phenolics and NHCs was improved, and the intermediate 2(1H)-Quinolinone of quinoline degradation was further removed by ZVI addition. High-throughput sequencing showed that phenolics and NHCs degraders, such as Levilinea and Sedimentibacter were significantly enriched, and the predicted gene abundance of xenobiotic degradation and its downstream metabolic pathways was also increased by ZVI. Network and redundancy analysis indicated that the decreased oxidation-reduction potential (ORP) by ZVI was the main driver for microbial community succession. This study provided an alternative strategy for strengthening CWW anaerobic treatment.


Assuntos
Coque , Poluentes Ambientais , Poluentes Químicos da Água , Anaerobiose , Reatores Biológicos , Ferro , Eliminação de Resíduos Líquidos , Águas Residuárias
3.
Water Res ; 171: 115451, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901682

RESUMO

Endoxifen is an effective metabolite of a common chemotherapy agent, tamoxifen. Endoxifen, which is toxic to aquatic animals, has been detected in wastewater treatment plant (WWTP) effluent. This research investigates ultraviolet (UV) radiation (253.7 nm) application to degrade (E)- and (Z)-endoxifen in water and wastewater and phototransformation by-products (PBPs) and their toxicity. The effects of light intensity, pH and initial concentrations of (E)- and (Z)-endoxifen on the photodegradation rate were examined. Endoxifen in water was eliminated ≥99.1% after 35 s of irradiation (light dose of 598.5 mJ cm-2). Light intensity and initial concentrations of (E)- and (Z)-endoxifen exhibited positive trends with the photodegradation rates while pH had no effect. Photodegradation of (E)- and (Z)-endoxifen in water resulted in three PBPs. Toxicity assessments through modeling of the identified PBPs suggest higher toxicity than the parent compounds. Photodegradation of (E)- and (Z)-endoxifen in wastewater at light doses used for disinfection in WWTPs (16, 30 and 97 mJ cm-2) resulted in reductions of (E)- and (Z)-endoxifen from 30 to 71%. Two of the three PBPs observed in the experiments with water were detected in the wastewater experiments. Therefore, toxic compounds are potentially generated at WWTPs by UV disinfection if (E)- and (Z)-endoxifen are present in treated wastewater.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Animais , Cinética , Fotólise , Tamoxifeno/análogos & derivados , Água
4.
Bioresour Technol ; 300: 122680, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918292

RESUMO

Magnetic biochar was usually prepared using ferrous and ferric compounds as precursor of magnetic medium. Ferrate, which could be an internal oxidative modifier, was less explored for preparing magnetic biochar. Here, a magnetic biochar was prepared through K2FeO4-promoted pyrolysis of pomelo peel for adsorption of hexavalent chromium. Oxygen-containing groups and single phase ɤ-Fe2O3 were simultaneously introduced into biochar matrix at 300 °C. The magnetic biochar exhibited 209.64 mg/g maximum adsorption capability at 45 °C, outperformed the best magnetic biochar with 142.86 mg/g maximum adsorption capability at 40 °C in the literature. Moreover, a good magnetism was obtained, facilitating separation of the magnetic biochar from aqueous solution by a magnet. The removal of hexavalent chromium was contributed to the hybrid adsorption of ɤ-Fe2O3 and biochar matrix by reduction, electrostatic interaction and complexation. This method was attractive, required neither extra modifiers nor multiple operations for preparation of highly adsorptive magnetic biochar.


Assuntos
Pirólise , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo , Fenômenos Magnéticos , Estresse Oxidativo
5.
Water Res ; 171: 115395, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31918386

RESUMO

Stormwater harvesting (SWH) provides multiple benefits to urban water management. Other than providing water for human use, it also reduces the volume of polluted stormwater discharge to the environment. There are currently no methods available to quantify the additional environmental benefits, which could encourage greater uptake of the practice. This paper investigates a number of factors (climate and catchment characteristics, pollutant reduction targets, etc.) that could impact upon the benefits of SWH for pollution reduction through sensitivity analyses. A method was developed and tested for quantification of the pollution mitigation benefits by SWH under different scenarios. A novel indicator, Impervious Area Offset (IAO), was proposed to reflect the additional impervious area that can be left untreated to achieve the equivalent pollution load reduction targets due to the introduction of SWH. Results indicate significant correlations (p < 0.01) between IAO values and extraction rate (proportion of total annual runoff removed due to the harvesting system and water use substitution), system type, and pollutant reduction targets. The proposed linear empirical relationships between IAO values and extraction rate for different types of system configurations and pollution reduction targets were well represented by observed linear regression (average R2 = 0.98 for all tested scenarios). Empirical relationships were validated successfully against different scenarios, with differences between predicted IAO and baseline IAO values being only ±4.5% for the majority of the validation scenarios. Using this simple and reliable method to rapidly quantify SWH benefits can further add to the growing business case of adopting SWH practices.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental , Chuva , Água
6.
Water Res ; 171: 115381, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923761

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are a wide group of environmentally persistent organic compounds of industrial origin, which are of great concern due to their harmful impact on human health and ecosystems. Amongst long-chain PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most detected in the aquatic environment, even though their use has been limited by recent regulations. Recently, more attention has been posed on the short-chain compounds, due to their use as an alternative to long-chain ones, and to their high mobility in the water bodies. Therefore, short-chain PFAS have been increasingly detected in the environmental compartments. The main process investigated and implemented for PFAS removal is adsorption. However, to date, most adsorption studies have focused on synthetic water. The main objective of this article is to provide a critical review of the recent peer-reviewed studies on the removal of long- and short-chain PFAS by adsorption. Specific objectives are to review 1) the performance of different adsorbents for both long- and short-chain PFAS, 2) the effect of organic matter, and 3) the adsorbent regeneration techniques. Strong anion-exchange resins seem to better remove both long- and short-chain PFAS. However, the adsorption capacity of short-chain PFAS is lower than that observed for long-chain PFAS. Therefore, short-chain PFAS removal is more challenging. Furthermore, the effect of organic matter on PFAS adsorption in water or wastewater under real environmental conditions is overlooked. In most studies high PFAS levels have been often investigated without organic matter presence. The rapid breakthrough of PFAS is also a limiting factor and the regeneration of PFAS exhausted adsorbents is very challenging and needs more research.


Assuntos
Fluorcarbonetos , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Água
7.
Bioresour Technol ; 300: 122705, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926472

RESUMO

Adsorption is an efficient and low-cost technology used to purify volatile organic compounds (VOCs). In the current study, novel microbial adsorbents were synthesized using cells of lyophilized fungi (Ophiostoma stenoceras LLC) or bacteria (Pseudomonas veronii ZW) that were modified by aminomethylation. Based on the adsorption performance and structural characterization results, the modified fungal biosorbent was the best. Its maximum adsorption capacities for ethyl acetate, α-pinene, and n-hexane were 620, 454, and 374 mg·g-1, respectively, which were much higher than those of other synthesized biosorbents. The specific surface area of the fungal biosorbent was 20 m2·g-1, and most of the components were hydrocarbon compounds and polysaccharides. The VOC adsorption process on these synthesized biosorbents was in accordance with the Langmuir isothermal model and the pseudo-first-order kinetic model, thereby suggesting that physical adsorption was the dominant mechanism. The fungal biosorbent could be used for five consecutive VOC sorption-desorption cycles without any obvious decrease in adsorption capacity.


Assuntos
Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Adsorção , Biomassa , Fungos , Concentração de Íons de Hidrogênio , Cinética
8.
Bioresour Technol ; 300: 122707, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926473

RESUMO

High concentrations of antibiotics in swine wastewater pose potentially serious risks to the environment, human and animal health. Identifying the mechanism for removing antibiotics during the anaerobic treatment of swine wastewater is essential for reducing the serious damage they do to the environment. In this study, batch experiments were conducted to investigate the biosorption and biodegradation of tetracycline and sulfonamide antibiotics (TCs and SMs) in anaerobic processes. Results indicated that the removal of TCs in the anaerobic reactor contributed to biosorption, while biodegradation was responsible for the SMs' removal. The adsorption of TCs fitted well with the pseudo-second kinetic mode and the Freundlich isotherm, which suggested a heterogeneous chemisorption process. Cometabolism was the main mechanism for the biodegradation of SMs and the process fitted well with the first-order kinetic model. Microbial activity in the anaerobic sludge might be curtailed due to the presence of high concentrations of SMs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Anaerobiose , Animais , Antibacterianos , Biodegradação Ambiental , Cinética , Esgotos , Suínos
9.
Bioresour Technol ; 300: 122708, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926474

RESUMO

Microbially-aged hydrochar were prepared to investigate how aging affected their ability to remove Cd2+ from aqueous solutions. Based on aging time in an anaerobic fermenter, four samples were produced: HC, M20-HC, M40-HC, and M60-HC. Results indicated increases in specific surface area, pH, and negative charge on hydrochar surface with aging process. Also, there were a decrease in O/C and an increase in surface functional groups, such as -COOH. The adsorption experiments confirmed the positive correlation between aging time and adsorption performance. The 60-day-aged M60-HC treatment displayed the maximum adsorption capacity, which was 3.8 times higher than that of HC. The Langmuir and pseudo-second-order kinetic equations fitted well with isothermal and kinetic data, respectively. Thermodynamic study indicated that Cd2+ adsorption is dominated by chemisorption. This study showed that microbial aging process is an effective and promising measure to improve hydrochar adsorption capacity for Cd2+.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
10.
Water Res ; 171: 115456, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927091

RESUMO

This study investigated the regeneration of phenol saturated activated carbon fiber (ACF) with a novel electro-peroxydisulfate (E-PDS) process. Compared with traditional electrochemical regeneration, E-PDS process could simultaneously regenerate the exhausted ACF and mineralize desorbed contaminants by activating PDS in water with a much lower energy consumption (1/6). According to the estimation of relative contributions involved in E-PDS process, reactive oxygen species (ROS), especially sulfate radical (SO4•-), played a dominant role in the degradation of phenol and its byproducts. It was worth noting that the accumulation of byproducts in solution increased significantly after SO4•- concentration decreased in aqueous solution. Further study proved that the regeneration efficiency of ACF could be improved by the application of multiple doses of PDS for the effective reduction of byproduct accumulation. However, application of multiple doses of PDS could not prevent ACF from being oxidized by ROS generated in the system, subsequently leading to loss of ACF adsorption capacity. This limitation is a significant concern in treatment technologies based on carbon materials activated by peroxides and such technologies should be studied further to obtain additional insights on their potential and applicability in industrial practice. Nevertheless, the adsorption capacity of ACF remained above 40% after three regeneration cycles in the E-PDS process. Therefore, E-PDS process showed promise for further evaluation as a potentially viable approach for the regeneration of carbons saturated with organic pollutants.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Fibra de Carbono , Eletrodos , Oxirredução , Fenol
11.
Water Res ; 171: 115442, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927093

RESUMO

In the aftermath of the lead contamination crisis that plagued the water system in Flint, MI, more than 35,000 water samples were collected from the city's premises. The majority of these samples (>85%) were collected through a voluntary crowdsourced sampling campaign. The samples were analyzed for lead and copper concentrations by the Michigan Department of Environmental Quality (MDEQ). In this study, the crowdsourced sampling data was analyzed by means of spatial autocorrelation analysis to reveal the locations of statistically significant hotspot regions of high water lead levels (WLLs), and to track the spatiotemporal evolution of WLLs as the system recovered from lead contamination. The results showed that hotspot regions that experienced high WLLs were consistent with the areas where lead service line (LSL) density was the highest. Additionally, galvanized service lines and other lead-containing plumbing components could have also contributed to lead release in hotspot regions. The temporal trend exhibited by the crowdsourced sampling data did not reflect a consistent decrease in WLLs despite the interventions implemented by MDEQ and EPA. Instead, sampled WLLs remained high for several months after boosting the orthophosphate dose and launching a city-wide residential flushing campaign. The findings of this study suggest that this could be partially attributed to disproportionate sampling from premises in hotspot regions of high WLLs and LSL density.


Assuntos
Crowdsourcing , Água Potável , Poluentes Químicos da Água , Cidades , Chumbo , Michigan , Abastecimento de Água
12.
Water Res ; 171: 115472, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931379

RESUMO

Microbial extracellular polymeric substances (EPS) have gained increasing attention for various water treatment applications. In this study, EPS produced from nitrogen-limited glycerol/ethanol-rich wastewater were used to recover Cu2+ and Pb2+ from aqueous solutions. Continuous flow-through tests were conducted on a column packed with silica gel coated with polyethyleneimine, to which EPS were irreversibly attached as shown by optical reflectometry. These immobilised EPS excellently adsorbed Cu2+ and Pb2+, with 99.9% of influent metal adsorbed before the breakthrough points. Metal desorption was achieved with 0.1M HCl, with an average recovery of 86% for Cu2+ and 90% recovery for Pb2+. For the first time, we successfully showed the possibility to regenerate and reuse the immobilised EPS for five adsorption-desorption cycles (using Cu2+ as an example) with no reduction in the adsorbed amount at the breakthrough point (qbp). Based on the mass balance of the associated metal ions participating in the adsorption process, ion exchange was identified as the major mechanism responsible for Cu2+ and Pb2+ adsorption by EPS. The results demonstrate the potential of wastewater-produced EPS as an attractive and perhaps, cost-effective biosorbent for heavy metal removal (to trace effluent concentrations) and recovery (86-99%).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Polímeros
13.
Water Res ; 171: 115479, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31935642

RESUMO

Internal phosphorus (P) mobility is crucially important to overlying water ecosystems, while its spatiotemporal variations and mechanisms remain to be studied, especially in dynamic estuarine sediments. In this study, in situ monthly field sampling and indoor experiments were combined to measure the soluble reactive P (SRP), soluble Fe and diffusive gradients in thin films (DGT)-labile P/S in the overlying water, sediment and porewater in the Jiuxi River Estuary by employing high-resolution dialysis (HR-Peeper), the DGT technique and a MicroRhizon sampler. The consistent tendency between DGT-labile S and P in most seasons indicates that P mobilization was dominated by intense dissimilatory sulfate reduction (DSR), causing high SRP concentrations and active exchange with the overlying water. The circannual cyclical pattern of P is summarized, where in addition to temperature, monthly changes in runoff and tidal range are crucial external factors to control long-term P cycling via changed redox environments and terrigenous materials inputs. The mobile P, Fe and S present higher values during flood tides and lower values during ebb tides in tidal simulation experiments, demonstrating that the short-term cycling of P, Fe and S in intertidal surface sediments is highly redox-sensitive and controlled by tidal processes. The results also reveal that DSR greatly facilitates P mobility and release, while sediment oxidation and the induced enhancement in DIR and Fe cycling can effectively control P immobilization.


Assuntos
Fósforo , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Diálise Renal
14.
Bioresour Technol ; 301: 122744, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31972400

RESUMO

Vegetated ditches are widely used to treat agricultural wastewater, but effective nitrogen removal at low temperatures remains a challenge because plants wilt in the winter. In this study, three simulated drainage ditches vegetated with Myriophyllum aquaticum were operated with low, medium, and high water levels to study ammonium nitrogen (NH4+-N) removal under cold temperatures. The M. aquaticum ditches had a mean NH4+-N removal efficiency of 75.8-86.8% throughout cold period. Based on nitrogen mass balance, plant uptake, sediment adsorption, and microbial removal accounted for 12.4-21.5%, 0.0-8.1%, and 38.9-54.6% of the influent total nitrogen loading, respectively. The accumulation of nitrate confirmed that intense microbial nitrification occurred in M. aquaticum ditches even at low temperature. These results suggest that M. aquaticum is appropriate as a cold-tolerant plant for NH4+-N removal in drainage ditches.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Temperatura Baixa , Desnitrificação , Drenagem , Águas Residuárias
15.
J Environ Manage ; 256: 109995, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989971

RESUMO

Semi-aerobic landfilling is applied increasingly as a sustainable technology worldwide, although frequently controversial results are achieved. The authors suggest that differences in water availability (climate, moisture content, etc.) and putrescible waste content are the key factors involved in controlling performance and efficiencies. The aim of the present study was to investigate the effect of inverse conditions (high/low) of these two factors. Six lab-scale lysimeters were specifically set up to correspond to three different conditions of water availability (wet conditions, dry conditions and artificially controlled watering under dry conditions) and two different waste types (high and low putrescible content). Lysimeters were operated for four months under thermal-insulated conditions and the quality and quantity of emissions monitored regularly. Concentrations of mobile ammonia and total organic carbon (TOC) in landfilled waste were modelled by means of first-order kinetics, and carbon and nitrogen mass balances were calculated. The best performance for the semi-aerobic process was achieved at a water availability of approximately 1.5-2.4 kgH2O/kgTS using the following two combinations: a) Waste with high putrescible content and no addition of external water due to the presence of sufficient endogenous water in the waste (moisture) to promote biological stabilisation of waste (Respiration index in 4 days, RI4 = 12.87 mgO2/gTS, BOD/COD < 0.05); b) Waste with low putrescible content and controlled watering (RI4 = 12.25 mgO2/gTS, BOD/COD < 0.04). The study highlighted how semi-aerobic landfilling operations should be carefully adjusted case by case according to waste quality and climate conditions.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Carbono , Instalações de Eliminação de Resíduos , Água
16.
J Environ Manage ; 256: 109943, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989978

RESUMO

Magnetic graphene oxide-titanate composites (MGO@TNs) were synthesized via growing titanate nanosheets on the graphene oxide sheets with magnetite nanoparticles anchored on. The as-prepared MGO@TNs showed a hierarchical structure and large specific surface area (193.4 m2/g), which were suitable for rapid and effective adsorption of Pb(II) from wastewater. Moreover, the loaded magnetite nanoparticles guaranteed the effective magnetic separation of MGO@TNs, avoiding secondary pollution. The adsorption mechanism were illuminated to be ion exchange and surface complexation. Batch adsorption experiments showed the maximum adsorption capacity of MGO@TNs reached 322.7 mg/g for Pb(II) removal. The removal efficiency retained 89.6% after six adsorption-desorption cycles. In addition, the efficiency reached up to 99.8% when applying MGO@TNs for removal of Pb(II) from simulated realistic battery wastewater, ensuring the safe discharge of treated water. The good adsorption performance, recyclability and easy magnetic separation ability made sure that the MGO@TNs has great potential for purification of Pb(II) contaminated wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Grafite , Cinética , Chumbo , Fenômenos Magnéticos , Águas Residuárias
17.
J Environ Manage ; 256: 109947, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989979

RESUMO

In this research, ammonia evaporation capacity under atmospheric and vacuum pressure conditions, as well as distillation capacity of different concentrations of landfill leachates, were evaluated. Simple evaporation and vacuum pressure evaporation tests showed high NH3-N removal efficiencies, ranging from 95% to 98% for raw landfill leachates, indicating that vacuum pressure would not be necessary during ammonia removal and recovery processes when applying temperature of 300 °C. Distillations tests also showed the promising NH3-N recovery potential in ultra-concentrated leachates (over 100 gNH3-N/L) in the order of 91%-94% in few minutes, evaporating a small portion of landfill leachate. The results presented encourages the recovery of ammonia from landfill leachate and its industrial and agricultural, highlighting its feasibility as well as simultaneously preventing the ammonia release to water bodies or the atmosphere.


Assuntos
Amônia , Poluentes Químicos da Água , Calefação , Nitrogênio , Temperatura Ambiente
18.
J Environ Manage ; 256: 109959, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989982

RESUMO

Cd2+ pollution in aquatic environments can pose a serious threat to human health. Biochar can remove Cd2+ from aquatic environments, but the Cd2+adsorption capacity of conventional biochar is low, therefore, we focused on exploring the Cd2+ adsorption capacity of modified biochar. In this study, KMnO4 was used to modify vermicompost biochar (VBC), and static adsorption tests for Cd2+ were carried out. The biochar properties and its adsorption efficiency toward Cd2+ before and after modification were studied by kinetics and isotherm model fitting, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Additionally, an adsorption mechanism was discussed. The results showed that the KMnO4-modification resulted in a successful loading of the vermicompost biochar with MnO2, which greatly improved its adsorption capacity for Cd2+. The adsorption of Cd2+ by VBC and MVBC was a spontaneous, endothermic, and monolayer chemical adsorption process. Mineral precipitation mechanism accounted for the largest proportion, and CdCO3 was the main precipitate. After modification the proportion of surface precipitation and other mechanisms (π-electron coordination and the inner/outer sphere surface coordination) increased,while adsorption via cation exchange, oxygen-containing functional groups, physical adsorption and electrostatic attraction reduced. Hence, KMnO4 modification has a significant effect on the Cd2+ adsorption behavior of vermicompost biochar.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Compostos de Manganês , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Environ Manage ; 256: 109969, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989986

RESUMO

This study reports a new inorganic-organic composite membrane fabricated by an electrostatic self-assembling method. The low-cost and eco-friendly porous geopolymer (PG) was chosen as a support, on which chitosan (CS), a "green" biomaterial, was used to form an active layer. With optimum dosage of CS (2.0 mL of 1.0% CS solution), the obtained CS/PG membrane exhibited a high porosity of 50.97% with an average pore diameter of 13.93 nm as well as a high water flux of 1663.82 ± 22.46 L/m2·h·bar. The effects of initial concentration, pH, flow rate and temperature of the feed solution on crystal violet (CV) removal by the CS/PG were evaluated in a continuous mode. The results indicated ~95% CV could be removed from water during continuous treating of 14 h. The effectiveness in CV removal by the CS/PG membrane was attributed to the synergistic effect of rejection and adsorption. Furthermore, the composite membrane could be easily regenerated for prolonged use. Overall, this work opens a new possibility of building cost-saving and eco-friendly composite membranes for practical applications in water purification.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética
20.
J Environ Manage ; 256: 109972, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989988

RESUMO

The degradation of a model pollutant, tartrazine, very used in food industry and usually present in WWTPs effluents and surface waters, was investigated by nine activated homogeneous catalytic processes, namely, Fe3+/H2O2, Fe2+/H2O2, UV/H2O2, UV/S2O82-, UV/Fe2+/H2O2, UV/Fe3+/H2O2, UV, VIS/Fe3+/H2O2, and VIS/Fe3+/H2O2/C2O42-. In order to compare the mineralization and oxidation ability of each process, the removal of dye, chemical oxygen demand (COD) and total organic carbon (TOC) were analyzed, as well as the overall kinetic rate constant. Also, the different oxidation path-ways (direct photolysis and/or oxidation by free radicals) were estimated for each system. After the comparison, the Fenton process, which had the highest mineralization values, was tested in luminous and dark phases using designed experiments, and the influences of all operating variables were studied by RSM.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Catálise , Cinética , Oxirredução , Fotólise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA