Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.441
Filtrar
1.
Chemosphere ; 258: 127276, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947657

RESUMO

It is crucial for water environment security to remove its p-arsanilic acid (p-ASA) efficiently. Namely, removing p-arsanilic acid from aqueous media through magnetic separation, has become a novel method of removing toxic pollutants from water. Batch adsorption experiments demonstrated a higher adsorption of lignin-based magnetic activated carbon (201.64 mg g-1) toward p-ASA. In addition, LMAC nanoparticles exhibited typical magnetism (35.63 emu g-1 of saturation magnetization) and could be easily separated from the aqueous solution. Meanwhile, the endothermic adsorption of p-ASA over LMAC could spontaneously proceed and be well described by the pseudo-first-order and pseudo-second-order model as well as the intra-particle diffusion model. Moreover, the mechanisms during p-ASA adsorption over LMAC included the electrostatic attraction, surface complexation, π-π stacking and hydrogen bonding interaction. Importantly, lignin-based magnetic activated carbon has high absorbability and preferable reusability in real water samples. Consequently, this paper provides insights into preparation of the lignin-based magnetic activated carbon may be potential adsorbents for the remediation of organoarsenic compounds.


Assuntos
Ácido Arsanílico/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal , Cinética , Lignina , Fenômenos Magnéticos , Magnetismo , Imãs , Água , Poluentes Químicos da Água/análise
2.
Chemosphere ; 258: 127357, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947670

RESUMO

Diffusive isotope fractionation of non- and perdeuterated benzenes and toluenes in aqueous solution was investigated. The experimental method was based on a Stokes diaphragm cell. The isotope composition of diffusate and retentate was found to be identical within a range of uncertainty of ±5‰ for benzene and ±10‰ for toluene. These data are consistent with a previous fractionation study using phase-transition kinetics as the potentially fractionating step. The present study contributes to strengthening the data base for diffusive isotope fractionation of organic compounds in aqueous solution. According to the presented data, diffusion of naturally occurring, monodeuterated organic compounds does not significantly affect their hydrogen isotope pattern.


Assuntos
Hidrocarbonetos/química , Poluentes Químicos da Água/química , Benzeno , Isótopos de Carbono , Fracionamento Químico/métodos , Difusão , Hidrogênio , Isótopos , Cinética , Tolueno , Água
3.
Ecotoxicol Environ Saf ; 205: 111343, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979801

RESUMO

Taste and odor (T&O) problem in water is one of the main obstacles to improve the quality of drinking water, and efficient water treatment processes are urgently needed to control T&O compounds. Ultraviolet-mediated peroxymonosulfate (UV/PMS) diminution of trichloroanisole (TCA) in water was investigated in this paper. The treatment of 2,3,6-trichloroanisole (2,3,6-TCA) by three advanced oxidation processes (UV, UV/H2O2 and UV/PMS) was compared, and UV/PMS stood out. SO4•- and HO• were produced in the UV/PMS, and their specific contributions to 2,3,6-TCA oxidation were investigated. The competitive kinetic model was applied to determine the second-order reaction rate between 2,3,6-TCA and SO4•- or HO•. The products of 2,3,6-TCA generated in UV/PMS were analyzed with gas chromatography/high resolution-mass spectrometry (GC/HR-MS), and the degradation mechanism was proposed. The effects of water matrices (chloride, bicarbonate and humic acid) on UV/PMS performance were studied, and the decontamination of 2,3,6-TCA in real water was carried out. The disinfection byproducts (DBPs) alteration from 2,3,6-TCA by UV/PMS - chlorination treatment was explored. Overall, UV/PMS can effectively deal with the T&O pollution of TCA in water.


Assuntos
Anisóis/química , Peróxidos/química , Poluentes Químicos da Água/química , Cloro/análise , Desinfecção , Halogenação , Substâncias Húmicas/análise , Peróxido de Hidrogênio/química , Cinética , Oxirredução , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Ecotoxicol Environ Saf ; 203: 111046, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888614

RESUMO

Agricultural pesticides serve as effective controls of unwanted weeds and pests. However, these same chemicals can exert toxic effects in non-target organisms. To determine chemical modes of action, the toxicity ratio (TR) and critical body residues (CBRs) of 57 pesticides were calculated for Daphnia magna. Results showed that the CBR values of inert compounds were close to a constant while the CBR values of pesticides varied over a wider range. Although herbicides are categorized as specifically-acting compounds to plants, herbicides did not exhibit excess toxicity to Daphnia magna and were categorized as inert compounds with an average logTR = 0.41, which was less than a threshold of one. Conversely, fungicides and insecticides exhibited strong potential for toxic effects to Daphnia magna with an average logTR >2. Many of these chemicals act via disruption of the nervous, respiratory, or reproductive system, with high ligand-receptor binding activity which leads to higher toxicity for Daphnia magna. Molecular docking using acetylcholinesterase revealed that fungicides and insecticides bind more easily with the biological macromolecule when compared with inert compounds. Quantitative structure-activity relationship (QSAR) analysis revealed that the toxicity of fungicides was mainly dependent upon the heat of formation and polar surface area, while the toxicity of insecticides was more related to hydrogen-bond properties. This comprehensive analysis reveals that there are specific differences in toxic mechanisms between fungicides and insecticides. These results are useful for determining relative risk associated with pesticide exposure to aquatic crustaceans, such as Daphnia magna.


Assuntos
Daphnia/efeitos dos fármacos , Modelos Biológicos , Praguicidas/química , Praguicidas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Daphnia/metabolismo , Relação Dose-Resposta a Droga , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Herbicidas/química , Herbicidas/toxicidade , Ligação de Hidrogênio , Inseticidas/química , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Resíduos de Praguicidas/metabolismo , Relação Quantitativa Estrutura-Atividade
5.
Chemosphere ; 254: 126899, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957294

RESUMO

In this study, the reduction of iron-carbon internal electrolysis was reinforced by persulfate for p-nitrophenol removal. The effects of persulfate dosage, initial pH and iron-carbon mass ratio were comprehensively studied in batch experiments. In the system of iron-carbon internal electrolysis coupled with persulfate, the iron-carbon internal electrolysis and persulfate had a significant mutual influence, exhibiting a wide range of pH in the treatment process. Moreover, the coupled system also showed the remarkable removal and degradation efficiency of p-nitrophenol according to the contrast experiments. The satisfactory results should be attributed to the potential reduction of iron-carbon internal electrolysis, which was stimulated by persulfate to transform the nitro group to the amine group, accompanying the subsequent oxidation. Furthermore, persulfate possessed the ability that the dynamically destructive effect on external and internal of Fe0 and the scavenging action on activated carbon, effectively strengthening the potential energy for release and transfer of reductive substances. Both HO• and SO4•- as the main free radicals were formed to mineralize the intermediates in the coupled system. These findings indicate that the system of iron-carbon internal electrolysis coupled with persulfate can be a promising strategy for the treatment of the toxic and refractory wastewater.


Assuntos
Carvão Vegetal/química , Eletrólise/métodos , Ferro/química , Nitrofenóis/análise , Sulfatos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Modelos Teóricos , Nitrofenóis/química , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/química
6.
Ecotoxicol Environ Saf ; 205: 111291, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956865

RESUMO

The purpose of this study was to determine the acute toxicity in aquatic organisms of one biocidal active substance and six metabolites derived from biocidal active substances and to assess the suitability of available QSAR models to predict the obtained values. We have reported the acute toxicity in sewage treatment plant (STP) microorganisms, in the freshwater microalgae Pseudokirchneriella subcapitata and in Daphnia magna following OECD test methods. We have also identified in silico models for acute toxicity of these trophic levels currently available in widely recognized platforms such as VEGA and the OECD QSAR ToolBox. A total of six, four and two models have been selected for Daphnia, algae and microorganisms, respectively. Finally, we have compared the in silico and in vivo data for the seven compounds plus two previously assayed biocidal substances. None of the compounds tested were toxic for Daphnia and STP microorganisms. For microalgae, CGA71019 (1,2,4 triazole) presented an ErC50 value of 38.3 mg/L. The selected in silico models have provided lower EC50 values and are therefore more conservative. Models from the OECD QSAR ToolBox predicted values for 7 out of 9 and for 4 out of 9 chemicals for Daphnia and P. subcapitata, respectively. No predictive models were identified in such platform for STP microorganism's acute effects. In terms of models's specificity, biocide-specific models, developed from curated datasets integrated by biocidal active substances and implemented in VEGA, perform better in the case of microalgae but for Daphnia an alternative, non biocide-specific has revealed a better performance. For STP microorganisms only biocide-specific models have been identified.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Desinfetantes/toxicidade , Modelos Biológicos , Poluentes Químicos da Água/toxicidade , Animais , Clorofíceas/efeitos dos fármacos , Simulação por Computador , Daphnia/efeitos dos fármacos , Desinfetantes/química , Desinfetantes/metabolismo , Água Doce/química , Microalgas/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
7.
Aquat Toxicol ; 227: 105592, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32891020

RESUMO

International shipping is responsible for the release of numerous contaminants to the air and the marine environment. In order to reduce airborne emissions, a global 0.5 % sulphur limit for marine fuels was implemented in January 2020. Recently, a new generation of so-called hybrid fuels that meet these new requirements have appeared on the market. Studies have shown that these fuels have physical properties that make conventional clean-up methods difficult, but few have studied their effects on marine life. We conducted short and long-term microcosm experiments with natural mesozooplankton communities exposed to the water accommodated fractions (WAFs) of the hybrid fuel RMD80 (0.1 % sulphur) and a Marine Gas Oil (MGO). We compared the toxicity of both fuel types in 48h short-term exposures, and studied the effects of the hybrid fuel on community structure over two generations in a 28-day experiment. The F0 generation was exposed for eight days and the F1 generation was raised for 22 days without exposure. GC-MS and GC-FID analysis of the WAFs revealed that the hybrid fuel was dominated by a mixture of volatile organic compounds (VOCs) and poly aromatic hydrocarbons (PAHs), whereas the MGO was mainly composed of VOCs. We observed significant short-term effects on copepod egg production from exposure to 25 % hybrid fuel WAF, but no effects from the MGO WAF at equivalent WAF dilution. In the long-term experiment with RMD80, the feeding rate was initially increased after exposure to 0.5-1.1 % hybrid fuel WAF, but this did not increase the copepod egg production. Significant change in community structure was observed after eight days in the F0 community at 0.5-3.3 % WAF. Indications of further alterations in species abundances was observed in the F1 community. Our results demonstrate that the MGO is a less toxic low-sulphur alternative to the hybrid fuel for marine zooplankton, and that a hybrid fuel spill could result in altered diversity of future generations of copepod communities.


Assuntos
Copépodes/efeitos dos fármacos , Óleos Combustíveis/toxicidade , Hidrocarbonetos Aromáticos/toxicidade , Enxofre/toxicidade , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Copépodes/fisiologia , Relação Dose-Resposta a Droga , Óleos Combustíveis/análise , Hidrocarbonetos Aromáticos/química , Modelos Teóricos , Reprodução/efeitos dos fármacos , Navios , Enxofre/química , Fatores de Tempo , Poluentes Químicos da Água/química , Zooplâncton/fisiologia
8.
Ecotoxicol Environ Saf ; 204: 111093, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805502

RESUMO

Phenolic Endocrine Disrupting Chemicals (EDCs) have drawn more and more interest due to their prevalence and persistence in aquatic environment. To study the adsorption of various phenolic EDCs on river sediments under natural conditions, we first sought to analyze the distribution characteristics of phenol and bisphenol A (BPA) in sediment from the Bahe River. The static adsorption experiments contained either single- or dual-contaminant of phenol and/or BPA in the system; they were conducted to characterize the adsorption of these two pollutants in the surface sediments and the main factors affecting the adsorption processes of the dual-contaminant system, including particle size, humic acid (HA) concentration, pH, and temperature. Results showed that in certain seasons, there was a significant correlation between the levels of phenol and BPA in Bahe sediments. When comparing the adsorption behaviors of phenol and BPA on sediments in single- and dual-contaminant systems, we found that the phenol adsorption behavior varied, while that of BPA remained consistent across the different systems. Moreover, different effects were observed with regards to a single factor and the interaction of multiple factors on the adsorption of pollutants. Of the four single factors, only HA concentration had a significant effect on the phenol adsorption in sediment. When considering the interaction of multiple factors, the interaction between HA concentration and temperature significantly promoted the adsorption of phenol. The influence of factors on the adsorption of BPA was in the following order: particle size > HA concentration > pH > temperature. Particle size significantly inhibited BPA adsorption in the sediment, while the interaction between particle size and pH increased BPA adsorption.


Assuntos
Compostos Benzidrílicos/química , Fenol/química , Fenóis/química , Poluentes Químicos da Água/química , Adsorção , Disruptores Endócrinos/análise , Poluentes Ambientais , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Fenóis/análise , Rios/química , Temperatura , Poluentes Químicos da Água/análise
9.
Aquat Toxicol ; 227: 105589, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32841884

RESUMO

Pesticides have an impact on the aquatic environment, with ecological effects. The regulation of this impact is of key importance. One of the components of the planning of agricultural and industrial activities is the development of databases and models in order to identify substances that may cause damage. In this study, a quantitative structure-activity relationship (QSAR) approach was established for the prediction of acute toxicity toward rainbow trout of various pesticides. The so-called index of ideality of correlation is the main component of this approach. The validation of this approach has been carried out with three random splits into the training and validation sets. The range of statistical quality of models obtained here for the validation set is R2 = [0.81-0.86] and RMSE = [0.55-0.65].


Assuntos
Modelos Teóricos , Oncorhynchus mykiss , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bases de Dados Factuais , Método de Monte Carlo , Praguicidas/química , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/química
10.
J Chromatogr A ; 1626: 461359, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797838

RESUMO

The enantiomeric determination of chiral drugs in the environment is of emerging concern since their enantiomers often exhibit stereoselectivity in environmental occurrence, fate and toxicity. In this study a method based on solid-phase extraction followed by chiral liquid chromatography and high-resolution mass spectrometry has been developed for the enantiomeric determination of a group of cathinones in river water and effluent wastewater. The enantioseparation was carried out using a Chiralpak CBH column in reversed-phase mode, and optimised by evaluating the effects of flow rate, buffer concentration and organic modifier. Under optimal conditions, good enantioseparations (Rs ≥1.2) were achieved for all the analytes. Two mixed-mode cation-exchange sorbents (Oasis WCX and Oasis MCX) in solid-phase extraction were evaluated in river water. Oasis MCX sorbent showed better performance with apparent recoveries ranging from 57 to 91% and matrix effect ranging from -10 to 15%. It is worth noting that a shifting of retention times and loss of enantioresolutions in environmental water samples was observed for all the analytes when the Oasis WCX sorbent was used. The method was validated with river water and effluent wastewater samples and its overall performance was satisfactory. The method quantification limits for all the analyte enantiomers ranged from 1.0 to 2.9 ng/L in river water, and from 2.3 to 6.0 ng/L in effluent wastewater. The repeatability and reproducibility values, expressed as% relative standard deviation (n = 5) were less than 15%. The method was then applied to the analysis of river water and effluent wastewater. The racemic methylone and methedrone (EF=0.49 and 0.46, respectively) were detected at low ng/L in some of the river water samples.


Assuntos
Alcaloides/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Alcaloides/química , Alcaloides/isolamento & purificação , Reprodutibilidade dos Testes , Rios/química , Extração em Fase Sólida/métodos , Estereoisomerismo , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
11.
PLoS One ; 15(8): e0237389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797116

RESUMO

In the present work, a series of magnetically separable Fe3O4/g-C3N4/MoO3 nanocomposite catalysts were prepared. The as-prepared catalysts were characterized by XRD, EDX, TEM, FT-IR, UV-Vis DRS, TGA, PL, BET and VSM. The photocatalytic activity of photocatalytic materials was evaluated by catalytic degradation of tetracycline solution under visible light irradiation. Furthermore, the influences of weight percent of MoO3 and scavengers of the reactive species on the degradation activity were investigated. The results showed that the Fe3O4/g-C3N4/MoO3 (30%) nanocomposites exhibited highest removal ability for TC, 94% TC was removed during the treatment. Photocatalytic activity of Fe3O4/g-C3N4/MoO3 (30%) was about 6.9, 5, and 19.9-fold higher than those of the MoO3, g-C3N4, and Fe3O4/g-C3N4 samples, respectively. The excellent photocatalytic performance was mainly attributed to the Z-scheme structure formed between MoO3 and g-C3N4, which enhanced the efficient separation of the electron-hole and sufficient utilization charge carriers for generating active radials. The highly improved activity was also partially beneficial from the increase in adsorption of the photocatalysts in visible range due to the combinaion of Fe3O4. Superoxide ions (·O2-) was the primary reactive species for the photocatalytic degradation of TC, as degradation rate were decreased to 6% in solution containing benzoquinone (BQ). Data indicate that the novel Fe3O4/g-C3N4/MoO3 was favorable for the degradation of high concentrations of tetracycline in water.


Assuntos
Óxido Ferroso-Férrico/química , Grafite/química , Molibdênio/química , Nanocompostos/química , Compostos de Nitrogênio/química , Óxidos/química , Processos Fotoquímicos , Tetraciclina/química , Água/química , Catálise , Luz , Imãs/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
12.
Aquat Toxicol ; 227: 105582, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32823071

RESUMO

While it is likely that ENPs may occur together with other contaminants in nature, the combined effects of exposure to both ENPs and environmental contaminants are not studied sufficiently. In this study, we investigated the acute and sublethal toxicity of PVP coated silver nanoparticles (AgNP) and ionic silver (Ag+; administered as AgNO3) to the marine copepod Calanus finmarchicus. We further studied effects of single exposures to AgNPs (nominal concentrations: low 15 µg L-1 NPL, high 150 µg L-1 NPH) or Ag+ (60 µg L-1), and effects of co-exposure to AgNPs, Ag+ and the water-soluble fraction (WSF; 100 µg L-1) of a crude oil (AgNP + WSF; Ag++WSF). The gene expression and the activity of antioxidant defense enzymes SOD, CAT and GST, as well as the gene expression of HSP90 and CYP330A1 were determined as sublethal endpoints. Results show that Ag+ was more acutely toxic compared to AgNPs, with 96 h LC50 concentrations of 403 µg L-1 for AgNPs, and 147 µg L-1 for Ag+. Organismal uptake of Ag following exposure was similar for AgNP and Ag+, and was not significantly different when co-exposed to WSF. Exposure to AgNPs alone caused increases in gene expressions of GST and SOD, whereas WSF exposure caused an induction in SOD. Responses in enzyme activities were generally low, with significant effects observed only on SOD activity in NPL and WSF exposures and on GST activity in NPL and NPH exposures. Combined AgNP and WSF exposures caused slightly altered responses in expression of SOD, GST and CYP330A1 genes compared to the single exposures of either AgNPs or WSF. However, there was no clear pattern of cumulative effects caused by co-exposures of AgNPs and WSF. The present study indicates that the exposure to AgNPs, Ag+, and to a lesser degree WSF cause an oxidative stress response in C. finmarchicus, which was slightly, but mostly not significantly altered in combined exposures. This indicated that the combined effects between Ag and WSF are relatively limited, at least with regard to oxidative stress.


Assuntos
Copépodes/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Petróleo/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Copépodes/genética , Copépodes/metabolismo , Interações Medicamentosas , Expressão Gênica/efeitos dos fármacos , Íons , Nanopartículas Metálicas/química , Estresse Oxidativo/genética , Água do Mar/química , Prata/química , Solubilidade , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda , Poluentes Químicos da Água/química
13.
J Environ Public Health ; 2020: 5383842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774394

RESUMO

Textile industries generate large quantities of dye containing wastewater which pose a serious environmental problem. Currently, biosorbents have become desirable for the removal of dyes from textile effluents. In this study, batch experiments were conducted to investigate the biosorption characteristics of cactus peel on the removal of reactive red dye from aqueous solutions. The effects of solution pH, biosorbent dosage, contact time, and initial concentration were studied. The interaction effects of process variables were analysed using response surface methodology. The results showed that removal efficiency increased as initial dye concentration and solution pH decreased and as biosorbent dosage and contact time increased. The highest removal efficiency (99.43%) was achieved at solution pH, initial dye concentration, biosorbent dose, and contact time of 3.0, 40 mg/l, 6 g, and 120 min, respectively. From regression analysis, the Langmuir isotherm was found to better (R 2 = 0.9935) represent the biosorption process as compared with the Freundlich isotherm (R 2 = 0.9722). Similarly, the pseudo-second-order model was seen to represent very well the biosorption kinetics. The results show that cactus peel has good potential for the removal of reactive red dye.


Assuntos
Cactaceae/química , Corantes/isolamento & purificação , Indústria Têxtil , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Corantes/química , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/química
14.
Chemosphere ; 260: 127644, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758766

RESUMO

This study investigated the degradation of eight aliphatic halogenated contaminants (one brominated flame retardant and seven disinfection by-products) in synthetic drinking water by the UVA/TiO2 and UVA/Cu-TiO2 processes. The degradation rate constants of 2,2-bis(bromomethyl)-1,3-propanediol and trichloromethane in the UVA/Cu-TiO2 process were 10.1 and 1.29 times, respectively, higher than those in the UVA/TiO2 process. In contrast, the degradation rate constants of dichloroacetaldehyde, monochloroacetonitrile, monobromoacetonitrile and dibromonitromethane in the UVA/Cu-TiO2 process were 8.15, 2.33, 2.84 and 1.80 times, respectively, lower than those in the UVA/TiO2 process. The degradation rate constants of monobromonitromethane and dichloronitromethane were comparable in the two processes. The relationships between the degradation rate constants and the structural characteristics of the selected contaminants were examined to explain the different degradation efficacies of the contaminants in the two processes. As suggested by a quantitative structure-activity relationship (QSAR) model, the UVA/TiO2 process favored the degradation of contaminants with more polar electron-withdrawing moieties and higher degrees of chlorination. While the UVA/Cu-TiO2 process favored the degradation of hydrophilic unsaturated contaminants with multiple bonds. The concentrations of the reactive species (e.g., HO and e-) generated in the two photocatalytic processes were quantified using competition kinetics. The UVA/Cu-TiO2 process generated >10 times higher concentrations of HO than the UVA/TiO2 process, suggesting that the former process was more suitable for the degradation of contaminants that are reactive towards HO, while e- and e--derived superoxide radicals were non-negligible contributors to contaminant degradation in the UVA/TiO2 process.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Catálise , Desinfecção , Halogenação , Interações Hidrofóbicas e Hidrofílicas , Relação Estrutura-Atividade , Titânio , Raios Ultravioleta , Águas Residuárias , Água , Poluentes Químicos da Água/análise
15.
Chemosphere ; 260: 127683, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758774

RESUMO

This study represents the first ever work on a novel oxone treated hydrochar as an adsorbent for the efficient removal of different contaminants from aqueous solutions. Pine wood hydrochar (HC) was prepared by hydrothermal treatment at 300 °C and oxidized with oxone to produce oxidized pine wood hydrochar (OHC). Different analytical tools such as elemental analysis, FTIR, TGA, FE-SEM, and BET were used for the characterization of the OHC. Conductometric titration of OHC showed a substantial increase from 22 µmol/g to 600 µmol/g in the hydrochar carboxylic content. The OHC sorption performance was assessed by using Pb(II) ions and methylene blue (MB) dye as two models of contaminants. Sorption benchmarks were performed by varying the contaminant initial concentration, time, and temperatures. Sorption kinetic data was fitted well to the pseudo-second order kinetic model with high correlation coefficients (R2 > 0.99) and isothermal data was fitted to the Langmuir model. The highest adsorption capacities for MB and Pb(II) were 86.7 mg/g and 46.7 mg/g, respectively. This study proves that oxone treatment could be a potential sustainable oxidation method to tune the hydrochar surface to increase selectivity towards heavy metal ions and dye sorption.


Assuntos
Chumbo/química , Azul de Metileno/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados , Azul de Metileno/análise , Soluções , Ácidos Sulfúricos , Temperatura , Água , Poluentes Químicos da Água/análise
16.
PLoS One ; 15(8): e0236410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797095

RESUMO

The use and management of single use plastics is a major area of concern for the public, regulatory and business worlds. Focusing on the most commonly occurring consumer plastic items present in European freshwater environments, we identified and evaluated consumer-based actions with respect to their direct or indirect potential to reduce macroplastic pollution in freshwater environments. As the main end users of these items, concerned consumers are faced with a bewildering array of choices to reduce their plastics footprint, notably through recycling or using reusable items. Using a Multi-Criteria Decision Analysis approach, we explored the effectiveness of 27 plastic reduction actions with respect to their feasibility, economic impacts, environmental impacts, unintended social/environmental impacts, potential scale of change and evidence of impact. The top ranked consumer-based actions were identified as: using wooden or reusable cutlery; switching to reusable water bottles; using wooden or reusable stirrers; using plastic free cotton-buds; and using refill detergent/ shampoo bottles. We examined the feasibility of top-ranked actions using a SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) to explore the complexities inherent in their implementation for consumers, businesses, and government to reduce the presence of plastic in the environment.


Assuntos
Monitoramento Ambiental , Plásticos/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Comportamento do Consumidor , Técnicas de Apoio para a Decisão , Poluição Ambiental , Humanos , Plásticos/química , Reciclagem , Resíduos/análise , Poluentes Químicos da Água/química
17.
Chemosphere ; 260: 127532, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683017

RESUMO

Acetaminophen (APAP), a widely used analgesic-antipyretic drug, is frequently detected in the environment and may pose ecological risks to aquatic communities. In this work, an APAP-degrading organism, designated as Ensifer sp. POKHU, was isolated from activated sludge (AS) enriched with APAP. POKHU degraded up to 630 mg/L of APAP without substrate inhibition. The bacterium metabolized APAP to hydroquinone (HQ) via 4-aminophenol (4-AP). APAP derivatives, 4AP, HQ, and 1,4-benzoquinone (BQ), frequently detected in the environment, were found to inhibit nitrogen metabolism (ammonium oxidation) to a greater extent than APAP. POKHU had the ability to degrade varying levels (0.4-40 mg/L) of 4-AP, HQ, and BQ, which indicated a great potential for detoxification in environments contaminated with both APAP and its derivatives. The addition of POKHU to fresh AS samples taken from a wastewater treatment plant greatly increased the biotransformation rates of APAP from 5.6 d-1 (no POKHU augmentation) to >20.0 d-1 (5% POKHU). Bioaugmentation with POKHU reduced 400 µg/L of APAP to levels below its ecotoxicity threshold within 4 h, which is shorter than the typical hydraulic retention times for full-scale AS processing. Overall, this study identified a new auxiliary biological agent for APAP detoxification, which could degrade both APAP and its metabolic derivatives (those that can be more toxic than the parent contaminant, APAP). The results have practical implications for developing a biological means (detoxification and bioaugmentation) of treating high-strength pharmaceutical waste streams, such as wastewater from hospitals and drug manufactures, and of landfill leachates.


Assuntos
Acetaminofen/metabolismo , Biodegradação Ambiental , Rhizobiaceae/isolamento & purificação , Esgotos/microbiologia , Purificação da Água/métodos , Acetaminofen/análogos & derivados , Acetaminofen/química , Analgésicos não Entorpecentes/metabolismo , Biotransformação , Hidroquinonas/metabolismo , Cinética , Rhizobiaceae/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/química
18.
Chemosphere ; 259: 127421, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32603965

RESUMO

Nanocomposites with ultrahigh adsorption capabilities are highly desired for efficient wastewater remediation. Unfortunately, most of the nanomaterial based adsorbents showing inevitable limitation such as leaching and agglomeration led to the emerging field of carbonaceous hybrid materials with nanocomposites. Herein, we demonstrated a simple and low-temperature hydrothermal assisted preparation of Fe-Al based nanocomposites immobilized using carbon spheres. Towards this, we have approached two different routes one is hybridizing with nanocomposite and another is doping on the surface of the carbon spheres. Iron doping played a dual-faceted role of active site for robust adsorption as well as induce magnetic property to the composites. The micro-cleaners have been extensively characterized for their physicochemical properties and adsorption capacities using FTIR, Raman, XRD, BET isotherms and XPS techniques. Remarkably, microcleaners shows robust adsorption where >99% removal was obtained within 10 min for 50 mg L-1 concentrated Eriochrome Black T (EBT) dye using 0.01 g of materials. Further, adsorption data followed the pseudo second order kinetics while the equilibrium data fitted perfectly into the Langmuir adsorption equation. As synthesized user friendly microcleaner (HTC-2) exhibits maximum adsorption capacity (qmax) of 564.97 mg g-1 for EBT dye at pH 4. Hence, the preliminary results highlight the potential of the composites to be used in pretreatment steps of industry effluents.


Assuntos
Corantes/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Ânions , Compostos Azo , Carbono , Concentração de Íons de Hidrogênio , Ferro , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
19.
Chemosphere ; 259: 127395, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623200

RESUMO

In this work, iron (oxyhydr)oxide nanoparticle-doped expanded graphite (IO/EG-1 and IO/EG-2) was prepared via a hydrothermal reaction and applied for the phosphorus adsorption in the aqueous solutions. The analysis of scanning electron microscopy (SEM) and X-ray diffraction (XRD) verified the successful fabrication of IO/EGs, and iron (oxyhydr)oxide nanoparticles became more crystalized according to the calcination at high temperature (IO/EG-2). The maximum adsorption capacity of IO/EG-1 was considerably higher (7.30 mg/g) than that of IO/EG-2 (0.70 mg/g) mainly due to the electrostatic interaction between the negatively charged phosphate ions with iron (oxyhydr)oxides. At the neutral pH, IO/EG-1 exhibited more positively charged than IO/EG-2, which the iso-electric points (IEP) were pH of 9.1 and 6.0, respectively. The thermodynamic study also suggested that the phosphorus adsorption energy of IO/EG-1was considerably favorable (-12.13 kJ/mol) than that of IO/EG-2 (-7.43 kJ/mol). The regeneration of IO/EG-1 were efficiently achieved by a simple extraction using an alkaline solution such as NaOH. Overall, our study suggested that the prepared IO/EGs could be used as good adsorbents for the phosphorus recovery from aqueous solutions.


Assuntos
Grafite/química , Fósforo/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Ferro/química , Nanopartículas , Óxidos , Fosfatos , Termodinâmica , Difração de Raios X
20.
Chemosphere ; 259: 126949, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32634719

RESUMO

High internal phase emulsions (HIPEs) as template for fabrication of porous materials has attracted much attention, due to the high porosity and tunable porous structure. But the enormous consumption of organic solvents is still a nightmare for the practical application. In comparison, the aqueous foam without need any organic solvent and hence has greater advantages in the porous materials preparation. In this study, a novel Pickering foam which was stabilized by modified sepiolite (Sep) was prepared and applied as the template for preparation of the porous material via thermal-initiated polymerization. The Pickering foam had excellent ability and stability in the pH of 4-11 and the obtained porous adsorbent possess sufficient and tuned pore structure. The porous materials as adsorbent has favorable performance for adsorption and selective removal of cationic dyes, and the understanding adsorption capacities for Methylene blue (MB) and Methyl green (MG) can be achieved with 1421.18 mg/g and 638.81 mg/g within 60 and 45 min at 25 °C, respectively. This porous material can be as the potential adsorbent for adsorption or separation of organic pollutants.


Assuntos
Corantes/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cátions , Emulsões/química , Silicatos de Magnésio , Azul de Metileno/química , Polimerização , Porosidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA