Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.553
Filtrar
1.
J Environ Qual ; 49(1): 128-139, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33016363

RESUMO

The Variable Volume Water Model (VVWM), the receiving water body model for the USEPA regulatory assessment of aquatic pesticide exposures, is composed of a set of static and quasistatic receiving water body conceptual models, but research comparing performance of these models to observations is limited. The water body models included are the constant volume (CVol), constant volume with overflow (CVO), and varying volume with overflow (VVO) models. This work quantified the performance of these three VVWM conceptual models compared with atrazine observations in 50 community water systems (CWSs), and the effect of alternative conceptual models on estimated environmental concentrations of pesticides in regulatory screening assessments. The 50 selected CWSs most relevant to the static and quasistatic VVWM concepts were small in size, with estimated time to peak flow of <1.5 d for consistency with the daily runoff assumption in USEPA landscape Pesticide Root Zone Model (PRZM). The CVO and VVO conceptual models resulted in similar distributions of bias across CWSs with the median result being close to no bias, but the CVol model resulted in overestimation in the majority of CWSs with median model bias near three times the observed values. At present, the CVol conceptual model parameterized with conservative input assumptions has been the regulatory standard invoked in VVWM, yet our results showed that a more physically correct conceptual model (CVO or VVO) could be invoked in regulatory exposure modeling for ecological risk assessment, reducing structural model bias while still allowing users to introduce conservative model inputs for screening purposes.


Assuntos
Atrazina , Praguicidas/análise , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Modelos Teóricos , Água
2.
Sci Total Environ ; 747: 142095, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33076209

RESUMO

Despite the detection of a wide range of contaminants in the blood of green turtle populations foraging in three locations of northern Queensland - Upstart Bay, Cleveland Bay and the Howick Group of Reefs, little is known about the effects of these contaminants on turtle health. Newly developed cell-based bioassays using green turtle primary cell cultures provide an ethical, reproducible, and high-throughput method for assessing the risk of chemical exposure sea turtles. In this project, the toxicity of six priority metals (Mn, Co, Mo, As, Sb, Cu) and blood extracts from foraging turtles were tested in two bioassays adapted to green turtle primary skin and liver cells. Cytotoxicity of metals and blood extracts was measured in primary skin fibroblast cells using a resazurin assay. Glutathione-S-transferase (GST) activity was measured in primary skin fibroblasts and primary liver epithelial cells following exposure to metals and blood extracts. Arsenic, molybdenum, cobalt and copper were found to be cytotoxic to green turtle skin cells. Only manganese, cobalt and copper were found to alter GST activity, predominantly in skin cells, indicating a higher sensitivity of green turtle skin cells compared to liver cells. Effect concentrations of metals in both bioassays were above concentrations found in turtle blood. Turtle blood extracts from the three foraging grounds showed differences in cytotoxicity and GST activity. In both assays, blood extracts of turtles from Upstart Bay were the most toxic, followed by those from Cleveland Bay, then the Howick Reefs, suggesting turtles from Upstart Bay and Cleveland Bay may be at risk from current concentrations of organic contaminants. This study demonstrates that species-specific cell-based bioassays can be used effectively to assess chemical risk in sea turtles and their foraging grounds, and could be applied to assess chemical risk in other marine wildlife.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Bioensaio , Cultura Primária de Células , Queensland , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Chemosphere ; 254: 126900, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957295

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in marine environments and have arouse great concern since they pose adverse effects to marine ecosystem. To determine the potential impacts of environmentally relevant PAHs on early life stages of marine fish, this study exposed embryos of marine medaka (Oryzias melastigma) to 0, 2, 10, 50, and 250 µg/L of phenanthrene (Phe), one of the most abundant PAHs. The results demonstrated that Phe exposure decreased hatching rates, delayed hatching time of embryos, and increased deformity rate of newly-hatched larvae. Exposure to 10 and 50 µg/L Phe decreased the survival rate of marine medaka larvae at 28 days post-fertilization (dpf), and no embryo successfully hatched in 250 µg/L Phe exposure group. Morphology results showed that 10, 50, and 250 µg/L Phe exposure significantly retarded the development of embryos, and 2, 10, and 50 µg/L caused yolk sac edema and pericardial edema in newly-hatched larvae, indicating that low concentrations of Phe could induce developmental cardiac toxicity. Furthermore, the changes in the expression of heart development-related genes were determined, and the results showed that Phe-induced cardiac malformation might be related with fgf8, bmp4, smyd1, ATPase and gata4 genes. Overall, environmentally relevant PAHs could disrupt heart morphogenesis and hatching process of marine medaka, which might have profound consequences for sustainability of fish population.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Oryzias/crescimento & desenvolvimento , Fenantrenos/toxicidade , Teratogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Embrião não Mamífero/anormalidades , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/embriologia , Larva/efeitos dos fármacos , Larva/genética , Oryzias/genética , Fenantrenos/análise , Teratogênios/análise , Poluentes Químicos da Água/análise
4.
Aquat Toxicol ; 227: 105609, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32906060

RESUMO

Species responses to stress are expected to be dependent on their life-history strategy. In this study, we compare the responses of two free-living marine nematodes, Litoditis marina and Diplolaimella dievengatensis, both considered opportunistic, fast-growing, and stress-tolerant species, to the exposure to sublethal concentrations of sodium dodecyl sulfate (SDS) surfactant. Specifically, we evaluated the growth and reproduction rates, as well as the survival of individuals exposed from eggs and/or juveniles (J1) onwards. Exposure to SDS significantly affected the growth and reproduction rates of both species. However, whereas growth and reproduction rates of D. dievengatensis were significantly enhanced at low and intermediate concentrations of SDS (0.001% and 0.003%), for L. marina both parameters were significantly reduced by all SDS concentrations tested (0.001%, 0.003% and 0.006%). Exposure to SDS did not affect the survival of adult nematodes of D. dievengatensis, while for L. marina, survival of males exposed to 0.006% SDS was significantly reduced compared to the control. Responses of the life-history traits growth, fecundity and survival did not exhibit clear trade-offs. The contrasting responses of D. dievengatensis and L. marina indicate that biologically and ecologically similar species can have remarkably distinct tolerances to stress, and that, in agreement with recent studies, rhabditid nematodes cannot a priori be considered very stress tolerant. Consequently, single species traits and phylogenetic relatedness are poor predictors of nematode responses to toxic stress posed by anthropogenic activities.


Assuntos
Nematoides/fisiologia , Dodecilsulfato de Sódio/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Fertilidade , Masculino , Filogenia
5.
Aquat Toxicol ; 227: 105612, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32911328

RESUMO

Lambda-cyhalothrin is a synthetic pyrethroid that mimics the structure and insecticidal properties of pyrethrin, a natural insecticide derived from chrysanthemums. In fish, it disrupts the nervous system, causing motor paralysis and several other alterations associated with varying levels of mortality. This study aimed to evaluate osmoregulatory responses and histological changes in the gills of Oreochromis niloticus chronically exposed to a sublethal dosage (0.86 µg/L) of lambda-cyhalothrin. The mean serum values for Na2+, K+, Cl-, Ca2+, pH, lactate, H+, HCO3, and glucose along to degree of tissue change (DTC) at 24, 96, 168, and 240 h post-exposure (hpe) were evaluated. Lambda-cyhalothrin affected the neuronal motor function at 24 hpe, followed by the increase of the K+, Ca2+, H+, and glucose levels in the exposed group, compared to the control group. Lactate and H+ levels in the exposed group were higher than those in the control group at 168 and 240 hpe respectively. HCO3, and Cl- levels increased at 240 hpe, although there was no change in the pH values. DTC was higher in treated fish than in control fish, but there were no significant differences among time-exposure. The changes detected ranged from hyperemia of the branchial vasculature, eosinophilic granulocytic cell infiltration, mucous cell hyperplasia, and partial fusion of secondary lamellae at 24 hpe to vascular aneurysm formation, and necrosis of the lamellar epithelium at 240 hpe. Thus, a sublethal dosage of lambda-cyhalothrin in the long-term is toxic for Nile tilapia, characterized by hypokalemia, hypercalcemia, hyperglycemia, and respiratory alkalosis, followed by time-dependent histological changes.


Assuntos
Ciclídeos/fisiologia , Nitrilos/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brânquias/patologia , Inseticidas
6.
Aquat Toxicol ; 227: 105594, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32911329

RESUMO

Diatoms are highly sensitive to perturbations in their environment and are thus useful as bioindicators for anthropogenic impacts such as pollution. However, there is no consensus about what aspects of diatom populations to measure (e.g., diversity, physiology, or morphology) and efficient and reliable survey protocols are lacking. Here, we evaluated the ecological status of diatom communities using both traditional and relatively novel methods on two islands (Deokjeok island and Daeijak island) affected by anthropogenic activities due to extensive agricultural practices and exploitation and that are under consideration for representative touristic sites in South Korea. Dissolved concentrations of metals and metalloid (As, Cu, Cr, Cd, Ni, Hg, Pb, and Zn) were below the ecological screening and toxicity reference values in water fractions but were above these values for sediment, particularly at one island, Deokjeok. The tested methods were generally consistent in finding little evidence for disruption of diatom communities, with dominance by Navicula and Gyrosigma, relatively high diversity, and typical abundance of lipid bodies and morphological deformities. However, analysis of lipid bodies and morphological deformities suggested greater potential anthropogenic disturbance at one site in Deokjeok. Future planning is required to ensure the maintenance of the near-pristine environments present on these islands.


Assuntos
Diatomáceas , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Agricultura , China , Saúde Ambiental , Sedimentos Geológicos , Ilhas , Mercúrio/análise , Metais Pesados/toxicidade , República da Coreia , Medição de Risco
7.
Aquat Toxicol ; 227: 105595, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32911330

RESUMO

In order to understand the potential impacts of nickel nanowires (Ni NWs) after reaching the aquatic environment, this research evaluated the toxicity of Ni NWs with different lengths (≤ 1.1, ≤11 and ≤ 80 µm) for several floating, planktonic and nektonic freshwater organisms. In this work, Ni NWs were synthesized by electrodeposition using anodized aluminum oxide (AAO) membranes. The toxicity of the NWs was assessed using a battery of aquatic species representative of key functions at the ecosystem level: the bacterium Aliivibrio fischeri, the algae Raphidocelis subcapitata, the macrophyte Lemna minor, the crustacean Daphnia magna and the zebrafish Danio rerio. Results indicated that for the concentrations tested (up to 2.5 mg L-1) the synthesized Ni NWs showed low toxicity. And although no lethal toxicity was observed for D. magna, at a sublethal level the feeding activity of the freshwater cladoceran was severely affected after exposure to Ni NWs. These findings showed that NWs can be accumulated in the gut of D. magna, even during a short exposure (24 h) directly impairing Daphnia nutrition and eventually populations growth. Consequently, this can also contribute to trophic transfer of NWs along the food chain. According to our results the toxicity of Ni NW may be mainly attributed to physical effects rather than chemical effects of Ni ions, considering that the concentrations of Ni NWs tested in this study were well below the toxicity thresholds reported in the literature for Ni ions and for Ni NMs.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Nanofios/toxicidade , Níquel/toxicidade , Purificação da Água/métodos , Aliivibrio fischeri , Animais , Clorofíceas , Daphnia/efeitos dos fármacos , Ecossistema , Cadeia Alimentar , Água Doce , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
8.
Bull Environ Contam Toxicol ; 105(4): 565-571, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32918564

RESUMO

Fish consumption from contaminated water-bodies is a serious health issue. This study conducted to reveal the presence of heavy metals and bisphenols in Vembanad lake, an exploiting tourist spot in Kerala, receiving untreated agricultural, domestic, municipal, and industrial effluents. We evaluated aquatic contaminant impact on hepatic stress markers in Etroplus suratensis from fragile Vembanad lake. The significant difference in water physiochemical parameters, the concentration of heavy metals, and bisphenols (BPA and BPS) were studied. Hepatic tissue of E. suratensis inhabited in lake featured with high iron (11.29 ± 0.39 ppm) and BPA (0.02412 ± 0.0031 µg/mL) content along with an increased hepatic stress marker and distorted hepatic structure. The study highlights the presence of high iron and BPA in edible fish. The study recommends monitoring of physiochemical characters of freshwater lakes is essential for better survival of freshwater flora and fauna.


Assuntos
Compostos Benzidrílicos/toxicidade , Ciclídeos , Exposição Ambiental/efeitos adversos , Fígado/efeitos dos fármacos , Metais Pesados/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Feminino , Índia , Lagos , Fígado/anatomia & histologia , Fígado/metabolismo , Masculino
9.
Aquat Toxicol ; 227: 105625, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927179

RESUMO

Here we report the molecular networks associated with the mucosal and systemic responses to peracetic acid (PAA), a candidate oxidative chemotherapeutic in Atlantic salmon (Salmo salar). Smolts were exposed to different therapeutic doses (0, 0.6 and 2.4 mg/L) of PAA for 5 min, followed by a re-exposure to the same concentrations for 30 min 2 weeks later. PAA-exposed groups have higher external welfare score alterations, especially 2 weeks after the re-exposure. Cases of fin damage and scale loss were prevalent in the PAA-exposed groups. Transcriptomic profiling of mucosal tissues revealed that the skin had 12.5 % more differentially regulated genes (DEGs) than the gills following PAA exposure. The largest cluster of DEGs, both in the skin and gills, were involved in tissue extracellular matrix and metabolism. There were 22 DEGs common to both mucosal tissues, which were represented primarily by genes involved in the biophysical integrity of the mucosal barrier, including cadherin, collagen I α 2 chain, mucin-2 and spondin 1a. The absence of significant clustering in the plasma metabolomes amongst the three treatment groups indicates that PAA treatment did not induce any global metabolomic disturbances. Nonetheless, five metabolites with known functions during oxidative stress were remarkably affected by PAA treatments such as citrulline, histidine, tryptophan, methionine and trans-4-hydroxyproline. Collectively, these results indicate that salmon were able to mount mucosal and systemic adaptive responses to therapeutic doses of PAA and that the molecules identified are potential markers for assessing the health and welfare consequences of oxidant exposure.


Assuntos
Metaboloma , Transcriptoma , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Doenças dos Peixes/genética , Perfilação da Expressão Gênica , Brânquias/efeitos dos fármacos , Membrana Mucosa/metabolismo , Oxidantes/metabolismo , Estresse Oxidativo , Salmo salar/metabolismo
10.
Aquat Toxicol ; 227: 105614, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932040

RESUMO

The DNA repair system has evolved from the common ancestor of all life forms and its function is highly conserved within eukaryotes. In this study, to reveal the role of DNA double-strand break repair (DSB) genes in response to benzo[α]pyrene (B[α]P), we first identified DSB genes in relation to homologous recombination and non-homologous end joining events in four Brachionus rotifer spp.: B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis. In all the Brachionus spp., 39 orthologous genes to human DSB repair genes were identified. Furthermore, three genes in B. koreanus, two genes in B. plicatilis, and one gene in B. calyciflorus and B. rotundiformis were present as duplicated genes, indicating that these genes were diversified over speciation in the genus Brachionus. Moreover, we compared DSB repair genes on the gene structures in four monogonont Brachionus rotifers and the bdelloid rotifer Adineta vaga, which possesses highly efficient DNA repair ability. The transcriptional responses of four monogonont Brachionus rotifers in response to B[α]P exposure showed how B[α]P exposure led to DSBs and subsequently recruited DNA DSB repair pathways in the rotifer B. koreanus. Taken together, this study provides a better understanding of the potential role of DSB repair genes in the monogonont rotifer Brachionus spp. in response to B[α]P.


Assuntos
Benzo(a)pireno/toxicidade , Rotíferos/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Benzo(a)pireno/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Genoma , Humanos
11.
Aquat Toxicol ; 227: 105615, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932041

RESUMO

Chemical contaminants can be discharged by vessel hull cleaning processes, such as scraping, jet spraying, and painting, all of which produce readily transportable contaminants into the marine environment, where they are referred to as 'hotspots' of contamination in coastal areas. However, many countries have not yet established effective evaluation methods for disposal of waste mixtures or management guidelines for areas of hull cleaning. To define the toxic effects of wastewater from vessel hull cleaning in dry docks on resident non-target organisms, we investigated the chemical concentrations and developmental toxicity on embryonic flounder, which is an organism sensitive to chemical contamination. In this study, the dominant inorganic metal discharged was zinc when cleaning Ship A (300 tons) and copper for Ship B (5,000 tons). The wastewater from high-pressure water blasting (WHPB) of Ship A (300 tons) and Ship B (5,000 tons) produced a largely overlapping suite of developmental malformations including pericardial edema, spinal curvature, and tail fin defects. Forty-eight hours after exposure, the frequency percentage of malformation began to increase in embryos exposed to a 500-fold dilution of WHPB from Ships A and B. We performed transcriptome sequencing to characterize the toxicological developmental effects of WHPB exposure at the molecular level. The results of the analysis revealed significantly altered expression of genes associated with muscle cell differentiation, actin-mediated cell contraction, and nervous system development (cutoff P < 0.01) in embryonic flounder exposed to high-pressure cleaning effluent from Ship A. Genes associated with chromatin remodeling, cell cycling, and insulin receptor signaling pathways were significantly altered in embryonic flounder exposed to WHPB of Ship B (cutoff P < 0.01). These findings provide a greater understanding of the developmental toxicity and potential effects of WHPB effluent on coastal embryonic fish. Furthermore, our results could inform WHPB effluent management practices to reduce impacts on non-target coastal organisms.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica , Peixes , Linguado , Metais , Navios , Águas Residuárias/química
12.
Aquat Toxicol ; 227: 105620, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932042

RESUMO

The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.


Assuntos
Organismos Aquáticos/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Disruptores Endócrinos , Monitoramento Ambiental , Poluentes Ambientais/farmacologia , Peixes , Água Doce , Humanos , Plásticos
13.
Bull Environ Contam Toxicol ; 105(4): 582-587, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32948914

RESUMO

Oreochromis niloticus was exposed to 10.0 ppb of organophosphate insecticide chlorpyrifos (CPF) and avermectin insecticides abamectin (ABM) and emamectin benzoate (EB) for 48 and 96 h. RBC and Hb decreased in CPF- and ABM-exposed fish after 96-h. Plasma ALT, AST, cortisol, and glucose increased in 96-h CPF-, ABM- and EB-exposed fish, while plasma ions declined in 96-h CPF-exposed ones. Insecticides caused alterations in liver oxidative stress parameters. In fish exposed to CPF, CAT increased after 48-h whereas it decreased after 96-h. Also, CAT declined in 48- and 96-h ABM-exposed fish, whereas it elevated in 48-h EB-exposed ones. Insecticides caused decreases in SOD at 48- and 96-h and in GR after 96-h. GSH elevated in CPF-exposed fish after 48-h, while it decreased in all the tested insecticide exposures after 96-h. Malondialdehyde of fish exposed to insecticides for 96-h increased. Consequently, toxic effects of insecticides on O. niloticus were generally as CPF > ABM > EB.


Assuntos
Clorpirifos/toxicidade , Ciclídeos , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Animais , Análise Química do Sangue/veterinária , Testes Hematológicos/veterinária , Ivermectina/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Oxirredução , Distribuição Aleatória , Testes de Toxicidade Aguda/veterinária
14.
Mar Environ Res ; 160: 104992, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907729

RESUMO

Livers from dab (Limanda limanda), plaice (Pleuronectes platessa) and flounder (Platichthys flesus) sampled from the Baltic Sea were used to determine the interaction of flatfish CYP1A enzymes with 2,4,6-trinitrotoluene (TNT) in vitro. Competitive inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-deethylase (MROD) could be demonstrated for all three flatfish species. The highest inhibition of CYP1A activities was measured in liver samples of flounder resulting in a half maximal inhibitory concentration (IC50) of 28.1 µM TNT. Due to their lower inhibition (EROD IC50 65.2 µM TNT, MROD IC50 40.3 µM TNT), dab liver samples were used to conduct in vitro metabolization experiments with TNT. The metabolization of TNT in fish was investigated with post-mitochondrial fractions (PMF) of dab liver as a model system after adding different cofactors. Rapid and time-dependent enzymatic degradation of TNT was observed. The concentrations of 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene increased in the samples over time. Additionally, 2,2,6,6-tetranitro-4,4-azoxytoluene was detected in one sample. The results of this study indicate that in vitro experiments are useful to investigate the xenobiotic metabolism of fish under controlled conditions prior to field studies. The metabolites found can serve as target compounds for marine monitoring of TNT contamination in munition dumpsites.


Assuntos
Linguado , Trinitrotolueno , Poluentes Químicos da Água , Animais , Citocromo P-450 CYP1A1 , Fígado , Trinitrotolueno/farmacocinética , Trinitrotolueno/toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
15.
Mar Environ Res ; 160: 105019, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907733

RESUMO

Polycyclic musk compounds have been identified in environmental matrices (water, sediment and air) and in biological tissues in the last decade, yet only minimal attention has been paid to their chronic toxicity in the marine environment. In the present research, the clams Ruditapes philippinarum were exposed to 0.005, 0.05, 0.5, 5 and 50 µg/L of the fragrances Galaxolide® (HHCB) and Tonalide® (AHTN) for 21 days. A battery of biomarkers related with xenobiotics biotransformation (EROD and GST), oxidative stress (GPx, GR and LPO) and genotoxicity (DNA damage) were measured in digestive gland tissues. HHCB and AHTN significantly (p < 0.05) induced EROD and GST enzymatic activities at environmental concentrations. Both fragrances also induced GPx activity. All concentrations of both compounds induced an increase of LPO and DNA damage on day 21. Although these substances have been reported as not acutely toxic, this study shows that they might induce oxidative stress and genotoxicity in marine organisms.


Assuntos
Benzopiranos , Dano ao DNA , Ácidos Graxos Monoinsaturados , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Benzopiranos/toxicidade , Ácidos Graxos Monoinsaturados/toxicidade , Tetra-Hidronaftalenos , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 745: 141285, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32943215

RESUMO

During water years (WY) 2013-2017, the U.S. Geological Survey, National Water-Quality Assessment (NAWQA) Project, sampled the National Water Quality Network - Rivers and Streams (NWQN) year-round and reported on 221 pesticides at 72 sites across the United States in agricultural, developed, and mixed land use watersheds. The Pesticide Toxicity Index (PTI) was used to estimate the potential chronic and acute toxicity to three taxonomic groups - fish, cladocerans, and benthic invertebrates. For invertebrates (either cladocerans, benthic invertebrates, or both), the maximum PTI score exceeded the predicted acute toxicity screening level at 18 of the 72 sites (25%) at some point during WY 2013-2017. The predicted toxicity of a single pesticide compound was found to overwhelm the toxicity of other pesticides in the mixtures after concentrations were toxicity weighted. For this study, about 71%, 72%, and 92% of the Fish-, Cladoceran-, and Benthic Invertebrate-PTI scores, respectively, had one pesticide compound primarily contributing to sample potential toxicity (>50%). There were 17 (13 insecticides, 2 herbicides, 1 fungicide, and 1 synergist) of the 221 pesticide compounds analyzed that were the primary drivers of potential toxicity in each water sample in which the PTI and TUmax (toxic unit score for the pesticide that makes the single largest contribution to the PTI) scores were above predicted chronic (>0.1) or acute (>1) toxicity levels for one of the three taxa. For cladocerans and benthic invertebrates, the drivers of predicted chronic (>0.1) and acute (>1) PTIs were mostly insecticides. For cladocerans, the pesticide compounds driving the PTI scores were bifenthrin, carbaryl, chlorpyrifos, diazinon, dichlorvos, dicrotophos, diflubenzuron, flubendiamide, and tebupirimfos. For benthic invertebrates, atrazine (an herbicide), as well as the insecticides - bifenthrin, carbaryl, carbofuran, chlorpyrifos, diazinon, dichlorvos, fipronil, imidacloprid, and methamidophos - were the drivers of predicted toxicity. For fish, there were three pesticide types that contributed the most to predicted chronic (>0.1) PTIs - acetochlor, an herbicide; carbendazim, a fungicide degradate; and piperonylbutoxide, a synergist.


Assuntos
Praguicidas/análise , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Rios , Estados Unidos , Água
17.
Ecotoxicol Environ Saf ; 203: 111043, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888597

RESUMO

Intraspecific difference in toxicity brings uncertainty to ecological risk assessment (ERA) and water quality criteria (WQC) of chemicals. Here, we compared intraspecies sensitivity to toxicants for Mesocyclops leuckarti of which toxicity data was obtained from published literatures, and zebrafish Danio rerio of which toxicity data was done in this study). Due to the internal concentration of chemicals not measured, simplified toxicokinetic-toxicodynamic (TK-TD) models were used, and we investigated whether TK-TD parameters estimated by Bayesian method might represent the differences in sensitivity between life-stages of 2 species. The results demonstrated that the difference in TK-TD parameters (background mortality m0, no effect concentration NEC, the killing rate ks, and the dominant rate kd) could represent the toxicity difference between life-stages of individual species. The TK-TD model could predict toxicity in individual species (Cyprinus carpio L., Enchytraeus crypticus, Folsomia candida, Hyalella Azteca) exposed to different chemical concentrations and successfully extrapolate toxicity between different life stages of Mesocyclops leuckarti and Danio rerio by scaling several TK-TD parameters. The modified TK-TD model on the extrapolation toxicity of chemicals between life stages for species could be useful for the ERA and for deriving and revising WQC for chemicals.


Assuntos
Carpas/metabolismo , Copépodes/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Modelos Biológicos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Teorema de Bayes , Bioacumulação , Carpas/crescimento & desenvolvimento , Copépodes/crescimento & desenvolvimento , Embrião não Mamífero/metabolismo , Larva/metabolismo , Medição de Risco , Especificidade da Espécie , Toxicocinética , Peixe-Zebra/crescimento & desenvolvimento
18.
Ecotoxicol Environ Saf ; 203: 111029, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888609

RESUMO

The chitin synthesis inhibitor teflubenzuron (TFB) is a feed antiparasitic agents used to impede molting of the salmon lice, an ecto-parasite that severely affects the salmon industry. Low absorption of oral administered TFB may cause elevated concentrations in the feces discharged from the salmon into the benthic environment. The polychaete Capitella sp. are often dominant in such habitats and consume organic waste deposited on the sediment. In the present study, Capitella sp. were exposed to doses of TFB in salmon feed of 1, 2 and 4 g TFB kg-1 (0 g TFB kg-1 in control group) over an experimental period of 32 days. Cumulative mortality was 12%-15% in both treatment groups with 1 and 2 g TFB kg-1 and reached 27% in the group with 4 g TFB kg-1. Only the highest dose (4 g TFB kg-1) negatively affected feed intake, growth and respiration of the polychaetes while food conversion efficiency was not affected. At the end of the experiment, the concentrations of TFB in the Capitella sp. were high, in the range of 9.24-10.32 µg g-1 for the three treatment groups. It was suggested that a maximum level of absorption rate was reached, also for the lowest dose. High concentrations of TFB in the Capitella sp. might pose a risk to crustaceans that forage for polychaetes in the vicinity of fish farms. We conclude that the effects of TFB on Capitella sp. may therefore primarily be to the predators rather than the Capitella sp.


Assuntos
Antiparasitários/toxicidade , Benzamidas/toxicidade , Bioacumulação , Sedimentos Geológicos/química , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antiparasitários/metabolismo , Benzamidas/metabolismo , Copépodes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Pesqueiros , Modelos Teóricos , Poliquetos/metabolismo , Salmão/parasitologia , Análise de Sobrevida , Poluentes Químicos da Água/metabolismo
19.
Ecotoxicol Environ Saf ; 203: 111031, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888610

RESUMO

Bone mineral density (BMD) changes were reported to be associated with excessive fluoride exposure and abnormal expression of RUNX2. However, whether the alteration of methylation status, a most commonly used marker for the alteration of gene expression in epidemiological investigation, of RUNX2 is associated with low-to-moderate fluoride exposure and BMD changes has not been reported. Our study aims to explore the role of RUNX2 promoter methylation in BMD changes induced by low-to-moderate fluoride exposure. A total of 1124 adults (413 men and 711 women) were recruited from Kaifeng City in 2017. We measured BMD using ultrasound bone densitometer. Concentrations of urinary fluoride (UF) were measured using ion-selective electrode, and the participants were grouped into control group (CG) and excessive fluoride group (EFG) according to the concentration of UF. We extracted DNA from fasting peripheral blood samples and then detected the promoter methylation levels of RUNX2 using quantitative methylation-specific PCR. Relationships between UF concentration, RUNX2 promoter methylation and BMD changes were analyzed using generalized linear model and logistic regression. Results showed in EFG (UF concentration > 1.6 mg/L), BMD was negatively correlated with UF concentration (ß: -0.14; 95%CI: -0.26, -0.01) and RUNX2 promoter methylation (ß: -0.13; 95%CI: -0.22, -0.03) in women. The methylation rate of RUNX2 promoter increased by 2.16% for each 1 mg/L increment in UF concentration of women in EFG (95%CI: 0.37, 3.96). No any significant associations between UF concentration, RUNX2 promoter methylation, and BMD were observed in the individuals in CG. Mediation analysis showed that RUNX2 promoter methylation mediated 18.2% (95% CI: 4.2%, 53.2%) of the association between UF concentration and BMD of women in EFG. In conclusion, excessive fluoride exposure (>1.6 mg/L) is associated with changes of BMD in women, and this association is mediated by RUNX2 promoter methylation.


Assuntos
Densidade Óssea/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Exposição Ambiental/análise , Fluoretos/toxicidade , Poluentes Químicos da Água/toxicidade , Absorciometria de Fóton , Adulto , Idoso , Densidade Óssea/genética , China , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Estudos Transversais , Metilação de DNA/efeitos dos fármacos , Feminino , Fluoretos/urina , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Inquéritos e Questionários , Poluentes Químicos da Água/urina
20.
Ecotoxicol Environ Saf ; 203: 111046, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888614

RESUMO

Agricultural pesticides serve as effective controls of unwanted weeds and pests. However, these same chemicals can exert toxic effects in non-target organisms. To determine chemical modes of action, the toxicity ratio (TR) and critical body residues (CBRs) of 57 pesticides were calculated for Daphnia magna. Results showed that the CBR values of inert compounds were close to a constant while the CBR values of pesticides varied over a wider range. Although herbicides are categorized as specifically-acting compounds to plants, herbicides did not exhibit excess toxicity to Daphnia magna and were categorized as inert compounds with an average logTR = 0.41, which was less than a threshold of one. Conversely, fungicides and insecticides exhibited strong potential for toxic effects to Daphnia magna with an average logTR >2. Many of these chemicals act via disruption of the nervous, respiratory, or reproductive system, with high ligand-receptor binding activity which leads to higher toxicity for Daphnia magna. Molecular docking using acetylcholinesterase revealed that fungicides and insecticides bind more easily with the biological macromolecule when compared with inert compounds. Quantitative structure-activity relationship (QSAR) analysis revealed that the toxicity of fungicides was mainly dependent upon the heat of formation and polar surface area, while the toxicity of insecticides was more related to hydrogen-bond properties. This comprehensive analysis reveals that there are specific differences in toxic mechanisms between fungicides and insecticides. These results are useful for determining relative risk associated with pesticide exposure to aquatic crustaceans, such as Daphnia magna.


Assuntos
Daphnia/efeitos dos fármacos , Modelos Biológicos , Praguicidas/química , Praguicidas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Daphnia/metabolismo , Relação Dose-Resposta a Droga , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Herbicidas/química , Herbicidas/toxicidade , Ligação de Hidrogênio , Inseticidas/química , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Resíduos de Praguicidas/metabolismo , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA