Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.757
Filtrar
1.
Sci Total Environ ; 792: 148329, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465047

RESUMO

The emission factor (EF), the weight of potentially toxic elements (PTEs) per unit energy or weight of sinter produced were evaluated for coal-fired boilers and sintering furnaces integrated in a steel plant. From three coal-fired boilers, 15 samples were taken while 22 samples were taken from four sintering furnaces. Investigations were performed on the EF of lead, cadmium, mercury, arsenic and chromium (VI). The coefficient of variance for the first 3 samples from each PTE was used to decide whether 2 more samples were necessary for the investigation. Three samples were sufficient for Cr (VI), however, 5 samples were required for Pb, Cd, Hg, and As, since the variances in concentrations of the first three samples exceeded 20%. The ranges for the ratio of the laboratory-based EF to the default EF applied by the Environment Protection Administration (EPA Taiwan) for Pb, Cd, Hg, and As for the coal-fired boiler were 0.08-0.013, 0.014-0.017, 0.019-0.033, 0.047-0.066 and for the sintering furnaces were 0.059-0.232, 0.05-0.151, 0.05-0.364, and 0.067-0.824. The ratio for Cr (VI)- was constant at 0.005 for all the coal fired boilers while it ranged from 0.057-0.709 for the sintering furnaces. Whilst source identification, enrichment factors, and spatial distributions for PTEs are often studied, laboratory-based investigations on the EFs for PTEs from industrial plants are rarely performed. This study filled the information gap and compared the obtained EFs with the EPA default values. To avoid overcharging industrial plants equipped with the best available technology for emission control, the EPA should apply field investigations and laboratory-based EFs instead of the default EPA EFs to calculate air pollution fees. Insights from this investigation can be applied to promote the adoption of appropriate air pollution control devices to cut down the emission of PTEs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mercúrio , Poluentes Atmosféricos/análise , Carvão Mineral/análise , Centrais Elétricas , Aço
2.
Sci Total Environ ; 792: 148393, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465048

RESUMO

The ambient atmospheric PM2.5 concentrations in Anhui Province, China, which links the Yangtze River Delta region, China's fastest growing economy area, with the Beijing-Tianjin-Hebei (BTH) region, China's most polluted region, are influenced not only by local emissions, but also by changes in regional circulation. During the period 2013-2017, when China adopted a series of pollution abatement measures, there were still occasional pollution episodes with significant increases in PM2.5 concentrations. PM2.5 rise instead during the period 2013-2017 in Anhui (the Center of the Yangtze-Huaihe, YH), when pollution emissions continued to decrease? What is the controlling mechanism behind these? By analyzing elements such as ground-based PM2.5 concentration and the planetary boundary layer (PBL) structure affecting it as well as larger scale circulation, combined with the analysis of a parameterized index, one can find that aerosol pollution in the YH region can usually be classified into three types. (1) There is a short-term transport stage (TS) in the initial stage of pollution, then as the pollutant concentrations increase, the PBL height decreases, the temperature inversion is gradually formed or strengthened, the wind speed decreases and the relative humidity of the lower layer increases, forming a two-way feedback mechanism in the cumulative stage (CS). (2) Pollutant concentrations will not drop rapidly in the later stage of CS, while a short-term TS will occur again. (3) The explosive rise (ER) events are mainly affected by transportation in the YH. The first of these types tends to be accompanied by the emergence and maintenance of heavy pollution periods (HPEs), and some phases is accompanied by explosive rises (ERs) in PM2.5 that at least double in a short period of time. To sum up, deterioration of meteorological conditions explaining approximately 68% to the increase in PM2.5 in the ER.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Material Particulado/análise , Tempo (Meteorologia)
3.
Sensors (Basel) ; 21(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502692

RESUMO

Many approaches to time series classification rely on machine learning methods. However, there is growing interest in going beyond black box prediction models to understand discriminatory features of the time series and their associations with outcomes. One promising method is time-series shapelets (TSS), which identifies maximally discriminative subsequences of time series. For example, in environmental health applications TSS could be used to identify short-term patterns in exposure time series (shapelets) associated with adverse health outcomes. Identification of candidate shapelets in TSS is computationally intensive. The original TSS algorithm used exhaustive search. Subsequent algorithms introduced efficiencies by trimming/aggregating the set of candidates or training candidates from initialized values, but these approaches have limitations. In this paper, we introduce Wavelet-TSS (W-TSS) a novel intelligent method for identifying candidate shapelets in TSS using wavelet transformation discovery. We tested W-TSS on two datasets: (1) a synthetic example used in previous TSS studies and (2) a panel study relating exposures from residential air pollution sensors to symptoms in participants with asthma. Compared to previous TSS algorithms, W-TSS was more computationally efficient, more accurate, and was able to discover more discriminative shapelets. W-TSS does not require pre-specification of shapelet length.


Assuntos
Poluição do Ar , Algoritmos , Humanos , Aprendizado de Máquina , Projetos de Pesquisa
4.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502737

RESUMO

This paper presents a calibration system for low-cost suspended particulate matter (PM) sensors, consisting of reference instruments, enclosed space in a metal pipe (volume 0.145 m3), a duct fan, a controller and automated control software. The described system is capable of generating stable and repeatable concentrations of suspended PM in the air duct. In this paper, as the final result, we presented the process and effects of calibration of two low-cost air pollution stations-university measuring stations (UMS)-developed and used in the scientific project known as Storm&DustNet, implemented at the Jagiellonian University in Kraków (Poland), for the concentration range of PM from a few up to 240 µg·m-3. Finally, we postulate that a device of this type should be available for every system composed of a large number of low-cost PM sensors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calibragem , Monitoramento Ambiental , Humanos , Umidade , Material Particulado/análise , Temperatura
5.
J Res Health Sci ; 21(2): e00518, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-34465641

RESUMO

BACKGROUND: This study aimed at assessing how population density (PD), aging index (AI), use of public transport (URPT), and PM10 concentration (PI) modulated the trajectory of the main COVID-19 pandemic outcomes in Italy, also in the recrudescence phase of the epidemic. STUDY DESIGN: Ecological study. METHODS: For each region, we recovered data about cases, deaths, and case fatality rate (CFR) recorded since both the beginning of the epidemic and September 1, 2020. Data about total hospitalizations were included as well. RESULTS: PD correlated with, and was the best predictor of, total and partial cases, total and partial deaths, and total hospitalizations. Moreover, URPT correlated with, and was the best predictor of, total CFR. Besides, PI correlated significantly with total and partial cases, total and partial deaths, and total hospitalizations. CONCLUSION: PD explains COVID-19 morbidity, mortality, and severity while URPT is the best predictor of disease lethality. These findings should be interpreted with caution due to the ecological fallacy.


Assuntos
COVID-19/mortalidade , Hospitalização , Pandemias , Densidade Demográfica , Transportes , Fatores Etários , Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , Meio Ambiente , Humanos , Itália , Tamanho da Partícula , Recidiva , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença
6.
BMJ Open ; 11(9): e046040, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497075

RESUMO

OBJECTIVES: To estimate concentration-response relationships for particulate matter (PM) and black carbon (BC) in relation to mortality in cohorts from three Swedish cities with comparatively low pollutant levels. SETTING: Cohorts from Gothenburg, Stockholm and Umeå, Sweden. DESIGN: High-resolution dispersion models were used to estimate annual mean concentrations of PM with aerodynamic diameter ≤10 µm (PM10) and ≤2.5 µm (PM2.5), and BC, at individual addresses during each year of follow-up, 1990-2011. Moving averages were calculated for the time windows 1-5 years (lag1-5) and 6-10 years (lag6-10) preceding the outcome. Cause-specific mortality data were obtained from the national cause of death registry. Cohort-specific HRs were estimated using Cox regression models and then meta-analysed including a random effect of cohort. PARTICIPANTS: During the study period, 7 340 cases of natural mortality, 2 755 cases of cardiovascular disease (CVD) mortality and 817 cases of respiratory and lung cancer mortality were observed among in total 68 679 individuals and 689 813 person-years of follow-up. RESULTS: Both PM10 (range: 6.3-41.9 µg/m3) and BC (range: 0.2-6.8 µg/m3) were associated with natural mortality showing 17% (95% CI 6% to 31%) and 9% (95% CI 0% to 18%) increased risks per 10 µg/m3 and 1 µg/m3 of lag1-5 exposure, respectively. For PM2.5 (range: 4.0-22.4 µg/m3), the estimated increase was 13% per 5 µg/m3, but less precise (95% CI -9% to 40%). Estimates for CVD mortality appeared higher for both PM10 and PM2.5. No association was observed with respiratory mortality. CONCLUSION: The results support an effect of long-term air pollution on natural mortality and mortality in CVD with high relative risks also at low exposure levels. These findings are relevant for future decisions concerning air quality policies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carbono , Causas de Morte , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Suécia/epidemiologia
7.
BMJ ; 374: n1904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470785

RESUMO

OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Doenças não Transmissíveis/mortalidade , Europa (Continente) , Humanos
8.
J Hazard Mater ; 416: 125851, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492802

RESUMO

This study examines point and non-point sources of air pollution and particulate matter and their associated socioeconomic and health impacts in South Asian countries, primarily India, China, and Pakistan. The legislative frameworks, policy gaps, and targeted solutions are also scrutinized. The major cities in these countries have surpassed the permissible limits defined by WHO for sulfur dioxide, carbon monoxide, particulate matter, and nitrogen dioxide. As a result, they are facing widespread health problems, disabilities, and causalities at extreme events. Populations in these countries are comparatively more prone to air pollution effects because they spend more time in the open air, increasing their likelihood of exposure to air pollutants. The elevated level of air pollutants and their long-term exposure increases the susceptibility to several chronic/acute diseases, i.e., obstructive pulmonary diseases, acute respiratory distress, chronic bronchitis, and emphysema. More in-depth spatial-temporal air pollution monitoring studies in China, India, and Pakistan are recommended. The study findings suggest that policymakers at the local, national, and regional levels should devise targeted policies by considering all the relevant parameters, including the country's economic status, local meteorological conditions, industrial interests, public lifestyle, and national literacy rate. This approach will also help design and implement more efficient policies which are less likely to fail when brought into practice.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China , Índia , Dióxido de Nitrogênio , Paquistão , Material Particulado/análise , Material Particulado/toxicidade , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade
9.
Cien Saude Colet ; 26(suppl 2): 3635-3645, 2021.
Artigo em Português | MEDLINE | ID: mdl-34468658

RESUMO

Environmental surveillance by the people fosters the protagonism of individuals in a situation of environmental vulnerability to generate and evaluate data regarding the pollution to which they are exposed. The scope of this work was to analyze such experiences in two areas impacted by the steel industry: Santa Cruz/RJ and Piquiá de Baixo/MA. At these sites, community environmental monitoring (CEM) activities were conducted to measure 2.5 micrometer particulate matter (PM2.5) levels in the atmosphere, between November/2016 and July/2017. Such activities were conducted using a low-cost and easy-to-operate air quality monitor. Monthly averages of PM2.5 levels in Piquiá and Santa Cruz were high, depending on the period assessed, since they surpassed the annual average recommended by the World Health Organization (WHO) of 10 µg/m3, and, on several occasions, the recommended daily average of 25 µg/m3. The main idea of this monitoring proposal was to establish a process capable of presenting a counterpoint to official information on local atmospheric pollution scenarios, with the involvement of affected communities. The pollution data produced enable these communities to participate in public debates and decision-making processes in a more informed way.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos , Material Particulado , Aço
10.
Chemosphere ; 282: 131052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470149

RESUMO

The "Land of pyres", namely "La Terra dei Fuochi", is an area of Campania region (South-Italy), highly inhabited and comprises between the Provinces of Naples and Caserta, sadly known worldwide for the criminal activities related to the illegal waste disposal and burning. These fires, concomitantly with traffic emissions, might be the source of potential toxic element (PTE) dangerous for the human health and causing pathologies. In the framework of Correlation Health-Environment project, funded by the Campania region, eight municipalities (of area "Land of pyres") and three remote sites have been bio-monitored using the olive (Olea europaea L.) plants as biomonitors. Leaves of olive plants were collected in each assayed municipality and the concentration of 11 metal(loid)s was evaluated by means of ICP-OES. Our findings revealed that the air of these municipalities was limitedly contaminated by PTE; in fact, only Sb, Al and Mn were detected in the olive leaves collected in some of the assayed municipalities and showed a high enrichment factors (EC) manly due, probably, to the vehicular traffic emissions. Furthermore, the concentrations of the other assayed PTEs were lower than those of Sb, Al and Mn. For these reasons we suppose that their emissions in the troposphere have been and are limited, and they mainly have a crustal origin. Even if our data are very comforting for those urban area, regarded by many as one of the most contaminated one in Italy, a great environment care, in any case, is always needed.


Assuntos
Poluição do Ar , Olea , Eliminação de Resíduos , Monitoramento Biológico , Monitoramento Ambiental , Humanos , Emissões de Veículos
11.
Comput Intell Neurosci ; 2021: 9969322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475950

RESUMO

To explore the influence of weather conditions on the choice of the intercity travel mode of travelers, four modes of traveler transportation were studied in Xi'an, China, in March 2019: airplane, high-speed rail, conventional train, and express bus. The individual characteristics of travelers and intercity travel activity data were obtained, and they were matched with the weather characteristics at the departure time of the travelers. The Bayesian multinomial logit regression was employed to explore the relationship between the travel mode choice and weather characteristics. The results showed that temperature, relative humidity, rainfall, wind, air quality index, and visibility had significant effects on the travel mode selection of travelers, and the addition of these variables could improve the model's predictive performance. The research results can provide a scientific decision basis for traveler flow transfer and the prediction of traffic modes choice due to the effects of climate change.


Assuntos
Poluição do Ar , Poluição do Ar/análise , Teorema de Bayes , Transportes , Viagem , Tempo (Meteorologia)
12.
Environ Monit Assess ; 193(9): 619, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34476626

RESUMO

Motor vehicle emissions especially occur at signalized intersections during idling, acceleration, and deceleration phases. The reduction of exhaust emissions from motor vehicles is on the focus of environmental studies. The main targets of this paper are the modeling of motor vehicle particulate matter (PM10) emissions by American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and California Line Source for Queuing and Hot Spot Calculations (CAL3QHCR) models and investigating the effectiveness of a hypothetical green wave scenario as a pollution reduction strategy. The portion of D010 State Road in Zonguldak (Turkey) is selected. Vehicle counting is applied for determining the traffic volume. Then, the PM10 emission inventory is prepared. After that, PM10 pollution distribution maps at signalized intersections are created by running air quality models. Next, the CAL3QHCR model is run again for the green wave scenario which assumes free flow at signalized intersections. The maximum PM10 concentrations predicted by AERMOD and CAL3QHCR models are 16.8 µg/m3 and 14.9 µg/m3, respectively. Although these values are below the threshold value, it can be said that air quality may pose a threat to public health in the existence of other sources. With the implementation of signal optimization, the PM10 pollution is reduced by 10-50% at intersections. Cumulative model validation is employed including other PM10 sources in the study area. PM10 contribution of other sources at Zonguldak air quality monitoring station is determined by the AERMOD model. Finally, the sum of model outputs is validated against measured concentrations. According to the validation, both models are found as satisfactory and AERMOD performed better than CAL3QHCR.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise
13.
Environ Monit Assess ; 193(9): 618, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476627

RESUMO

Recent studies concluded that air quality has improved due to the enforcement of lockdown in the wake of COVID-19. However, they mostly concentrated on the changes during the lockdown period, and the studies considering the consequences of de-escalation of lockdown are inadequate. Therefore, we investigated the changes in fine particulate matter (PM2.5) during the pre-lockdown, strict lockdown, unlocking, and post-lockdown scenarios. In addition, we assessed the influence of meteorology, mobility, air mass transport, and biomass burning on PM2.5 using Google's mobility data, back trajectory model, and satellite-based fire incident data. Average PM2.5 concentrations in Ghaziabad, Noida, and Faridabad decreased by 60.70%, 63.27%, and 60.40%, respectively, during the lockdown. When compared with the preceding year (2019), the reductions during the shutdown period (25 March-31 May) were within the range of 36.34-44.55%. However, considering the entire year, this reduction in PM2.5 is momentary, and a steady increase in traffic density and industrial operations within cities during post-lockdown reflects a potent recovery of aerosol level, during which the average mass of PM2.5 three- to four-folds higher than the lockdown period. Back trajectories and fire activity results showed that biomass burning in the nearby states (Haryana and Punjab) influence aerosol load. We conclude that a partial lockdown in the event of a sudden surge in pollution would be a beneficial approach. However, reducing fossil fuel consumption and switching to more environmentally friendly energy sources, developing green transport networks, and circumventing biomass burning are efficient ways to improve air quality in the long term.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Meteorologia , Material Particulado/análise , SARS-CoV-2
14.
BMC Public Health ; 21(1): 1604, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465329

RESUMO

OBJECTIVE: To investigate the level of and covariates associated with ambient air pollution health literacy (AAPHL) among adult residents of Taiwan. METHODS: With a cross-sectional study design, we conducted telephone interviews using a Chinese version AAPHL scale, which consisted of 24 items assessing 12 subdomains of AAPHL formed by 4 information processing competence matrices (i.e., access, understand, appraise, and apply) and 3 health contexts (i.e., healthcare, disease prevention, and health promotion). The AAPHL was with the lowest and highest score at 1 to 4, respectively. Between September and November 2020, a sample of 1017 and 280 adults was successfully interviewed via home phones and mobile phones, respectively. We employed multiple linear regression models to identify covariates significantly associated with overall and 4 matric-specific AAPHL scores. RESULTS: The mean and standard deviation (±SD) of overall AAPHL score was considered as moderate at 2.90 (±0.56), with the highest and lowest metric-specific score for "apply" (3.07 ± 0.59) and "appraise" (2.75 ± 0.66). Lower education was significantly associated with a lower overall score; and living with children < 12 years and single were both significantly associated with higher overall scores. We also noted a significant geographic variation in overall score in which people living in the east/remote islands had highest scores. CONCLUSIONS: People in Taiwan had only moderate level of AAPHL; and covariates including education, living arrangement, marital status, and area of living were significantly associated with AAPHL. These covariates should be considered in future educational interventions aiming to improve the AAPHL in the community.


Assuntos
Poluição do Ar , Letramento em Saúde , Adulto , Criança , Estudos Transversais , Promoção da Saúde , Humanos , Taiwan/epidemiologia
15.
Environ Monit Assess ; 193(10): 622, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477984

RESUMO

In this study, monthly particulate matter (PM2.5) of Paris for the period between January 2000 and December 2019 is investigated by utilizing a periodogram-based time series methodology. The main contribution of the study is modeling the PM2.5 of Paris by extracting the information purely from the examined time series data, where proposed model implicitly captures the effects of other factors, as all their periodic and seasonal effects reside in the air pollution data. Periodicity can be defined as the patterns embedded in the data other than seasonality, and it is crucial to understand the underlying periodic dynamics of air pollutants to better fight pollution. The method we use successfully captures and accounts for the periodicities, which could otherwise be mixed with seasonality under an alternative methodology. Upon the unit root test based on periodograms, it is revealed that the investigated data has periodicities of 1 year and 20 years, so harmonic regression is utilized as an alternative to Box-Jenkins methodology. As the harmonic regression displayed a better performance both in and out-of-sample forecasts, it can be considered as a powerful alternative to model and forecast time series with a periodic structure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Previsões , Material Particulado/análise
16.
Environ Sci Technol ; 55(17): 11538-11548, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488351

RESUMO

Sulfur dioxide (SO2) measured by satellites is widely used to estimate anthropogenic emissions. The Sentinel-5 Precursor (S-5P) operational SO2 product is overestimated compared to the ground-based multiaxis differential optical absorption spectroscopy (MAX-DOAS) measurements in China and shows an opposite variation to the surface measurements, which limits the application of TROPOspheric monitoring instrument (TROPOMI) products in emissions research. Radiometric calibration, a priori profiles, and fitting windows might cause the overestimation of S-5P operational SO2 product. Here, we improve the optimal-estimation-based algorithm through several calibration methods. The improved retrieval agrees reasonably well with the ground-based measurements (R > 0.70, bias <13.7%) and has smaller biases (-28.9%) with surface measurements over China and India. It revealed that the SO2 column in March 2020 decreased by 51.6% compared to March 2019 due to the lockdown for curbing the spread of the COVID-19 pandemic, and there was a decrease of 50% during the lockdown than those after the lockdown, similar to the surface measurement trend, while S-5P operational SO2 product showed an unrealistic increase of 19%. In India, the improved retrieval identified obvious "hot spots" and observed a 30% decrease of SO2 columns during the lockdown.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(4): 521-530, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34494521

RESUMO

Objective To quantitatively evaluate the associations of PM2.5,PM10,NO2,and SO2 concentrations with the outpatient visits for atopic dermatitis in Lanzhou. Methods The data of outpatient visits,together with meteorological data and air pollutant data,from January 2013 to December 2017 were collected.The generalized additive model based on Poisson distribution was employed to study the lag effects of PM2.5,PM10,NO2,and SO2 concentrations on the visits of outpatients,with the seasonal and long-term trends and day-of-the-week effect controlled. Results The results of the single pollutant model showed that PM2.5 and PM10 had the most obvious while still insignificant impact on the outpatient visits for atopic dermatitis on the current day(lag0).NO2 also had the most obvious impact in the case of lag0 and showed a lag effect.For each 10 µg/m3 increase in NO2 concentration,the excess risk(ER)of outpatient visits for atopic dermatitis was 1.95%(95% CI=1.09%-2.82%,P=0.01).SO2 had the most significant effect on lag6,and the outpatient visits increased by 1.55%(95% CI=0.48%-2.54%)for every 10 µg/m3 rise in SO2 concentration(P=0.02).Females were more sensitive to PM10 and SO2 than males.For every 10 µg/m3 increase in PM10 and SO2,the female outpatient visits increased by 0.02% and 2.47%,respectively.Males were sensitive to PM2.5 and NO2,and the every 10 µg/m3 rise in PM2.5 and NO2 increased male outpatient visits by 0.47% and 1.78%,respectively.Gaseous pollutants(NO2 and SO2)had more significant effect on people ≤2 years old than on those of other ages.Every 10 µg/m3 rise in NO2 and SO2 would increase the ≤2-year-old outpatient visits by 2.35% and 1.57%,respectively(P=0.02).People of 13-59 years old were sensitive to NO2 concentration,and every 10 µg/m3 rise in NO2 concentration increased their visits by 1.39%.NO2 affected the outpatient visits during the cold and warm seasons,with the ER values of 2.35% and 1.89%,respectively(P=0.01).Particulate matter(PM2.5 and PM10)had the most obvious yet insignificant association with the outpatient visits in winter.The interactions between PM2.5 and NO2,between PM10 and NO2,and between SO2 and NO2 affected the total outpatient visits for atopic dermatitis.The results of double pollutant model showed that in the presence of PM2.5,PM10,or SO2,the effect of NO2 on the outpatient visits for atopic dermatitis enhanced compared with that predicted by single pollutant model(P=0.01). Conclusion The air pollutants(PM2.5,PM10,NO2,and SO2)in Lanzhou were closely related to the outpatient visits for atopic dermatitis,and the increased concentrations of NO2 and SO2 was more likely to increase the risk of atopic dermatitis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Dermatite Atópica , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Pré-Escolar , China , Dermatite Atópica/epidemiologia , Feminino , Humanos , Masculino , Pacientes Ambulatoriais , Material Particulado/efeitos adversos , Material Particulado/análise
18.
Int J Public Health ; 66: 1604235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483811

RESUMO

Objectives: This study aimed to investigate the associations between air pollution exposure and pediatric outpatient visits for dry eye disease (DED) in Shenzhen, China. Methods: Generalized additive models were utilized to explore the acute effects of air pollution exposure on pediatric outpatient visits for DED. Results: Single-day lag exposures to NO2, O3, PM2.5, and PM10 were associated with DED outpatient visits at lag days 0, 6, 4 and 2. Relative risks (RRs) for DED given a 10-µg/m3 increase in NO2, O3, PM2.5, and PM10 concentrations were 1.062[95% confidence interval (CI) 1.003, 1.123], 1.015(95% CI 1.001, 1.031), 1.052(95% CI 1.001, 1.115), and 1.038 (95% CI 1.002, 1.076), respectively. RR for DED given a 10-µg/m3 increase in NO2 over cumulative lag days 0-1 was 1.075 (95% CI 1.009, 1.147), and RR for DED given a 10-µg/m3 increase in PM10 over cumulative lag days 0-4 was 1.051 (95% CI 1.003, 1.102). Conclusion: The observed associations between air pollution and outpatient visits for DED may provide evidence for policy makers to consider implementing measures to reduce the risk of DED owing to air pollution in China.


Assuntos
Poluição do Ar , Assistência Ambulatorial , Síndromes do Olho Seco , Exposição Ambiental , Poluição do Ar/efeitos adversos , Assistência Ambulatorial/estatística & dados numéricos , Criança , China/epidemiologia , Síndromes do Olho Seco/epidemiologia , Síndromes do Olho Seco/terapia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-34444435

RESUMO

This study evaluates numerous epidemiological, environmental, and economic factors affecting morbidity and mortality from PM2.5 exposure in the 27 member states of the European Union. This form of air pollution inflicts considerable social and economic damage in addition to loss of life and well-being. This study creates and deploys a comprehensive data pipeline. The first step consists of conventional linear models and supervised machine learning alternatives. Those regression methods do more than predict health outcomes in the EU-27 and relate those predictions to independent variables. Linear regression and its machine learning equivalents also inform unsupervised machine learning methods such as clustering and manifold learning. Lower-dimension manifolds of this dataset's feature space reveal the relationship among EU-27 countries and their success (or failure) in managing PM2.5 morbidity and mortality. Principal component analysis informs further interpretation of variables along economic and health-based lines. A nonlinear environmental Kuznets curve may describe the fuller relationship between economic activity and premature death from PM2.5 exposure. The European Union should bridge the historical, cultural, and economic gaps that impair these countries' collective response to PM2.5 pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poeira , Medo , Material Particulado/análise , Material Particulado/toxicidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-34444451

RESUMO

Although the lockdown policy implemented during the COVID-19 pandemic indeed improved the air quality and reduced the related health risks, the real effects of the lockdown and its resulting health risks remain unclear considering the effects of unobserved confounders and the longstanding efforts of the government regarding air pollution. We compared air pollution between the lockdown period and the period before the lockdown using a difference-in-differences (DID) model and estimated the mortality burden caused by the number of deaths related to air pollution changes. The NO2 and CO concentrations during the lockdown period (17 days) declined by 8.94 µg/m3 (relative change: 16.94%; 95% CI: 3.71, 14.16) and 0.20 mg/m3 (relative change: 16.95%; 95% CI: 0.04, 0.35) on an average day, respectively, and O3 increased by 8.41 µg/m3 (relative change: 32.80%; 95% CI: 4.39, 12.43); no meaningful impacts of the lockdown policy on the PM2.5, PM10, SO2, or the AQI values were observed. Based on the three clearly changed air pollutants, the lockdown policy prevented 8.22 (95% CI: 3.97, 12.49) all-cause deaths. Our findings suggest that the overall excess deaths caused by air pollution during the lockdown period declined. It is beneficial for human health when strict control measures, such as upgrading industry structure and promoting green transportation, are taken to reduce emissions, especially in cities with serious air pollution in China, such as Shijiazhuang.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...