Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.016
Filtrar
1.
Biosens Bioelectron ; 166: 112436, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750677

RESUMO

Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Grafite , Pneumonia Viral/diagnóstico , Vírus/isolamento & purificação , Reações Antígeno-Anticorpo , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Técnicas de Laboratório Clínico/instrumentação , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/estatística & dados numéricos , Colorimetria , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , DNA Viral/análise , DNA Viral/genética , Técnicas Eletroquímicas , Desenho de Equipamento , Grafite/química , Humanos , Luminescência , Nanoestruturas/química , Hibridização de Ácido Nucleico , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Pontos Quânticos/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Virologia/métodos , Vírus/genética , Vírus/patogenicidade
2.
Phys Rev Lett ; 125(5): 058101, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794890

RESUMO

Diffusion of tracer particles in the cytoplasm of mammalian cells is often anomalous with a marked heterogeneity even within individual particle trajectories. Despite considerable efforts, the mechanisms behind these observations have remained largely elusive. To tackle this problem, we performed extensive single-particle tracking experiments on quantum dots in the cytoplasm of living mammalian cells at varying conditions. Analyses of the trajectories reveal a strong, microtubule-dependent subdiffusion with antipersistent increments and a substantial heterogeneity. Furthermore, particles stochastically switch between different mobility states, most likely due to transient associations with the cytoskeleton-shaken endoplasmic reticulum network. Comparison to simulations highlight that all experimental observations can be fully described by an intermittent fractional Brownian motion, alternating between two states of different mobility.


Assuntos
Citoplasma/metabolismo , Modelos Biológicos , Citoesqueleto de Actina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Simulação por Computador , Citocalasina D/farmacologia , Citoplasma/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Difusão , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , Pontos Quânticos , Processos Estocásticos , Tiazolidinas/farmacologia
3.
Int J Nanomedicine ; 15: 4691-4703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636625

RESUMO

Purpose: Gd-encapsulated carbonaceous dots (Gd@C-dots) have excellent stability and magnetic properties without free Gd leakage, therefore they can be considered as a safe alternative T1 contrast agent to commonly used Gd complexes. To improve their potential for cancer diagnosis and treatment, affibody-modified Gd@C-dots targeting non-small-cell lung cancer (NSCLC) EGFR-positive tumors with enhanced renal clearance were developed and synthesized. Materials and Methods: Gd@C-dots were developed and modified with Ac-Cys-ZEGFR:1907 through EDC/NHS. The size, morphology, and optical properties of the Gd@C-dots and Gd@C-dots-Cys-ZEGFR:1907 were characterized. Targeting ability was evaluated by in vitro and in vivo experiments, respectively. Residual gadolinium concentration in major organs was detected with confocal imaging and inductively coupled plasma mass spectrometry (ICP-MS) ex vivo. H&E staining was used to assess the morphology of these organs. Results: Gd@C-dots with nearly 20 nm in diameter were developed and modified with Ac-Cys-ZEGFR:1907. EGFR expression in HCC827 cells was higher than NCI-H520. In cell uptake assays, EGFR-expressing HCC827 cells exhibited significant MR T1WI signal enhancement when compared to NCI-H520 cells. Cellular uptake of Gd@C-dots-Cys-ZEGFR:1907 was reduced, when Ac-Cys-ZEGFR:1907 was added. In vivo targeting experiments showed that the probe signal was significantly higher in HCC827 than NCI-H520 xenografts at 1 h after injection. In contrast to Gd@C-dots, Gd@C-dots-Cys-ZEGFR:1907 nanoparticles can be efficiently excreted through renal clearance. No morphological changes were observed by H&E staining in the major organs after injection of Gd@C-dots-Cys-ZEGFR:1907. Conclusion: Gd@C-dots-Cys-ZEGFR:1907 is a high-affinity EGFR-targeting probe with efficient renal clearance and is therefore a promising contrast agent for clinical applications such as diagnosis and treatment of NSCLC EGFR-positive malignant tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Meios de Contraste/farmacocinética , Neoplasias Pulmonares/diagnóstico por imagem , Imagem por Ressonância Magnética/métodos , Pontos Quânticos/química , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Meios de Contraste/química , Receptores ErbB/metabolismo , Feminino , Gadolínio/química , Gadolínio/farmacocinética , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Nanopartículas/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 117(26): 14636-14641, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541064

RESUMO

Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.


Assuntos
Temperatura Corporal/fisiologia , Divisão Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Pontos Quânticos/química , Termometria , Animais , Caenorhabditis elegans/embriologia , Nanodiamantes/química , Termometria/instrumentação , Termometria/métodos
5.
Ecotoxicol Environ Saf ; 201: 110813, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544745

RESUMO

The bioaccumulation potential and toxic effects of engineered nanomaterials (ENMs) to earthworms are poorly understood. Two studies were conducted following OECD TG 222 on Eisenia fetida to assess the effects of CdTe QDs with different coatings and soil ageing respectively. Earthworms were exposed to carboxylate (COOH), ammonium (NH4+), or polyethylene glycol (PEG) coated CdTe QDs, or a micron scale (bulk) CdTe material, at nominal concentrations of 50, 500 and 2000 mg CdTe QD kg-1 dry weight (dw) for 28 days in Lufa 2.2 soil. In the fresh soil study, earthworms accumulated similar amounts of Cd and Te in the CdTe-bulk exposures, while the accumulation of Cd was higher than Te during the exposures to CdTe QDs. However, neither the total Cd, nor Te concentrations in the earthworms, were easily explained by the extractable metal fractions in the soil or particle dissolution. There were no effects on survival, but some retardation of growth was observed at the higher doses. Inhibition of Na+/K+-ATPase activity with disturbances to tissue electrolytes, as well as tissue Cu and Mn were observed, but without depletion of total glutathione in the fresh soil experiment. Additionally, juvenile production was the most sensitive endpoint, with estimated nominal EC50 of values >2000, 108, 65, 96 mg CdTe kg-1 for bulk, PEG-, COOH- and NH4+-coated CdTe QDs, respectively. In the aged soil study, the accumulation of Cd and Te was higher than in the fresh soil study in all CdTe QD exposures. Survival of the adult worms was reduced in the top CdTe-COOH and -NH4+ QD exposures by 55 ±â€¯5 and 60 ±â€¯25%, respectively; and with decreases in growth. The nominal EC50 values for juvenile production in the aged soil were 165, 88, 78 and 63 mg CdTe kg-1 for bulk, PEG-, COOH- and NH4+-coated CdTe QDs, respectively. In conclusion, exposure to nanoscale CdTe QDs, regardless of coating, caused more severe toxic effects that the CdTe bulk material and the toxicity increased after soil ageing. There were some coating-mediated effects, likely due to differences in the metal content and behaviour of the materials.


Assuntos
Compostos de Cádmio/toxicidade , Oligoquetos/efeitos dos fármacos , Pontos Quânticos/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Telúrio/toxicidade , Animais , Bioacumulação , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Modelos Teóricos , Oligoquetos/metabolismo , Tamanho da Partícula , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Reprodução/efeitos dos fármacos , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Propriedades de Superfície , Telúrio/química , Telúrio/metabolismo , Fatores de Tempo
7.
Food Chem ; 328: 127091, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32474237

RESUMO

Methanol is highly toxic for human, so methanol detection is valuable especially in water and ethanol medium without complicated and time consuming procedure. In this work, we present a new fluorescence probe for direct detection of methanol in aqueous and ethanol medium based on the ZnS:Mn2+ quantum dot (QDs) and soluble N-methylpolypyrrole (NMPPy) hybrid. Moreover, the number of spectroscopic techniques were used to study the chemical composition and optical properties of the resultant QDs as well as investigation on the sensing mechanism toward methanol. Also, methanol can be determined by using ZnS:Mn2+ QDs/NMPPy hybrid based switchable fluorescence sensing system, with high sensitivity, high selectivity and a very good detection limit of 1 mM with linearity in the concentration range of 25-230 mM (~0.1-0.9% v/v) in aqueous solution. Finally, the ZnS:Mn2+ QDs/NMPPy hybrid as optical sensor was successfully utilized to determine the amount of methanol in real alcoholic beverage samples.


Assuntos
Etanol/química , Metanol/análise , Polímeros/química , Pirróis/química , Pontos Quânticos/química , Espectrometria de Fluorescência/instrumentação , Sulfetos/química , Água/química , Compostos de Zinco/química , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Magnésio/química , Metanol/química
8.
Food Chem ; 328: 127063, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32485582

RESUMO

A magnetic fluorescence probe was fabricated by coating carbon quantum dots-doped molecularly imprinted polymers (MIPs) layers on the surface of Fe3O4 particles (MFMP) for detection of N-acyl homoserine lactones (AHLs) signaling molecules. N-Z-L-homoserine lactone molecular was used as the template to prepare AHLs MIP layers, employing MAA and HEMA as functional monomers. The developed MFMP owned superparamagnetism, fluorescence, fast response and class-selectivity. If AHLs (C4-HSL, C6-HSL, C8-HSL, C10-HSL, C12-HSL and C14-HSL) were captured by the MFMP, they quenched the fluorescence of the probe. Fluorescence dropped linearly in the concentration ranges of 3.65 × 10-3 µmol/L-0.96 × 10-1 µmol/L for AHLs. The MFMP was applied to the analysis of fish juice and milk samples, and recoveries ranged from 83.10% to 90.74% with relative standard deviation less than 5.1%. This study offered a novel strategy to fabricated AHLs fluorescence probe with great potential for wide-ranging application in agri-food products.


Assuntos
Acil-Butirolactonas/análise , Carbono/química , Peixes , Corantes Fluorescentes/química , Leite/química , Impressão Molecular , Pontos Quânticos/química , Animais , Imãs/química , Polímeros/síntese química
9.
J Biomed Nanotechnol ; 16(3): 283-303, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32493540

RESUMO

We report a facile one-step thermal treatment method for the synthesis of biocompatible, fluorescent nitrogen-phosphorus-doped carbon nanodots (NPCDs) as multifunctional agents for the food matrix decontamination, cancer targeting, and cellular bio-imaging. NPCDs exhibit high toxicity towards L. monocytogenes, as illustrated by fluorescent live-dead cell counting, disruption of membrane permeability/potential, changes in the levels of cellular ions, genetic materials, and proteins, as well as intracellular production of reactive oxygen species. The tryptophan and protein peaks released in NPCDs treated cells contributed to indole ring breathing and correlated with induced cell death. NPCDs significantly inhibited bacterial biofilm formation on a solid substrate. NPCDs-coated low-density polyethylene (LDPE) film crosslinked with 1% aminopropyltriethoxy silane (APTES) via silane-hydroxyl linking as a food-grade wrap significantly reduced bacterial counts in a raw chicken food model. Furthermore, NPCDs induced apoptosis in HeLa cervical cancer cells, as confirmed by the distorted cell morphology, fluorescence microscopic analysis, presence of fragmented nuclei and the qPCR results of mRNA expression levels of apoptotic markers. Moreover, NPCDs were also applicable in utilized for the cellular bio-imaging of KM12-C colon cancer cells under confocal microscopy owing to their excellent luminescence properties. Overall, NPCDs represent a promising platform to reduce the environmental health risks associated with hazardous pathogens, anticancer targeting, and their application in cellular bio-imaging as multifunctional targets/nanocarriers.


Assuntos
Carbono , Pontos Quânticos , Descontaminação , Humanos , Nitrogênio , Fósforo
10.
Nat Commun ; 11(1): 2933, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523065

RESUMO

Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm-2) and doses (<0.5 mg kg-1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.


Assuntos
Imagem Óptica/métodos , Fotoquímica/métodos , Corantes Fluorescentes , Nanopartículas/química , Pontos Quânticos
11.
Environ Sci Pollut Res Int ; 27(21): 26845-26855, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32382904

RESUMO

This work describes the development of novel electrospun nanofibrous membranes (ENMs) prepared by embedding graphene oxide quantum dots (GOQDs) into poly (ether) sulfone (PES). FTIR and Raman spectroscopy confirmed the successful incorporation of the GOQDs into the PES membranes. The optimal electrospinning polymer concentration that showed no defects or bead formation was at 26 wt% of the PES polymer. Spectroscopy, microscopy and contact angle were some of the techniques used to characterize the ENMs. SEM images showed smooth and unbranched ENMs. The average diameter upon incorporation of the GOQDs was determined to be 2.45 µm. XRD revealed that the GOQDs were structurally close to graphite with an interlaying space of 0.36 nm. The antimicrobial effect of the GOQDs-PES electrospun nanofibrous membranes was assessed against three bacterial strains (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus)) using the disc diffusion method. The electrospun nanofibres containing 10 wt% of GOQDs showed the most active antimicrobial activity against all three bacterial strains tested. The zones of inhibition ranged from 9 to 40 mm. The minimum inhibitory concentration (MIC) was determined to be 0.5 mg/mL, 0.3 mg/mL and 0.2 mg/mL for E. coli, B. cereus and S. aureus, respectively. The results demonstrated that incorporating GOQDs in the PES nanofibre gives rise to new antimicrobial properties, and as a result, the GOQDs-PES nanofibrous membrane can be used in antimicrobial applications such as water treatment.


Assuntos
Anti-Infecciosos , Grafite , Nanofibras , Pontos Quânticos , Escherichia coli , Éter , Éteres , Staphylococcus aureus , Sulfonas
12.
Food Chem ; 327: 127075, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32446026

RESUMO

The needing of rapid and sensitive detection method for pesticides is increasing, to facilitate its detection without complicated instruments. Herein, a novel paper-based senor was developed for the visual detection of three carbamate pesticides (metolcarb, carbofuran, and carbaryl) based on CdTe quantum dots (QDs) and nano zinc 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H-porphine (nano ZnTPyP) with a "turn-off-on" mode. This fluorescence sensing model could be applied in the highly selective and sensitive detection of carbamate pesticides both by fluorescence spectrometry or paper-based sensors. Based on the extracted RGB color values of paper, the partial least squares regression (PLSR) was used to accurately quantify the concentrations of carbamate pesticides in different food matrices (apple, cabbage and tea water). This method featured in high speed, low price and high accuracy, and provided a new strategy for the detection of food safety.


Assuntos
Compostos de Cádmio/química , Carbamatos/análise , Análise de Alimentos , Resíduos de Praguicidas/análise , Porfirinas/química , Pontos Quânticos , Telúrio/química , Fluorescência , Alimentos , Limite de Detecção , Nanoestruturas , Espectrometria de Fluorescência
13.
Food Chem ; 326: 126935, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32447160

RESUMO

Carbon dots (CDs) have been a new class of fascinating carbon-based fluorescent nanomaterials. In the present work, new N-doped CDs with highly crystalline graphite structures are prepared from renewable precursors, chitosan and tartaric acid, and are well characterized. The prepared CDs are applied as a biocompatible fluorescent sensor for the sequential detection of Fe3+ and AA. Among various transition metal ions, Fe3+ can selectively quench the fluorescence of CDs. Upon the further addition of AA, the quenched fluorescence of CDs is then restored as Fe3+ is reduced to Fe2+ by AA, which can be utilized for the fluorescent determination of AA. A good linear relationship in the range of 0-150 µM of AA concentration is established with a low detection limit of 0.02 µM. Moreover, the practical applications of this fluorescent sensing method in measurement of AA in food samples are successfully realized with satisfactory results.


Assuntos
Ácido Ascórbico/análise , Carbono/química , Compostos Férricos/análise , Nanoestruturas/análise , Espectrometria de Fluorescência/métodos , Fluorescência , Limite de Detecção , Nitrogênio/química , Pontos Quânticos/química , Espectrometria de Fluorescência/instrumentação
14.
Environ Sci Pollut Res Int ; 27(23): 29075-29090, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32424748

RESUMO

The present article focuses on a cradle-to-grave life cycle assessment (LCA) of the most widely adopted solar photovoltaic power generation technologies, viz., mono-crystalline silicon (mono-Si), multi-crystalline silicon (multi-Si), amorphous silicon (a-Si) and cadmium telluride (CdTe) energy technologies, based on ReCiPe life cycle impact assessment method. LCA is the most powerful environmental impact assessment tool from a product perspective and ReCiPe is one of the most advanced LCA methodologies with the broadest set of mid-point impact categories. More importantly, ReCiPe combines the strengths of both mid-point-based life cycle impact assessment approach of CML-IA, and end-point-based approach of Eco-indicator 99 methods. Accordingly, the LCA results of all four solar PV technologies have been evaluated and compared based on 18 mid-point impact indicators (viz., climate change, ozone depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, human toxicity, photochemical oxidant formation, particulate matter formation, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, ionising radiation, agricultural land occupation, urban land occupation, natural land transformation, water depletion, metal depletion and fossil depletion), 3 end-point/damage indicators (viz., human health, ecosystems and cost increases in resource extraction) and a unified single score. The overall study has been conducted based on hierarchist perspective and according to the relevant ISO standards. Final results show that the CdTe thin-film solar plant carries the least environmental life cycle impact within the four PV technologies, sequentially followed by multi-Si, a-Si and mono-Si technology.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Energia Solar , Telúrio , Ecossistema , Humanos
15.
Int J Nanomedicine ; 15: 2765-2776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425520

RESUMO

Purpose: Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. Methods: In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance (1H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. Results: The modified QDs are of controllable sizes in the range of 4-5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. Conclusion: The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Pontos Quânticos/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cisteína/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Etilenodiaminas/química , Fluoruracila/administração & dosagem , Fluoruracila/química , Células HeLa , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Pontos Quânticos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta
16.
Int J Nanomedicine ; 15: 2947-2955, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425526

RESUMO

Introduction: ZnO quantum dots (QDs) have drawn much attention recently as they are Cd-free, low-cost, and have excellent optical properties. With the expanded production and application of ZnO nanoparticles, concerns about their potential toxicity have also been raised. Materials and Methods: We used RNA sequencing (RNA-seq) to analyze the global gene expression of liver and lung tissues after ZnO QDs treatment. Differentially expressed genes (DEGs) were screened, with a fold change >1.5 and padj <0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed, and padj <0.05 was considered significantly enriched. The RNA-seq results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results: A total of 47 and 218 genes were significantly differentially expressed in the liver and lung. Eight GO terms were enriched in the liver and lung, and retinol metabolism and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were shared in different tissues. Discussion: According to DEGs and pathway enrichment analyses, inflammation might be induced in liver and lung tissues after intravenous injection of ZnO QDs. These findings will be helpful for future research and application of ZnO QDs.


Assuntos
Fígado/efeitos dos fármacos , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas Nucleares/efeitos dos fármacos , Pontos Quânticos/toxicidade , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Fígado/fisiologia , Masculino , Camundongos , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Testes de Toxicidade , Ubiquitina-Proteína Ligases/fisiologia
17.
Int J Nanomedicine ; 15: 3217-3233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440120

RESUMO

Introduction: Since CdTe quantum dots (QDs) are still widely considered as advanced fluorescent probes because of their far superior optical performance and fluorescence efficiency over non-cadmium QDs, it is important to find ways to control their toxicity. Methods: In this study, the adverse effects of two cadmium-containing QDs, ie, CdTe QDs and CdTe@ZnS QDs, on the nervous system of nematode C. elegans, the hippocampus of mice, and cultured microglia were measured in order to evaluate the neuroinflammation caused by cadmium-containing QDs and the potential mechanisms. Results: Firstly, we observed that cadmium-containing QD exposure-induced immune responses and neurobehavioral deficit in nematode C. elegans. In the mice treated with QDs, neuroinflammatory responses to QDs in the hippocampus, including microglial activation and IL-1ß release, occurred as well. When investigating the mechanisms of cadmium-containing QDs causing IL-1ß-mediated inflammation, the findings suggested that cadmium-containing QDs activated the NLRP3 inflammasome by causing excessive ROS generation, and resulted in IL-1ß release. Discussion: Even though the milder immune responses and neurotoxicity of CdTe@ZnS QDs compared with CdTe QDs indicated the protective role of ZnS coating, the inhibitions of NLRP3 expression and ROS production completely reduced the IL-1ß-mediated inflammation. This provided valuable information that inhibiting target molecules is an effective and efficient way to alleviate  the toxicity of cadmium-containing QDs, so it is important to evaluate QDs through a mechanism-based risk assessment.


Assuntos
Encéfalo/patologia , Compostos de Cádmio/farmacologia , Inflamação/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pontos Quânticos/química , Sulfetos/farmacologia , Telúrio/farmacologia , Compostos de Zinco/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/imunologia , Linhagem Celular , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/patologia , Espécies Reativas de Oxigênio/metabolismo
18.
Chemosphere ; 251: 126381, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443232

RESUMO

In this study, carbon quantum dots (CQDs) were used to decorate a TiO2/g-C3N4 (TCN) film electrode. The morphological, optical, and electrochemical properties of the TiO2/g-C3N4/CQDs nanorod arrays (TCNC NRAs) film were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electrochemical impedance spectroscopy (EIS). The improved optical properties, photoelectrochemical properties and photoelectrocatalytic (PEC) performance of photoanode can be observed by doping CQDs onto the TCN NRAs film. Compared with TiO2 NRAs and TCN NRAs, the narrower band gap of 2.47 eV and longer lifetime of photoinduced electron-hole pairs were observed in the TCNC NRAs. Under visible light irradiation and a bias voltage of 1.2 V, the photocurrent density and 1,4-dioxane (1,4-D) removal rate of PEC process with TCNC NRAs electrode reached 0.16 mA/cm2 and 77.9%, respectively, which was 2.5 times and 1.5 times of that with TCN NRAs electrode. TCNC NRAs electrode could keep >75% of the 1,4-D removal rate during five cycles tests. High PEC performance with TCNC NRAs electrode could be attributed to the enhanced charge separation and the change of electron transfer mechanism from typical heterojunction to Z-scheme, which may increase the active species production and change the dominant reactive species from O2·- to ·OH. Our experimental results should be useful for studying the degradation of 1,4-D and developing efficient PEC materials.


Assuntos
Dioxanos/química , Pontos Quânticos/química , Carbono , Eletrodos , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos/química , Titânio
19.
Int J Food Microbiol ; 326: 108650, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402916

RESUMO

Use of carbon dots (CDs) in combination with aqueous chitosan solution to extend shelf life and improve stability of soy milk was investigated. Soy milk samples with chitosan solution (0.00%, 0.08%, 0.12%, 0.16% and 0.20%) and banana-based CDs (4%, 6% and 8%) were prepared and stored at room temperature (25-30 °C) for shelf life evaluation. Soy milk with 0.16% chitosan solution exhibited improved stability as evident by increased viscosity, stability coefficient, zeta potential and decreased centrifugation rate compared with soy milk without chitosan. The suitable amount of carbon dots could effectively inhibit the growth of Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Soy milk with 0.16% chitosan and 8% CDs exhibited longer shelf life and significantly lower total bacterial count after storage at room temperature for up to 4 days. Electronic nose-based flavor characteristics of all treated soy milk samples were not far from that of the control sample.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Quitosana/farmacologia , Escherichia coli/crescimento & desenvolvimento , Armazenamento de Alimentos/estatística & dados numéricos , Leite de Soja/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Carbono/farmacologia , Escherichia coli/efeitos dos fármacos , Contaminação de Alimentos/análise , Pontos Quânticos , Staphylococcus aureus/efeitos dos fármacos , Paladar , Água/farmacologia
20.
Food Chem ; 328: 127119, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32464555

RESUMO

A ratiometric sensor of MOF/ CdTe QDs was constructed by physically mixing CdTe QDs (λem = 605 nm) with MOF (Fe-MIL-88NH2,λem = 425 nm). Under an UV lamp (λex = 365 nm), orange-red CdTe QDs is gradually quenched with increasing levels of Hg2+ or Cu2+, while blue MOF is unchanged, accompanying with a visual change from bright pink to blue fluorescence. Hence, a new method for determining Hg2+ and Cu2+ by MOF/CdTe QDs sensor is established, whose detection limits are 0.22 ng mL-1 for Hg2+ (2.1% RSD) and 0.26 ng mL-1 for Cu2+ (1.1% RSD), respectively. In addition, on-site, rapid and visual determination of Hg2+/Cu2+ in red wine without any pretreatment is realized by using a MOF/CdTe QDs paper-based sensor. For Hg2+ and Cu2+, the semi-quantitative detection ranges of the paper-based sensor are both 10 ~ 5000 ng mL-1, implying that it has great application value in analyzing Hg2+ and Cu2+ in liquid samples.


Assuntos
Compostos de Cádmio/química , Cobre/análise , Mercúrio/análise , Estruturas Metalorgânicas/química , Pontos Quânticos , Telúrio/química , Vinho/análise , Fluorescência , Limite de Detecção , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA