Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.162
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360748

RESUMO

Research on the budding yeast Saccharomyces cerevisiae has yielded fundamental discoveries on highly conserved biological pathways and yeast remains the best-studied eukaryotic cell in the world. Studies on the mitotic cell cycle and the discovery of cell cycle checkpoints in budding yeast has led to a detailed, although incomplete, understanding of eukaryotic cell cycle progression. In multicellular eukaryotic organisms, uncontrolled aberrant cell division is the defining feature of cancer. Some of the most successful classes of anti-cancer chemotherapeutic agents are mitotic poisons. Mitotic poisons are thought to function by inducing a mitotic spindle checkpoint-dependent cell cycle arrest, via the assembly of the highly conserved mitotic checkpoint complex (MCC), leading to apoptosis. Even in the presence of mitotic poisons, some cancer cells continue cell division via 'mitotic slippage', which may correlate with a cancer becoming refractory to mitotic poison chemotherapeutic treatments. In this review, knowledge about budding yeast cell cycle control is explored to suggest novel potential drug targets, namely, specific regions in the highly conserved anaphase-promoting complex/cyclosome (APC/C) subunits Apc1 and/or Apc5, and in a specific N-terminal region in the APC/C co-factor cell division cycle 20 (Cdc20), which may yield molecules which block 'mitotic slippage' only in the presence of mitotic poisons.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular , Mitose , Neoplasias , Saccharomyces cerevisiae , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Venenos/química , Venenos/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360883

RESUMO

Understanding the mechanisms of colorectal cancer progression is crucial in the setting of strategies for its prevention. δ-Valerobetaine (δVB) is an emerging dietary metabolite showing cytotoxic activity in colon cancer cells via autophagy and apoptosis. Here, we aimed to deepen current knowledge on the mechanism of δVB-induced colon cancer cell death by investigating the apoptotic cascade in colorectal adenocarcinoma SW480 and SW620 cells and evaluating the molecular players of mitochondrial dysfunction. Results indicated that δVB reduced cell viability in a time-dependent manner, reaching IC50 after 72 h of incubation with δVB 1.5 mM, and caused a G2/M cell cycle arrest with upregulation of cyclin A and cyclin B protein levels. The increased apoptotic cell rate occurred via caspase-3 activation with a concomitant loss in mitochondrial membrane potential and SIRT3 downregulation. Functional studies indicated that δVB activated mitochondrial apoptosis through PINK1/Parkin pathways, as upregulation of PINK1, Parkin, and LC3B protein levels was observed (p < 0.0001). Together, these findings support a critical role of PINK1/Parkin-mediated mitophagy in mitochondrial dysfunction and apoptosis induced by δVB in SW480 and SW620 colon cancer cells.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Suplementos Nutricionais , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Valeratos/farmacologia , Adenocarcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo
3.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443472

RESUMO

Feruloylacetone (FER) is a natural degradant of curcumin after heating, which structurally reserves some functional groups of curcumin. It is not as widely discussed as its original counterpart has been previously; and in this study, its anticancer efficacy is investigated. This study focuses on the suppressive effect of FER on colon cancer, as the efficacious effect of curcumin on this typical cancer type has been well evidenced. In addition, demethoxy-feruloylacetone (DFER) was applied to compare the effect that might be brought on by the structural differences of the methoxy group. It was revealed that both FER and DFER inhibited the proliferation of HCT116 cells, possibly via suppression of the phosphorylated mTOR/STAT3 pathway. Notably, FER could significantly repress both the STAT3 phosphorylation and protein levels. Furthermore, both samples showed capability of arresting HCT116 cells at the G2/M phase via the activation of p53/p21 and the upregulation of cyclin-B. In addition, ROS elevation and changes in mitochondrial membrane potential were revealed, as indicated by p-atm elevation. The apoptotic rate rose to 36.9 and 32.2% after being treated by FER and DFER, respectively. In summary, both compounds exhibited an anticancer effect, and FER showed a greater proapoptotic effect, possibly due to the presence of the methoxy group on the aromatic ring.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Estirenos/farmacologia , Antineoplásicos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Curcumina/química , Curcumina/metabolismo , Ciclina B1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Fase G2/efeitos dos fármacos , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenol/química , Fenol/farmacologia , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Estirenos/química , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/agonistas
4.
Biomed Pharmacother ; 138: 111546, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311540

RESUMO

Lycopene, the main pigment of tomatoes, possess the strongest antioxidant activity among carotenoids. Lycopene has unique structure and chemical properties. We searched the literature, via PubMed, Embase, Web of Science and Google database so on to screen citations from inception to Oct 2020 for inclusion in this study. We found that as a common phytochemical, it did not attract much attention in the past few years. However, recent studies have indicated that, in addition to antioxidant activity and the second stage of detoxification, the anticancer of lycopene is also considered to be an important determinant of tumor development including the inhibition of cell proliferation, inhibition of cell cycle progression, induction of apoptosis, inhibition of cell invasion, angiogenesis and metastasis. The effect mechanisms of lycopene are related to the regulation of several signal transduction pathways, such as PI3K/Akt pathway, modulation of insulin-like growth factors system, the suppression of activity of sex steroid hormones, the modification of relevant gene expression, and the alteration of mitochondrial function. These novel findings have suggested that lycopene acts as a promising functional natural pigment, and may be associated with a decreased risk of different types of cancer. This review presents the latest knowledge with respect to its molecular mechanisms and its molecular targets of the inhibitory effects on carcinogenesis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Licopeno/farmacologia , Neoplasias/tratamento farmacológico , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
5.
Int J Mol Sci ; 22(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202966

RESUMO

Ginger (Zingiber officinale Roscoe, family: Zingiberaceae), originating in South-East Asia, is one of the most used spices and condiments for foods and beverages. It is also used in traditional medicine for many human disorders including fever, gastrointestinal complications, arthritis, rheumatism, hypertension, and various infectious diseases due to its anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties. Intriguingly, many recent studies evidenced the potent chemopreventive characteristics of ginger extracts against different types of cancer. The aim of this work is to review the literature related to the use of ginger extracts as a chemotherapeutic agent and to structure the cellular and molecular mechanisms through which ginger acts in different cancer types. Data summarized from experiments (in vitro or in vivo) and clinical studies, evidenced in this review, show that ginger derivatives perpetrate its anti-tumor action through important mediators, involved in crucial cell processes, such as cell cycle arrest, induction of cancer cell death, misbalance of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quimioprevenção , Gengibre/química , Neoplasias/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quimioprevenção/métodos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
6.
Biomed Pharmacother ; 139: 111651, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243602

RESUMO

1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (tetrahydrocurcumin, THC) is a major bioactive metabolite of curcumin, demonstrating the potential anti-inflammatory, antioxidant and neuroprotective properties, etc. In this study, it was found that Aß induced decreased cell viability, cell cycle arrest and apoptosis in BV-2 cells, which were ameliorated by THC. In vivo, THC administration rescued learning and memory, and reduced Aß burden in the hippocampus of APP/PS1 mice. By proteomic analysis of the hippocampus of mice, 157 differentially expressed proteins were identified in APP/PS1 mice treated with THC (comparing with APP/PS1 mice), which also suggested that the effects of THC on the cell cycle and apoptosis were mostly related to the "Ras signaling pathway", etc. In APP/PS1 mice, the down-regulation of Gab2 and K-Ras, and the up-regulation of caspase-3, TGF-ß1 and TNF-ɑ were observed; THC attenuated the abnormal expression of Gab2, K-Ras, caspase-3 and TNF-ɑ, and up-regulated TGF-ß1 and Bag1 expression. In BV-2 cells, Aß induced the down-regulation of Gab2, K-Ras and TGF-ß1, and the overexpression of caspase-3, PARP1, cleaved-PARP1 and TNF-ɑ, which were restored by THC. Moreover, THC up-regulated Bag1 expression in Aß-treated BV-2 cells. The decreased transcriptional expression of Ccnd2 and Cdkn1a were also observed in Aß-treated BV-2 cells, and THC alleviated the down-regulation of Ccnd2. For the first time, we identified that the action of THC in preventing AD was associated with inhibition of cell cycle arrest and apoptosis of microglia via the Ras/ERK signaling pathway, shedding new light on the role of THC in alleviating the progression of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Proteínas ras/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular , Curcumina/farmacologia , Ciclina D2/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Anticancer Res ; 41(8): 3769-3778, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281836

RESUMO

BACKGROUND/AIM: Cholangiocarcinoma is a lethal disease with increasing incidence worldwide. New therapeutic compounds are urgently needed for this disease. Here, the inhibitory effect of adenosine on cholangiocarcinoma cells was studied. MATERIALS AND METHODS: Western blot analysis was used to study autophagy and flow cytometry to analyze cell death and the cell cycle. RESULTS: Cholangiocarcinoma and immortalized cholangiocytes responded to adenosine differently, and adenosine inhibited cholangiocarcinoma cell growth by inducing autophagy. Adenosine failed to activate adenylyl cyclase in cholangiocarcinoma cell lines, but activated this enzyme in immortalized cholangiocytes. Adenosine treatment activated AMPK and led to phosphorylation of its downstream proteins including ULK and Raptor. In addition, autophagy induced by adenosine appeared to be a survival mechanism. The combination of adenosine with autophagy inhibitors greatly increased cell death, as compared to the use of either agent alone. Interestingly, immortalized cholangiocytes were more resistant to adenosine. CONCLUSION: Adenosine may have potential for application in cholangiocarcinoma treatment.


Assuntos
Adenosina/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , AMP Cíclico/metabolismo , Humanos , Hidroxicloroquina/farmacologia , Macrolídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Regulatória Associada a mTOR/metabolismo
8.
Nutrients ; 13(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202787

RESUMO

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Assuntos
Antineoplásicos/farmacologia , Neuroblastoma/tratamento farmacológico , Olea , Extratos Vegetais/farmacologia , Folhas de Planta/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos
9.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203270

RESUMO

Cell cycle regulation is orchestrated by a complex network of interactions between proteins, enzymes, cytokines, and cell cycle signaling pathways, and is vital for cell proliferation, growth, and repair. The occurrence, development, and metastasis of tumors are closely related to the cell cycle. Cell cycle regulation can be synergistic with chemotherapy in two aspects: inhibition or promotion. The sensitivity of tumor cells to chemotherapeutic drugs can be improved with the cooperation of cell cycle regulation strategies. This review presented the mechanism of the commonly used chemotherapeutic drugs and the effect of the cell cycle on tumorigenesis and development, and the interaction between chemotherapy and cell cycle regulation in cancer treatment was briefly introduced. The current collaborative strategies of chemotherapy and cell cycle regulation are discussed in detail. Finally, we outline the challenges and perspectives about the improvement of combination strategies for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos
10.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281233

RESUMO

Osteosarcoma is a common malignant bone tumor in clinical orthopedics. Iron chelators have inhibitory effects on many cancers, but their effects and mechanisms in osteosarcoma are still uncertain. Our in vitro results show that deferoxamine (DFO) and deferasirox (DFX), two iron chelators, significantly inhibited the proliferation of osteosarcoma cells (MG-63, MNNG/HOS and K7M2). The viability of osteosarcoma cells was decreased by DFO and DFX in a concentration-dependent manner. DFO and DFX generated reactive oxygen species (ROS), altered iron metabolism and triggered apoptosis in osteosarcoma cells. Iron chelator-induced apoptosis was due to the activation of the MAPK signaling pathway, with increased phosphorylation levels of JNK, p38 and ERK, and ROS generation; in this process, the expression of C-caspase-3 and C-PARP increased. In an orthotopic osteosarcoma transplantation model, iron chelators (20 mg/kg every day, Ip, for 14 days) significantly inhibited the growth of the tumor. Immunohistochemical analysis showed that iron metabolism was altered, apoptosis was promoted, and malignant proliferation was reduced with iron chelators in the tumor tissues. In conclusion, we observed that iron chelators induced apoptosis in osteosarcoma by activating the ROS-related MAPK signaling pathway. Because iron is crucial for cell proliferation, iron chelators may provide a novel therapeutic strategy for osteosarcoma.


Assuntos
Deferasirox/uso terapêutico , Desferroxamina/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Sideróforos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Deferasirox/farmacologia , Desferroxamina/farmacologia , Humanos , Ferro/metabolismo , Camundongos , Osteossarcoma/metabolismo , Sideróforos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299359

RESUMO

Chronic lung allograft dysfunction (CLAD) and interstitial lung disease associated with collagen tissue diseases (CTD-ILD) are two end-stage lung disorders in which different chronic triggers induce activation of myo-/fibroblasts (LFs). Everolimus, an mTOR inhibitor, can be adopted as a potential strategy for CLAD and CTD-ILD, however it exerts important side effects. This study aims to exploit nanomedicine to reduce everolimus side effects encapsulating it inside liposomes targeted against LFs, expressing a high rate of CD44. PEGylated liposomes were modified with high molecular weight hyaluronic acid and loaded with everolimus (PEG-LIP(ev)-HA400kDa). Liposomes were tested by in vitro experiments using LFs derived from broncholveolar lavage (BAL) of patients affected by CLAD and CTD-ILD, and on alveolar macrophages (AM) and lymphocytes isolated, respectively, from BAL and peripheral blood. PEG-LIP-HA400kDa demonstrated to be specific for LFs, but not for CD44-negative cells, and after loading everolimus, PEG-LIP(ev)-HA400kDa were able to arrest cell cycle arrest and to decrease phospho-mTOR level. PEG-LIP(ev)-HA400kDa showed anti-inflammatory effect on immune cells. This study opens the possibility to use everolimus in lung fibrotic diseases, demonstrating that our lipids-based vehicles can vehicle everolimus inside cells exerting the same drug molecular effect, not only in LFs, but also in immune cells.


Assuntos
Everolimo/farmacologia , Ácido Hialurônico/farmacologia , Lipossomos/química , Fibrose Pulmonar/tratamento farmacológico , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Lavagem Broncoalveolar/métodos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Everolimo/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Polietilenoglicóis/química , Fibrose Pulmonar/metabolismo
12.
Gene ; 799: 145847, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34274473

RESUMO

BACKGROUND: Uncontrolled type 1 diabetes mellitus (T1D) impairs reproductive potential of males. Insulin treatment restores metabolic parameters but it is unclear how it protects male reproductive health. Herein, we hypothesized that insulin treatment to T1D rats protects testicular physiology by mediating mechanisms associated with apoptosis and cell cycle. METHODS: Mature male Wistar rats (n = 24) were divided into 3 groups: control, T1D-induced (received 40 mg kg-1 streptozotocin) and insulin-treated T1D (Ins T1D; received 40 mg kg-1 streptozotocin and then treated 0.9 IU/100 gr of insulin for 56 days) (N = 8/group). Expression levels of intrinsic apoptosis pathways regulators (Bcl-2, Bax, Caspase-3 and p53) and core regulators of cell cycle machinery (Cyclin D1, Cdk-4 and p21) were determined in testicular tissue by immunohistochemistry (IHC) and RT-PCR techniques. The percentage of testicular apoptotic cells was evaluated by TUNEL staining. RESULTS: Our data shows that insulin treatment to T1D rats restored (P < 0.05) T1D-induced increased of caspase-3 and p53 expression in testis. Moreover, the testis of T1D rats treated with insulin exhibited increased expression of Cyclin D1 and cdk-4, and a reduced expression of p21 when compared with the expression in testis of T1D rats. Finally, insulin treatment could fairly control T1D-induced apoptosis. Accordingly, treatment of T1D rats with insulin led to a remarkable reduction (p < 0.05) in the percentage of apoptotic cells in the testis. CONCLUSIONS: Insulin treatment is able to restore the network expression of apoptosis and proliferation-related genes caused by T1D in the testis and via this mechanism, preserve the fertility of males.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/fisiologia , Testículo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Fertilidade , Expressão Gênica/efeitos dos fármacos , Masculino , Substâncias Protetoras/farmacologia , Ratos Wistar , Contagem de Espermatozoides , Motilidade Espermática/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue
13.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209011

RESUMO

In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a-h were discussed. The antiproliferative activity of 16a-h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01-40.50 µM) and one normal MRC5 (IC50 = 1.27-24.06 µM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 µM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.


Assuntos
Antineoplásicos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Modelos Biológicos , Simulação de Acoplamento Molecular , Pirróis , Software , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Células MCF-7 , Pirróis/química , Pirróis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia
14.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207084

RESUMO

Advanced glycation end products (AGEs) are formed via nonenzymatic reactions between reducing sugars and proteins. Recent studies have shown that methylglyoxal, a potent precursor for AGEs, causes a variety of biological dysfunctions, including diabetes, inflammation, renal failure, and cancer. However, little is known about the function of methylglyoxal-derived AGEs (AGE4) in kidney cells. Therefore, we verified the expression of endoplasmic reticulum (ER) stress-related genes and apoptosis markers to determine the effects of AGE4 on human proximal epithelial cells (HK-2). Moreover, our results showed that AGE4 induced the expression of apoptosis markers, such as Bax, p53, and kidney injury molecule-1, but downregulated Bcl-2 and cyclin D1 levels. AGE4 also promoted the expression of NF-κB, serving as a transcription factor, and the phosphorylation of c-Jun NH2-terminal kinase (JNK), which induced cell apoptosis and ER stress mediated by the JNK inhibitor. Furthermore, AGE4 induced mitochondrial dysfunction by inducing the permeabilization of the mitochondrial membrane and ATP synthesis. Through in vitro and in vivo experiments, this study provides a new perspective on renal dysfunction with regard to the AGE4-induced RAGE /JNK signaling pathway, which leads to renal cell apoptosis via the imbalance of mitochondrial function and ER stress in kidney damage.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Produtos Finais de Glicação Avançada/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Aldeído Pirúvico/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Humanos , Rim/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208772

RESUMO

Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Modelos Biológicos , Fosforilação
16.
Anticancer Res ; 41(6): 2963-2977, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34083287

RESUMO

BACKGROUND/AIM: Non-small-cell lung cancer (NSCLC) remains a significant cause of death despite the recent introduction of several improved therapeutics. Pemetrexed disodium heptahydrate (pemetrexed) is currently available in combination with a platinum derivative for patients with advanced non-squamous NSCLC for first-line treatment, and as a single agent for second-line treatment. However, the mechanisms underlying its anticancer activities are still not well understood. In this study, we evaluated the growth inhibitory effects of pemetrexed on PC9 (EGFR exon 19 deletion) cells and elucidated the underlying molecular mechanisms. MATERIALS AND METHODS: PC9 cells were treated with pemetrexed and then assessed for the cell viability, morphological and nuclear changes, antigenic alterations, SA-ß-gal staining, and changes in protein expression. RESULTS: Pemetrexed reduced the cell viability of PC9 cells and initiated cell morphological changes in a concentration-dependent manner. Pemetrexed significantly induced G1 phase arrest in a dose-dependent manner. The results demonstrated that pemetrexed induced apoptosis in PC9 cells, a change coupled with an increase in reactive oxygen species and a decrease in mitochondrial membrane potential. Pemetrexed decreased Bcl-2 expression, while Bax expression was increased, and cytochrome c was released. Furthermore, the expression of extrinsic pathway proteins, e.g. Fas/FasL, DR4/TRAIL, and Fas-associated protein with death domain, was increased by pemetrexed, which then activated caspase-8, caspase-9, and caspase-3 and induced poly (ADP-ribose) polymerase proteolysis. CONCLUSION: This study revealed the mechanisms by which pemetrexed works an anticancer drug in the treatment of NSCLC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Éxons , Deleção de Genes , Neoplasias Pulmonares/patologia , Pemetrexede/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Eur J Med Chem ; 222: 113592, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147909

RESUMO

Approximately 20% of multiple myeloma (MM) are caused by a chromosomal translocation t (4; 14) that leads to the overexpression of the nuclear receptor binding SET domain-protein 2 (NSD2) histone methyltransferase. NSD2 catalyzes the methylation of lysine 36 on histone H3 (H3K36me2) and is associated with transcriptionally active regions. Using high-throughput screening (HTS) with biological analyses, a series of 5-aminonaphthalene derivatives were designed and synthesized as novel NSD2 inhibitors. Among all the prepared compounds, 9c displayed a good NSD2 inhibitory activity (IC50 = 2.7 µM) and selectivity against both SET-domain-containing and non-SET-domain-containing methyltransferases. Preliminary research indicates the inhibition mechanism of compound 9c by significantly suppressed the methylation of H3K36me2. Compound 9c specifically inhibits the proliferation of the human B cell precursor leukemia cell line RS4:11 and the human myeloma cell line KMS11 by inducing cell cycle arrest and apoptosis with little cytotoxicity. It has been reported that the anti-cancer effect of compound 9c is partly achieved by completely suppressing the transcriptional activation of NSD2-targeted genes. When administered intraperitoneally at 25 mg/kg, compound 9c suppressed the tumor growth of RS4:11 xenografts in vivo and no body weight loss was detected in the tested SCID mice.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Naftalenos/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Naftalenos/síntese química , Naftalenos/química , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
J Med Chem ; 64(12): 7963-7990, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34101463

RESUMO

Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.


Assuntos
Antineoplásicos/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Moduladores de Tubulina/química
19.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071298

RESUMO

Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that the strong electrophilicity group at the C2-C3 double bond of PL analogs plays an important role in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring, partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno, such as TrxR, could be irreversibly inhibited by the C2-C3 double bond of PL analogs, and boost intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro cancer apoptosis through the inhibition of TrxR and ROS accumulation.


Assuntos
Apoptose , Dioxolanos/química , Espécies Reativas de Oxigênio , Células A549 , Antineoplásicos/farmacologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Cloro/química , Elétrons , Humanos , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Oxirredução , Sais de Tetrazólio/química , Tiazóis/química , Tiorredoxina Dissulfeto Redutase/metabolismo
20.
Int J Biol Macromol ; 183: 2262-2271, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34062158

RESUMO

Degenerative diseases such as cancer and cardiovascular diseases, and antimicrobial resistance are becoming prominent health problems needing utmost public health attention. Curative interventions such as the use of pharmaceutical drugs and alternative plant medicines are increasingly being explored. Plant polysaccharides have gained attention for their promising bioactivities such as antioxidant, antimicrobial and anticancer activities. Bioactive plant polysaccharides are also being preferred for their relatively few side effects compared to conventional pharmaceuticals. The elucidation of the bioactive potential of plant polysaccharides in disease treatment entails an understanding of the factors that determine their biofunctional properties using functional and mechanistic assays. This review summarizes the literature on the composition, structural, functional, and mechanistic determinations of the antioxidant, anticancer and antimicrobial activities of plant polysaccharides. The outcome of this review highlights the leading trends in the elucidation of the antioxidant, anticancer and antimicrobial activities of plant polysaccharides and underscores the promising health benefits of plant polysaccharides.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Plantas , Polissacarídeos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Plantas/química , Polissacarídeos/isolamento & purificação , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...