Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.148
Filtrar
1.
Methods Mol Biol ; 2588: 157-169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418687

RESUMO

The quantitative polymerase chain reaction (qPCR) is a variant of PCR aimed to detect and quantify a targeted DNA molecule. This is made through the addition of probes labeled with fluorescent molecules that emit fluorescence within each amplification cycle, resulting in fluorescence values proportional to the amount of accumulated PCR product. This chapter presents the detailed procedures for quantification of different periodontal pathogens (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Campylobacter rectus, Streptococcus oralis, and Fusobacterium spp.) using qPCR. It also includes the description of the most frequent problems encountered, how to solve them, and recommendations to minimize the risks for laboratory staff handling oral samples. In addition, a detailed protocol for multiplex qPCR to detect and quantify Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia is also included.


Assuntos
Aggregatibacter actinomycetemcomitans , Tannerella forsythia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Porphyromonas gingivalis/genética , Corantes
2.
Front Cell Infect Microbiol ; 12: 1026457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467726

RESUMO

The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.


Assuntos
Doença de Alzheimer , Doenças Periodontais , Feminino , Gravidez , Humanos , Porphyromonas gingivalis , Imunidade Celular , Imunidade Adaptativa
3.
Medicine (Baltimore) ; 101(43): e31282, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36316924

RESUMO

We previously reported that oral herpesviruses, such as Epstein-Barr virus (EBV), are associated with periodontitis. However, the relationship between oral EBV or dual oral EBV and Porphyromonas gingivalis infections and periodontal inflammation severity remains unclear. We conducted this study to determine the relationship between oral EBV and P gingivalis prevalence and the periodontal inflamed surface area (PISA) in middle-aged and older adults. We analyzed 205 patients (median age, 70 years) who visited Hiroshima University Hospital. Tongue swab samples were used to investigate the presence of EBV and P gingivalis DNA using real-time PCR. Probing pocket depth and bleeding on probing were measured at 6 sites per tooth. PISA scores were calculated based on the results of probing pocket depth and bleeding on probing. Propensity scores were calculated via logistic regression analysis of 8 clinical factors: age, sex, smoking status, remaining teeth, denture use, hypertension, diabetes, and hyperlipidemia. EBV DNA was present in 41 of the 205 participants (20.0%). Thirty-seven EBV-positive or -negative participants in 74 matched pairs after propensity-score matching were examined via univariate analysis. EBV-positive participants exhibited higher plaque control record scores and PISAs than did EBV-negative participants. EBV DNA was significantly associated with plaque control record scores and PISA (both P = .04). Of the 205 participants, 111 were positive for P gingivalis (54.1%). Nineteen participants (9.3%) were infected with both oral EBV and P gingivalis. Logistic regression analysis revealed that dual infection with EBV and P gingivalis was significantly associated with diabetes (odds ratio = 3.37, 95% confidence interval: 1.13-10.1; P = .03). Oral EBV prevalence is associated with oral hygiene and the spread of inflamed periodontal tissue. Diabetes may be a risk factor for dual infection with oral EBV and P gingivalis.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Pessoa de Meia-Idade , Humanos , Idoso , Herpesvirus Humano 4/genética , Porphyromonas gingivalis , Infecções por Vírus Epstein-Barr/complicações , Estudos Transversais , Prevalência , DNA
4.
Front Immunol ; 13: 1044334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341447

RESUMO

Aging is a gradual and progressive deterioration of integrity across multiple organ systems that negatively affects gingival wound healing. The cellular responses associated with wound healing, such as collagen synthesis, cell migration, proliferation, and collagen contraction, have been shown to be lower in gingival fibroblasts (the most abundant cells from the connective gingival tissue) in aged donors than young donors. Cellular senescence is one of the hallmarks of aging, which is characterized by the acquisition of a senescence-associated secretory phenotype that is characterized by the release of pro-inflammatory cytokines, chemokines, growth factors, and proteases which have been implicated in the recruitment of immune cells such as neutrophils, T cells and monocytes. Moreover, during aging, macrophages show altered acquisition of functional phenotypes in response to the tissue microenvironment. Thus, inflammatory and resolution macrophage-mediated processes are impaired, impacting the progression of periodontal disease. Interestingly, salivary antimicrobial peptides, such as histatins, which are involved in various functions, such as antifungal, bactericidal, enamel-protecting, angiogenesis, and re-epithelization, have been shown to fluctuate with aging. Several studies have associated the presence of Porphyromonas gingivalis, a key pathogen related to periodontitis and apical periodontitis, with the progression of Alzheimer's disease, as well as gut, esophageal, and gastric cancers. Moreover, herpes simplex virus types 1 and 2 have been associated with the severity of periodontal disease, cardiovascular complications, and nervous system-related pathologies. This review encompasses the effects of aging on periodontal tissues, how P. gingivalis and HSV infections could favor periodontitis and their relationship with other pathologies.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Gengiva/patologia , Porphyromonas gingivalis , Periodonto , Doenças Periodontais/metabolismo
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 1104-1109, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36443060

RESUMO

Periodontitis, one of the most common inflammatory oral diseases in human beings, threatens the health of teeth and mouth and is closely associated with the development of many systemic diseases. Existing research about the pathogenesis of periodontitis mainly focuses on the oral microbial homeostasis and its complex interaction with the immune system. Among all the oral microorganisms, Porphyromonas gingivalis ( P. gingivalis) is considered to be the main pathogen causing chronic periodontitis. Recent studies have shown that P. gingivalis poesseses HmuY, a special heme binding protein, which binds with heme to provide essential nutrition for P. gingivalis and activates the host immune system. Therefore, HmuY plays an important role in the growth, proliferation, invasion, and pathogenesis of P. gingivalis and is a potential virulence factor of the bacteria. Existing studies on HmuY are limited to the host immune response that HmuY triggers, and there are still no conclusive findings on whether HmuY participates in the pathogenesis of periodontitis through other ways, such as influencing periodontal bone metabolism. Herein, we reviewed the latest research findings on the biological characteristics and physiological functions of HmuY and its relationship with chronic periodontitis, so as to provide new ideas for in-depth research and further explorations into the pathogenesis of chronic periodontitis.


Assuntos
Periodontite Crônica , Porphyromonas gingivalis , Humanos , Face , Estado Nutricional
6.
Sci Rep ; 12(1): 18387, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319854

RESUMO

Currently, implants are utilized clinically for bone transplant procedures. However, if infectious osteomyelitis occurs at implant sites, removal of bacteria can be challenging. Moreover, altered blood flow at peri-implant infectious sites can create an anaerobic environment, making it more difficult to treat infection with antibiotics. Thus, it would be beneficial if implants could be modified to exhibit antibacterial activity, even in anaerobic conditions. Here, we show antibacterial activity of silver ions coated on titanium rods, even against the anaerobic bacteria Porphyromonas gingivalis (P. gingivalis), both in vitro and in vivo. Specifically, we implanted silver-coated or control uncoated titanium rods along with P. gingivalis in mouse femoral bone BM cavities and observed significantly inhibited P. gingivalis infection with silver-coated compared with non-coated rods, based on in vivo bio-imaging. Osteonecrosis by infectious osteomyelitis and elevation of the inflammatory factors C-reactive protein and IL-6 promoted by P. gingivalis s were also significantly reduced in the presence of silver-coated rods. Overall, our study indicates that silver ion coating of an implant represents a therapeutic option to prevent associated infection, even in anaerobic conditions or against anaerobic bacteria.


Assuntos
Antibacterianos , Bactérias Anaeróbias , Materiais Revestidos Biocompatíveis , Implantes Experimentais , Osteomielite , Prata , Animais , Camundongos , Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Íons/farmacologia , Osteomielite/microbiologia , Osteomielite/prevenção & controle , Prata/farmacologia , Titânio/química , Porphyromonas gingivalis/efeitos dos fármacos , Implantes Experimentais/efeitos adversos , Implantes Experimentais/microbiologia , Fêmur , Proteína C-Reativa
7.
J Mol Biol ; 434(23): 167871, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36404438

RESUMO

Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane ß-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Proteínas de Membrana , Simulação de Dinâmica Molecular , Porphyromonas gingivalis , Proteínas de Bactérias/química , Proteínas de Membrana/química , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/química , Sistemas de Secreção Bacterianos/química , Domínios Proteicos
8.
Sci Rep ; 12(1): 18608, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329042

RESUMO

To establish the role of periodontal pathobionts as a risk factor for myocardial infarction, we examined the contribution of five periodontal pathobionts and their virulence genes' expressions to myocardial injury (Troponin-I) and coronary artery disease burden (SYNTAX-I scores) using hierarchical linear regression. Pathobiont loads in subgingival-plaques and intra-coronary-thrombi were compared. Troponin-I release increased with one 16S rRNA gene copy/ng DNA of Porphyromonas gingivalis (ß = 6.8 × 10-6, 95% CI = 1.1 × 10-7-2.1 × 10-5), one-fold increased expressions of fimA (ß = 14.3, 95% CI = 1.5-27.1), bioF-3 (ß = 7.8, 95% CI = 1.1-12.3), prtH (ß = 1107.8, 95% CI = 235.6-2451.3), prtP (ß = 6772.8, 95% CI = 2418.7-11,126.9), ltxA (ß = 1811.8, 95% CI = 217.1-3840.8), cdtB (ß = 568.3, 95% CI = 113.4-1250.1), all p < 0.05. SYNTAX-I score increased with one 16S rRNA gene copy/ng DNA of Porphyromonas gingivalis (ß = 3.8 × 10-9, 95% CI = 3.6 × 10-10-1.8 × 10-8), one-fold increased expressions of fimA (ß = 1.2, 95% CI = 1.1-2.1), bioF-3 (ß = 1.1, 95% CI = 1-5.2), prtP (ß = 3, 95% CI = 1.3-4.6), ltxA (ß = 1.5, 95% CI = 1.2-2.5), all p < 0.05. Within-subject Porphyromonas gingivalis and Tannerella forsythia from intra-coronary-thrombi and subgingival-plaques correlated (rho = 0.6, p < 0.05). Higher pathobiont load and/or upregulated virulence are risk factors for myocardial infarction.Trial registration: ClinicalTrials.gov Identifier: NCT04719026.


Assuntos
Infarto do Miocárdio , Troponina I , Humanos , Estudos Transversais , RNA Ribossômico 16S/genética , Porphyromonas gingivalis , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , DNA
9.
Nat Commun ; 13(1): 6648, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333322

RESUMO

The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.


Assuntos
Perda do Osso Alveolar , Osteólise , Osteomielite , Periodontite , Camundongos , Animais , Osteócitos/metabolismo , Osteólise/induzido quimicamente , Osteólise/complicações , Osteólise/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Padrões Moleculares Associados a Patógenos/metabolismo , Ligante RANK/metabolismo , Porphyromonas gingivalis/metabolismo , Periodontite/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osteoclastos/metabolismo
10.
J Appl Oral Sci ; 30: e20220316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417596

RESUMO

OBJECTIVE: To investigate the involvement of IL-6/STAT3 signaling pathway activation in macrophage polarization and bone destruction related to apical periodontitis (AP) stimulated by Porphyromonas gingivalis. METHODOLOGY: Macrophage polarization, IL-6/STAT3 expression, and the presence of P. gingivalis were detected in human AP tissues via RT-qPCR, western blotting, and immunohistochemistry staining. Murine bone marrow derived macrophages were isolated and cultured with P. gingivalis W83 in vitro, and levels of macrophage IL-6 expression, STAT3 phosphorylation, and macrophage polarization with or without the selective STAT3 phosphorylation inhibitor Stattic (5 µM) were detected via ELISA, western blotting, RT-qPCR, and flow cytometry, respectively. P. gingivalis-induced murine AP models were constructed, and bone destruction and macrophage polarization in the apical region were evaluated. Transwell co-culture systems were used to investigate the effects of macrophages infected with P. gingivalis on osteogenesis and osteoclastogenesis. RESULTS: P. gingivalis was detected in human AP tissues that highly expressed IL-6/STAT3, and the M1 subtype of macrophages was more abundant in these tissues. P. gingivalis infection induced IL-6 expression, STAT3 phosphorylation, and M1 polarization of macrophages, while 5 µM of Stattic partially abolished these activation effects. Systemic STAT3 blockade via oral administration of Stattic at a dose of 25 mg kg-1 alleviated murine periapical bone resorption and apical infiltration of M1 macrophages induced by P. gingivalis infection in vivo. Furthermore, macrophages infected with P. gingivalis promoted bone destruction via secretion of IL-6, TNF-α, and RANKL, which hinder pre-osteoblast expression of Runx2 and accelerate pre-osteoclast expression of NFAT2. CONCLUSIONS: The activation of IL-6/STAT3 signaling pathway is involved in mediating macrophages M1 polarization in the P. gingivalis induced apical inflammatory context and may also be intimately involved in the bone loss caused by P. gingivalis infection, directing the M1 macrophage infiltration during the progression of AP.


Assuntos
Periodontite Periapical , Porphyromonas gingivalis , Camundongos , Humanos , Animais , Porphyromonas gingivalis/metabolismo , Interleucina-6 , Macrófagos , Periodontite Periapical/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia
11.
Front Cell Infect Microbiol ; 12: 1012316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405968

RESUMO

Periodontitis is an inflammatory disease of the supporting tissues of the teeth, with polymicrobial infection serving as the major pathogenic factor. As a periodontitis-related keystone pathogen, Porphyromonas gingivalis can orchestrate polymicrobial biofilm skewing into dysbiosis. Some metatranscriptomic studies have suggested that modulation of potassium ion uptake might serve as a signal enhancing microbiota nososymbiocity and periodontitis progression. Although the relationship between potassium transport and virulence has been elucidated in some bacteria, less is mentioned about the periodontitis-related pathogen. Herein, we centered on the virulence modulation potential of TrkA, the potassium uptake regulatory protein of P. gingivalis, and uncovered TrkA as the modulator in the heme acquisition process and in maintaining optimal pathogenicity in an experimental murine model of periodontitis. Hemagglutination and hemolytic activities were attenuated in the case of trkA gene loss, and the entire transcriptomic profiling revealed that the trkA gene can control the expression of genes in relation to electron transport chain activity and translation, as well as some transcriptional factors, including cdhR, the regulator of the heme uptake system hmuYR. Collectively, these results link the heme acquisition process to the potassium transporter, providing new insights into the role of potassium ion in P. gingivalis pathogenesis.


Assuntos
Periodontite , Porphyromonas gingivalis , Camundongos , Animais , Virulência , Periodontite/microbiologia , Heme/metabolismo , Potássio/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233328

RESUMO

Implant-associated infection due to biofilm formation is a growing problem. Given that silver nanoparticles (Ag-NPs) have shown antibacterial effects, our goal is to study their effect against multispecies biofilm involved in the development of peri-implantitis. To this purpose, Ag-NPs were synthesized by laser ablation in de-ionized water using two different lasers, leading to the production of colloidal suspensions. Subsequently, part of each suspension was subjected to irradiation one and three times with the same laser source with which it was obtained. Ag-NPs were immobilized on the surface of titanium discs and the resultant materials were compared with unmodified titanium coupons. Nanoparticles were physico-chemically analysed to determine their shape, crystallinity, chemical composition, and mean diameter. The materials were incubated for 90 min or 48 h, to evaluate bacterial adhesion or biofilm formation respectively with Staphylococcus aureus or oral mixed bacterial flora composed of Streptococcus oralis, Actinomyces naeslundii, Veionella dispar, and Porphyromonas gingivalis. Ag-NPs help prevent the formation of biofilms both by S. aureus and by mixed oral bacterial flora. Nanoparticles re-irradiated three times showed the biggest antimicrobial effects. Modifying dental implants in this way could prevent the development of peri-implantitis.


Assuntos
Implantes Dentários , Terapia a Laser , Nanopartículas Metálicas , Peri-Implantite , Reirradiação , Antibacterianos/farmacologia , Biofilmes , Humanos , Peri-Implantite/prevenção & controle , Porphyromonas gingivalis , Prata/farmacologia , Staphylococcus aureus , Suspensões , Titânio/química , Titânio/farmacologia , Água/farmacologia
13.
Front Cell Infect Microbiol ; 12: 987683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250046

RESUMO

Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer's disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.


Assuntos
Periodontite , Porphyromonas gingivalis , Cisteína Endopeptidases Gingipaínas , Humanos , Hidrolases , Periodontite/microbiologia , Desiminases de Arginina em Proteínas/metabolismo , Fatores de Virulência
14.
Anticancer Res ; 42(11): 5415-5430, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36288857

RESUMO

BACKGROUND/AIM: The oral bacteria involved in the development of periodontitis alter the tissue conditions and modify immune responses in a way that may also influence tumor development. We investigated the prevalence of R gingipain (Rgp), a key virulence factor of the oral pathobiont Porphyromonas gingivalis, and the tissue-destructive enzymes matrix metalloproteinase 8 (MMP-8) and 9 (MMP-9) in 202 unselected consecutive oropharyngeal squamous cell carcinoma (OPSCC) samples. We further investigated the relationships between these factors and human papillomavirus (HPV) status, Treponema denticola chymotrypsin-like proteinase (Td-CTLP) immunoexpression, clinical parameters, and patient outcome. PATIENTS AND METHODS: Clinicopathological data were derived from university hospital records. Rgp, MMP-8, and MMP-9 immunoexpression was evaluated by immunohistochemistry; the immunohistochemistry of Td-CTLP and HPV has been described earlier for this patient series. Cox regression analysis including death by causes other than OPSCC as a competing risk served to assess sub distribution hazard ratios. RESULTS: In multivariable survival analysis, positive tumoral MMP-9 immunoexpression predicted poor prognosis among all patients [sub distribution hazard ratio (SHR)=2.4; confidence interval (CI)=1.2-4.4, p=0.008], and especially among those with HPV-negative OPSCC (SHR=3.5; CI=1.7-7.3, p=0.001). Positive immunoexpression of Rgp in inflammatory cells was associated with favorable outcome among all patients (SHR=0.5, CI=0.2-0.9, p=0.021) and among those with HPV-negative disease (SHR=0.4, CI=0.2-0.9, p=0.022). CONCLUSION: Our results suggest that tumoral MMP-9 may be related to poor outcome in OPSCC, especially in HPV-negative disease, while Rgp immunoexpression in inflammatory cells is associated here with better disease-specific survival (DSS).


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Metaloproteinase 8 da Matriz , Neoplasias Orofaríngeas/patologia , Prognóstico , Metaloproteinase 9 da Matriz , Cisteína Endopeptidases Gingipaínas , Porphyromonas gingivalis , Quimotripsina , Papillomaviridae , Neoplasias de Cabeça e Pescoço/complicações , Fatores de Virulência
15.
J Periodontal Res ; 57(6): 1256-1266, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251393

RESUMO

BACKGROUND AND OBJECTIVE: The translocation of oral bacteria, including Porphyromonas gingivalis, to the gut has been shown to alter gut microbiome. However, the effect of P. gingivalis on gut microbiome in relation to aging has not been demonstrated. We hypothesize that P. gingivalis has more detrimental effect on gut environment with increased age. The objective of this study is to investigate the effect of P. gingivalis on gut environment using aged mice. MATERIALS AND METHODS: C57BL/6J mice aged 4 weeks (young) or 76 weeks (old) were divided into four groups: control-young, control-old, P. gingivalis-administered young, and P. gingivalis-administered old. P. gingivalis was orally administered thrice weekly for 5 weeks. At 30 days after the last P. gingivalis administration, 16S rRNA sequencing was performed to study the gut microbiome. The mRNA and protein expression of intestinal junctional barrier molecules and the levels of the inflammatory cytokines IL-1ß and TNF-α in the serum were evaluated. RESULTS: Significant differences in the gut microbiomes between the groups, in terms of taxonomic abundance, bacterial diversity, and predicted metagenome function, were observed. A significant reduction in the alpha diversity and in the abundance of beneficial bacteria, such as Akkermansia and Clostridiaceae, in the P. gingivalis-administered old mice was observed. The mRNA and protein levels of Claudin-1 and Claudin-2 in the intestine were significantly elevated, while E-cadherin was significantly downregulated in the P. gingivalis-administered old mice, as were the serum levels of IL-1ß and TNF-α. CONCLUSION: The effect of P. gingivalis on the gut environment is more pronounced in old mice than in young mice.


Assuntos
Microbioma Gastrointestinal , Porphyromonas gingivalis , Camundongos , Animais , RNA Ribossômico 16S , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Envelhecimento , RNA Mensageiro
16.
Braz Dent J ; 33(5): 64-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36287500

RESUMO

Periodontitis and arterial hypertension are two of the pathologies with the highest global prevalence; evidence reported so far has been favorable to an association between them. This cross-sectional study aimed to evaluate and compare the microbiological counts of hypertensive and normotensive patients with periodontitis. Sociodemographic, behavioral, systemic health data and periodontal clinical parameters were assessed. Counts of A. actinomycetemcomitans, P. intermedia, P. gingivalis and F. nucleatum were performed by real-time polymerase chain reaction using subgingival biofilm samples. Thirty-eight patients were included in this preliminary analysis, divided into two groups: Normotensive Group (NG) (n = 14) and Hypertensive Group (HG) (n = 24). Patients diagnosed with periodontitis composed both groups. Data analysis was performed with significance level of 5%. There was no significant difference between groups for clinical periodontitis diagnosis. In addition, hypertensive individuals had higher P. intermedia, P. gingivalis, and F. nucleatum counts when compared to normotensive individuals. The parameters probing pocket depth, bleeding on probing, and A. actinomycetemcomitans count did not presented statistical differences between groups. With these preliminary results, it can be concluded that the presence of arterial hypertension may be associated with a greater quantity of periodontopathogenic bacterial of some species in individuals with periodontitis.


Assuntos
Hipertensão , Periodontite , Humanos , Aggregatibacter actinomycetemcomitans , Projetos Piloto , Porphyromonas gingivalis , Fusobacterium nucleatum , Estudos Transversais , Prevotella intermedia
17.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234803

RESUMO

The adenosine A2A receptor antagonist SCH58261 has been reported to have anti-inflammatory effects. However, its role in chronic periodontitis (CP)-induced cognitive impairment, which is associated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS), remains unclear. This study investigated the role of SCH58261 in mice with CP-induced cognitive impairment. C57BL/6J mice were used to develop CP model by injecting 0.5 mg/kg P. gingivalis LPS into the palatal gingival sulcus of maxillary first molars twice a week for four weeks. The mice were divided into control, P. gingivalis LPS (P-LPS), P-LPS + SCH58261, and SCH58261 groups. The passive avoidance test (PAT) and Morris water maze (MWM) were used to assess cognition in mice. Furthermore, CD73/adenosine, neuroinflammation, glutamate transporters, and glutamate were assessed. Compared with the P-LPS group, 0.1 and 0.5 mg/kg SCH58261 increased latency and decreased error times in PAT, but increased platform crossing number in MWM. SCH58261 inhibited microglial activation, and decreased pro-inflammatory cytokines and glutamate levels, but increased GLT-1 and PSD95 expression in the hippocampus. This was the first report of SCH58261 treatment for CP-induced cognitive impairment, which may be related to its anti-inflammatory activities and anti-glutamate excitatory neurotoxicity. This suggests that SCH58261 can be used as a novel agent to treat cognitive impairment.


Assuntos
Periodontite Crônica , Disfunção Cognitiva , Síndromes Neurotóxicas , Adenosina , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Citocinas , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Porphyromonas gingivalis/metabolismo , Receptor A2A de Adenosina/metabolismo
18.
J Indian Soc Pedod Prev Dent ; 40(3): 219-229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260461

RESUMO

Background: Passive immunization using egg yolk-based antibodies has been tested against oral microorganisms. Our study assessed the effect of immunoglobulin Y (IgY) formulations on Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans in human subjects. Highlights: VS and UT independently searched articles using keyword combinations in four search engines; studies in English were selected. Either parallel-arm or split-mouth randomized controlled trials on healthy human subjects were considered. Ten studies remained in the selection; six studies compared the effect of IgY formulations on S. mutans, three on P. gingivalis, and one on C. albicans. Five studies (422 subjects) compared the effect of IgY formulations on S. mutans. When fixed-effect model (FEM) was applied, the risk ratio (RR) (confidence interval [CI]) was found to be 7.81 (6.00, 10.18). Three studies (167 subjects) compared the effect of IgY formulations on P. gingivalis. When FEM was applied, the RR (CI) was found to be 0.06 (-0.03, 0.15) in relation to reduction in probing depth. When FEM was applied, for percentage reduction in bleeding on probing (BOP), the RR (CI) was 1.99 (1.64, 2.41). Only one study (26 subjects) was available of IgY formulation and C. albicans; hence meta-analysis was not performed.The search was extended using Google Scholar, Semantic Scholar, cross-references and by contacting authors and researchers in the field which further yielded five articles. . Conclusions: IgY formulations were effective in the reduction of S. mutans. They were not effective on P. gingivalis in relation to probing depth but were effective in relation to reduction in BOP. No harms were reported. Evidence is of low quality due to high heterogeneity. The ROB was moderate and publication bias was low.


Assuntos
Imunoglobulinas , Porphyromonas gingivalis , Humanos , Imunoglobulinas/farmacologia , Imunoglobulinas/uso terapêutico , Streptococcus mutans , Sujeitos da Pesquisa , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Biomed Res Int ; 2022: 3865844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246974

RESUMO

Matriptases are cell surface proteolytic enzymes belonging to the type II transmembrane serine protease family that mediate inflammatory skin disorders and cancer progression. Matriptases may affect the development of periodontitis via protease-activated receptor-2 activity. However, the cellular mechanism by which matriptases are involved in periodontitis is unknown. In this study, we examined the antiperiodontitis effects of matriptase on Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS)-stimulated human gingival fibroblasts (HGFs). Matriptase small interfering RNA-transfected HGFs were treated with PG-LPS. The mRNA and protein levels of proinflammatory cytokines and matrix metalloproteinase 1 (MMP-1) were evaluated using the quantitative real-time polymerase chain reaction (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA), respectively. Western blot analyses were performed to measure the levels of Toll-like receptor 4 (TLR4)/interleukin-1 (IL-1) receptor-associated kinase (IRAK)/transforming growth factor ß-activated kinase 1 (TAK1), p65, and p50 in PG-LPS-stimulated HGFs. Matriptase downregulation inhibited LPS-induced proinflammatory cytokine expression, including the expression of IL-6, IL-8, tumor necrosis factor-α (TNF-α), and IL-Iß. Moreover, matriptase downregulation inhibited PG-LPS-stimulated MMP-1 expression. Additionally, we confirmed that the mechanism underlying the effects of matriptase downregulation involves the suppression of PG-LPS-induced IRAK1/TAK1 and NF-κB. These results suggest that downregulation of matriptase PG-LPS-induced MMP-1 and proinflammatory cytokine expression via TLR4-mediated IRAK1/TAK1 and NF-κB signaling pathways in HGFs.


Assuntos
Fibroblastos , Metaloproteinase 1 da Matriz , Periodontite , Serina Endopeptidases , Citocinas/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , NF-kappa B/metabolismo , Periodontite/genética , Periodontite/metabolismo , Porphyromonas gingivalis , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Ativados por Proteinase/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 10): 354-362, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189719

RESUMO

Pathogenic bacteria utilize specialized macromolecular secretion systems to transport virulence factors across membrane(s) and manipulate their infected host. To date, 11 secretion systems have been identified, including the type IX secretion system (T9SS) associated with human, avian and farmed-fish diseases. As a bacterial secretion system, the T9SS also facilitates gliding motility and the degradation of different macromolecules by the secretion of metabolic enzymes in nonpathogenic bacteria. PorX is a highly conserved protein that regulates the transcription of essential T9SS components and additionally mediates the function of T9SS via direct interaction with PorL, the rotary motor protein of the T9SS. PorX is also a member of a two-component system regulatory cascade, where it serves as the response regulator that relays a signal transduced from a conserved sensor histidine kinase, PorY, to a designated sigma factor. Here, the recombinant expression and purification of PorX homologous proteins from the pathogenic bacterium Porphyromonas gingivalis and the nonpathogenic bacterium Flavobacterium johnsoniae are reported. A bioinformatical characterization of the different domains comprising the PorX protein is also provided, and the crystallization and X-ray analysis of PorX from F. johnsoniae are reported.


Assuntos
Proteínas de Bactérias , Fator sigma , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Cristalização , Cristalografia por Raios X , Histidina Quinase/metabolismo , Humanos , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Fator sigma/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...