Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.134
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 35(8): 1537-1545, 2019 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-31441625

RESUMO

Exosomes have many advantages as natural drug delivery carriers, but their application is limited by the inefficient loading of intracellular drugs (such as proteins and nucleic acids). In this study, mCherry, a red fluorescent protein, was used as the endogenous cargo target. Through gene modification of donor cells and fusion expression of membrane localization elements (PB, CAAX, Palm and CD63), mCherry was specifically sorted into exosomes through biogenesis. Results show that CD63 had the highest sorting efficiency, followed by Palm. PB and CAAX led enrichment of mCherry on the plasma membrane, but not in exosomes. The approach provides an alternative to facilitate packaging of cargo by exosomes and thus to increase the efficient delivery of endogenous protein drugs.


Assuntos
Exossomos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Transporte Proteico
2.
Pharm Res ; 36(10): 140, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31367876

RESUMO

PURPOSE: In order to overcome the obstacles and side effects of classical chemotherapy, numerous studies have been performed to develop the treatment based on targeted transport of active compounds directly to the site of action. Since tumor cells are featured with intensified glucose metabolism, we set out to develop innovative, glucose-modified PAMAM dendrimer for the delivery of doxorubicin to breast cancer cells. METHODS: PAMAM-dox-glc conjugate was synthesized and characterized by 1H NMR, FT-IR, size and zeta potential measurements. The drug release rate from conjugate was evaluated by dialysis under different pH conditions. The expression level of GLUT family receptors in cells cultured in full and glucose-deprived medium was evaluated by quantitative real-time RT-PCR and flow cytometry. The cytotoxicity of conjugate in presence or absence of GLUT1 inhibitors was determined by MTT assay. RESULTS: We showed that PAMAM-dox-glc conjugate exhibits pH-dependent drug release and increased cytotoxic activity compared to free drug in cells cultured in medium without glucose. Further, we proved that these cells overexpress transporters of GLUT family. The toxic effect of conjugate was eliminated by the application of specific GLUT1 inhibitors. CONCLUSION: Our findings revealed that the glucose moiety plays a crucial role in the recognition of cells with high expression of GLUT receptors. By selectively blocking GLUT1 transporter we showed its importance for the cytotoxic activity of PAMAM-dox-glc conjugate. These results suggest that PAMAM-glucose formulations may constitute an efficient platform for the specific delivery of anticancer drugs to tumor cells overexpressing transporters of GLUT family.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Transportador de Glucose Tipo 1/metabolismo , Glucose/efeitos adversos , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Regulação da Expressão Gênica , Glucose/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Tamanho da Partícula
4.
Chem Commun (Camb) ; 55(66): 9829-9832, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31363730

RESUMO

Polyethylene glycol grafted pyrrole-based conjugated polymers are synthesized through a one-pot multicomponent methodology, the self-assemblies of which enable nanoparticle size-selective encapsulation of drug molecules and their sustained release. Efficient loading of curcumin through drug-nanoparticle core interactions is probed using FRET, and the inherently fluorescent nature of polypyrrole could be used to detect these nanocarriers intracellularly.


Assuntos
Portadores de Fármacos , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Pirróis/química , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Transferência Ressonante de Energia de Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta
5.
Int J Nanomedicine ; 14: 4895-4909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456636

RESUMO

Introduction: Insulin is given by injection, because when administered orally, it would be destroyed by enzymes in the digestive system, hence only about 0.1% reaches blood circulation. The purpose of the present study was to use pH sensitive polyelectrolyte methyl methacrylate (MMA)/itaconic acid (IA) nanogels as carriers in an attempt to improve absorption of insulin administered orally. Methods: Insulin (Ins) was incorporated into the MMA/IA nanogels (NGs) using the polyelectrolyte complexation (PEC) method to form Ins/NGs-PEC. Several parameters, including Ins:NGs ratio, pH, incubation time and stirring rate were optimized during preparation of InsNGs-PEC. The prepared formulations were characterized in terms of particle size (PS), polydispersity index (PdI), zeta potential (ZP) and percent entrapment efficiency (% EE). Results: The optimized InF12 nanogels had a PS, PdI, ZP and %EE of 190.43 nm, 0.186, -16.70 mV and 85.20%, respectively. The InF12 nanogels were lyophilized in the presence of different concentrations of trehalose as cryoprotectant. The lyophilized InF12 containing 2%w/v trahalose (InF12-Tre2 nanogels) was chosen as final formulation which had a PS, PdI, ZP and %EE of 430.50 nm, 0.588, -16.50 mv and 82.10, respectively. The in vitro release of insulin from InF12-Tre2 nanogels in the SGF and SIF were 28.71% and 96.53%, respectively. The stability study conducted at 5±3°C for 3 months showed that lnF12-Tre2 nanogels were stable. The SDS-PAGE assay indicated that the primary structure of insulin in the lnF12-Tre2 nanogels was intact. The in-vivo study in the diabetic rats following oral administration of InF12-Tre2 nanogels at a dose of 100 IU/kg body weight reduced blood glucose level significantly to 51.10% after 6 hours compared to the control groups. Conclusions: The pH sensitive MMA/IA nanogels are potential carriers for oral delivery of insulin as they enhanced the absorption of the drug.


Assuntos
Liofilização , Insulina/administração & dosagem , Polieletrólitos/química , Polietilenoglicóis/administração & dosagem , Polietilenoimina/administração & dosagem , Administração Oral , Animais , Crioprotetores/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Masculino , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura Ambiente , Fatores de Tempo
6.
J Agric Food Chem ; 67(33): 9371-9381, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31379162

RESUMO

A major obstacle to the clinical use of curcumin (CUR) is its reduced bioavailability because of the drug's hydrophobic nature, low intestinal absorption, and rapid metabolism. In this study, a novel oral drug delivery system was constructed for improving the stability and enhancing mucoadhesion of CUR in the gastrointestinal (GI) tract. First, CUR was encapsulated in the bovine serum albumin nanoparticles (CUR-BSA-NPs). Then, N-acetyl cysteine (NAC)-modified CUR-BSA-NPs (CUR-NBSA-NPs) were obtained. The average particle size and zeta potential of CUR-NBSA-NPs were 251.6 nm and -30.66 mV, respectively; encapsulation efficiency and drug loading were 85.79 and 10.9%, respectively. CUR-NBSA-NPs exhibited a sustained release property and prominently enhanced stability in simulated GI conditions. Additionally, enhanced mucoadhesion of CUR-NBSA-NPs was also observed. An MTT study showed that the CUR-NBSA-NPs were safe for oral administration. Overall, NAC-modified BSA-NPs may potentially serve as an oral vehicle for improving CUR stability in the GI tract and enhancing mucoadhesion.


Assuntos
Acetilcisteína/química , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Trato Gastrointestinal/metabolismo , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Células CACO-2 , Bovinos , Curcumina/metabolismo , Estabilidade de Medicamentos , Humanos , Tamanho da Partícula
7.
Int J Nanomedicine ; 14: 5073-5085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371948

RESUMO

Purpose: To potentiate the anticancer activity of curcumin (CUR) by improving its cell penetration potentials through formulating it into nanostructured lipid carriers (NLCs) and using the prepared NLCs in photodynamic therapy. Methods: A 3×4 factorial design was used to obtain 12 CUR-NLCs using two factors on different levels: (1) the solid lipid type at four levels and (2) the solid to liquid lipid ratio at three levels. Olive oil, Tween 80 and lecithin were chosen as liquid lipid, surfactant and co-surfactant, respectively. CUR-NLCs prepared by high shear hot homogenization method were evaluated by determination of particle size (PS), polydispersity index, zeta potential (ZP), entrapment efficiency percent, drug loading percent and in vitro drug release. Optimization was based on the evaluation results using response surface modeling (RSM). Optimized formulae were tested for their in vitro release pattern and for dark and photo-cytotoxic anticancer activity on breast cancer cell line in comparison to free CUR. Results: Evaluation tests showed the appropriateness of NLCs prepared from glyceryl monooleate and Geleol™ helped choosing two optimized formulae, PE3 and GE3. PE3 (prepared using glyceryl monooleate) showed enhanced release rates compared to GE3 (prepared from Geleol) and superior cytotoxic anticancer activity compared to both GE3 and free CUR under both light and dark conditions. The small mean PS, spherical shape as well as the negative ZP enhanced the internalization of the NLCs within cells. Modulation and inhibition of P-glycoprotein expression by glyceryl monooleate synergized the cytotoxic activity of CUR. Conclusion: CUR loading in NLCs enhanced its cell penetration and cytotoxic anticancer properties both in dark and in light conditions.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/uso terapêutico , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Ácidos Oleicos/química , Azeite de Oliva/química , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Feminino , Humanos , Células MCF-7 , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
8.
Int J Nanomedicine ; 14: 5415-5434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409996

RESUMO

Over the past two decades, nano-sized biosystems have increasingly been utilized to deliver various pharmaceutical agents to a specific region, organ or tissue for controllable precision therapy. Whether solid nanohydrogel, nanosphere, nanoparticle, nanosheet, micelles and lipoproteins, or "hollow" nanobubble, liposome, nanocapsule, and nanovesicle, all of them can exhibit outstanding loading and releasing capability as a drug vehicle - in particular polymeric nanovesicle, a microscopic hollow sphere that encloses a water core with a thin polymer membrane. Besides excellent stability, toughness and liposome-like compatibility, polymeric nanovesicles offer considerable scope for tailoring properties by changing their chemical structure, block lengths, stimulus-responsiveness and even conjugation with biomolecules. In this review, we summarize the latest advances in stimulus-responsive polymeric nanovesicles for biomedical applications. Different functionalized polymers are in development to construct more complex multiple responsive nanovesicles in delivery systems, medical imaging, biosensors and so on.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Nanopartículas/química , Polímeros/química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio
9.
J Agric Food Chem ; 67(29): 8168-8176, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268318

RESUMO

Protein-based nanoparticles (NPs) with favorable properties including enhanced absorptivity and low toxicity still suffer a major challenge for rapid nutraceutical or drug release after oral administration. Hence, we introduced a secondary encapsulation for unstable factor to attain a controlled-release effect in a gastrointestinal environment. In this work, assembled nanoparticles engineered by nobiletin (NOB), zein, and tannin acid (TA) were first reported for drug delivery systems. The TA added was capable of obtaining further assembly to stabilize nobiletin in comparison with NOB-loaded zein NPs only. Sunflower pollens (SPGs) were selected as carriers for further oral delivery, while zein was chosen as a coating material for capping SPGs absolutely. As a result, the NOB/zein/TA NPs (NZT NPs) obtained had a stable size of 100 nm after 48 h. Besides, they could improve the chemical stability of NOB for at least 120 days at 4 °C compared with zein NPs (ZT NPs). Owing to the secondary capping by SPGs, the final system was able to release selectively via an oral route, that is, achieving no release in a gastric environment and slow release in an intestine environment. Generally, our research proposed a secondary protection model to prevent drug-loaded NPs from resolving after oral administration, which provided a new perspective for nutraceutical or drug encapsulation and controlled-release delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Flavonas/química , Helianthus/química , Pólen/química , Administração Oral , Cápsulas/administração & dosagem , Cápsulas/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Flavonas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Taninos/química , Zeína/química
10.
Molecules ; 24(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288497

RESUMO

Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.


Assuntos
Arecaceae/microbiologia , Quitosana/química , Portadores de Fármacos/química , Fungicidas Industriais/farmacologia , Ganoderma/efeitos dos fármacos , Nanopartículas/química , Doenças das Plantas/microbiologia , Triazóis/farmacologia , Reagentes para Ligações Cruzadas/química , Liberação Controlada de Fármacos , Cinética , Tamanho da Partícula , Polifosfatos/química
11.
Zhongguo Zhong Yao Za Zhi ; 44(10): 2072-2077, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31355563

RESUMO

Paclitaxel( PTX) is used as a broad spectrum anti-tumor medicine. However,serious drawbacks restrict clinical application of PTX. In this study,we prepared tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier containing paclitaxel( BSALC/DOPE-PTX) to study the effective antitumor activity. The in vivo targeting ability of the nanocarrier in tumor bearing nude mice was evaluated by using a Kodak in vivo imaging system FX PRO. The in vivo anti-tumor activity was evaluated in MDA-MB-231 tumor bearing mice,and representative sections were stained with hematoxylin and eosin( H&E),and examined by light microscopy. The results showed that DiR-loaded FA-BSA-LC/DOPE selectively targeted tumor,and had a relatively long residence in the tumor tissue. According to the in vivo anti-tumor activity study,FA-BSA-LC/DOPE-PTX exhibited an outstanding tumor inhibition effect with a tumor growth inhibition rate of 79.3%,and tumor tissue sections stained by hematoxylin and eosin( HE) showed severe necrosis areas and many dead cells with condensed nuclei in the FA-BSA-LC/DOPE-PTX group. Therefore,FA-BSA-LC/DOPE-PTX is a biocompatible,tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier,with a very marked anti-tumor activity in tumor-bearing mice in vivo.


Assuntos
Portadores de Fármacos , Lipoproteínas , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus
12.
APMIS ; 127(10): 671-680, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31344276

RESUMO

Regardless of the communal impact of Shiga toxins, till today neither a specific treatment nor licensed vaccine is available. Lactococcus lactis (L. lactis), generally regarded as safe organism, is well known to provide a valuable approach regarding the oral delivery of vaccines. This study was undertaken to evaluate the protective efficacy of Stx2a1 expressed in nisin-inducible L. lactis, against Shiga toxins (Stx1, Stx2) in mouse model. Oral immunization of BALB/c mice with LL-Stx2a1 elicited significant serum antibody titer with elevated fecal and serum IgA, along with minimized intestinal and kidney damage resulting in survival of immunized animals at 84% and 100% when challenged with 10 × LD50 of Escherichia coli O157 and Shigella dysenteriae toxins, respectively. HeLa cells incubated with immune sera and toxin mixture revealed high neutralizing capacity with 90% cell survivability against both the toxins. Mice immunized passively with both toxins and antibody mixture survived the observation period of 15 days, and the controls administered with sham sera and toxins were succumbed to death within 3 days. Our results revealed protective efficacy and toxin neutralization ability of LL-Stx2a1, proposing it as an oral vaccine candidate against Shiga toxicity mediated by E. coli O157 and S. dysenteriae.


Assuntos
Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Escherichia coli O157/imunologia , Envenenamento/prevenção & controle , Toxina Shiga/imunologia , Toxina Shiga/toxicidade , Shigella dysenteriae/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/sangue , Antitoxinas/administração & dosagem , Antitoxinas/sangue , Vacinas Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Escherichia coli O157/genética , Vetores Genéticos/administração & dosagem , Células HeLa , Humanos , Lactococcus lactis/genética , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga/genética , Shigella dysenteriae/genética , Análise de Sobrevida , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
13.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2251-2259, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31359650

RESUMO

Docetaxel-loaded nanomicelles were prepared in this study to improve the solubility and tumor targeting effect of docetaxel(DTX),and further evaluate their anticancer effects in vitro. PBAE-DTX nanomicelles were prepared by film-hydration method with amphiphilic block copolymer polyethyleneglycol methoxy-polylactide(PELA) and pH sensitive triblock copolymer polyethyleneglycol methoxy-polylactide-poly-ß-aminoester(PBAE) were used respectively to prepare PELA-DTX nanomicelles and PBAE-DTX nanomicelles. The nanomicelles were characterized by physicochemical properties and the activity of mice Lewis lung cancer cells was studied. The results of particle size measurement showed that the blank micelles and drug-loaded micelles had similar particle sizes, ranging from 10 to 100 nm. The particle size of PBAE micelles was changed under weak acidic conditions, with good pH response. The encapsulation efficiency of the above two types of DTX-loaded nanomicelles determined by HPLC was(93.8±1.70)% and(87.2±4.10)%, and the drug loading amount was(5.3±0.10)% and(4.9±0.05)%,respectively. Furthermore,the DTX micelles also showed significant inhibitory effects on Lewis lung cancer cells by MTT assay, and pH-sensitive PBAE-DTX showed better cytotoxicity. The results of flow cytometry indicated that,the apoptosis rate of lung cancer Lewis cells was(20.72±1.47)%,(29.71±2.38)%,and(40.91±1.90)%(P<0.05) at 48 h after treatment in DTX,PELA-DTX,and PBAE-DTX groups. The results showed that different docetaxel preparations could promote the apoptosis of Lewis cells, and PBAE-DTX had stronger apoptotic-promoting effect. The pH-sensitive DTX-loaded micelles are promising candidates in developing stimuli triggered drug delivery systems in acidic tumor micro-environments with improved inhibitory effects of tumor growth on Lewis lung cancer.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Neoplasias Pulmonares/patologia , Nanopartículas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Micelas , Tamanho da Partícula , Taxoides
14.
J Microbiol Biotechnol ; 29(7): 1009-1013, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31288302

RESUMO

Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/química , Portadores de Fármacos/química , Fungos/efeitos dos fármacos , Nanopartículas/química , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia , Polímeros/química
15.
J Nanobiotechnology ; 17(1): 78, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269964

RESUMO

BACKGROUND: The construction of a multifunctional drug delivery system with a variety of advantageous features, including targeted delivery, controlled release and combined therapy, is highly attractive but remains a challenge. RESULTS: In this study, we developed a MoS2-based hyaluronic acid (HA)-functionalized nanoplatform capable of achieving targeted delivery of camptothecin (CPT) and dual-stimuli-responsive drug release. HA was connected to MoS2 via a disulfide linkage, forming a sheddable HA shell on the surface of MoS2. This unique design not only effectively prevented the encapsulated CPT from randomly leaking during blood circulation but also significantly accelerated the drug release in response to tumor-associated glutathione (GSH). Moreover, the MoS2-based generated heat upon near-infrared (NIR) irradiation could further increase the drug release rate as well as induce photothermal ablation of cancer cells. The results of in vitro and in vivo experiments revealed that MoS2-SS-HA-CPT effectively suppressed cell proliferation and inhibited tumor growth in lung cancer cell-bearing mice under NIR irradiation via synergetic chemo-photothermal therapy. CONCLUSIONS: The as-prepared MoS2-SS-HA-CPT with high targeting ability, dual-stimuli-responsive drug release, and synergistic chemo-photothermal therapy may provide a new strategy for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/administração & dosagem , Dissulfetos/química , Portadores de Fármacos/química , Molibdênio/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Feminino , Corantes Fluorescentes/química , Humanos , Ácido Hialurônico/química , Hipertermia Induzida , Raios Infravermelhos , Camundongos Nus , Transplante de Neoplasias , Oxirredução , Fotoquimioterapia/métodos
16.
J Nanobiotechnology ; 17(1): 79, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277668

RESUMO

BACKGROUND: Protein nanocages have emerged as popular nanocarriers for either drug delivery or biotemplates for the preparation of nanomaterials. However, only three interfaces, namely exterior surface, intersubunit and inner cavity, have been used as reaction sites for the above purposes with all known protein nanocages. On the other hand, how to control the site of Au NCs formed within a targeted protein template while maintaining the functionality of protein itself remains challenging. RESULTS: In this work, inspired by compartmentalization in living systems, we firstly come up with the conception of "intrasubunit interfaces", located within subunit of protein nanocage. We built a new, specific compartment for fabrication of gold nanoclusters by genetic modification of the inherent ferroxidase center located within four-α-helix bundle of each ferritin subunit. This newly built compartment not only realizes the site-directed synthesis of gold nanoclusters but also has no effect on the functionality of ferritin itself such as encapsulation by its inner cavity. These redesigned composites can be further applied as fluorescent imaging agent and carriers for preparation of hybrid nanomaterials. CONCLUSIONS: The designing strategy of intrasubunit interfaces opens a new way for future applications of cage-like proteins.


Assuntos
Portadores de Fármacos/química , Ferritinas/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Caenorhabditis elegans/metabolismo , Escherichia coli/genética , Ferritinas/genética , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Mutação , Imagem Óptica
17.
J Nanobiotechnology ; 17(1): 83, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291948

RESUMO

BACKGROUND: Macrophages with tumor-tropic migratory properties can serve as a cellular carrier to enhance the efficacy of anti neoplastic agents. However, limited drug loading (DL) and insufficient drug release at the tumor site remain the main obstacles in developing macrophage-based delivery systems. In this study, we constructed a biomimetic delivery system (BDS) by loading doxorubicin (DOX)-loaded reduced graphene oxide (rGO) into a mouse macrophage-like cell line (RAW264.7), hoping that the newly constructed BDS could perfectly combine the tumor-tropic ability of macrophages and the photothermal property of rGO. RESULTS: At the same DOX concentration, the macrophages could absorb more DOX/PEG-BPEI-rGO than free DOX. The tumor-tropic capacity of RAW264.7 cells towards RM-1 mouse prostate cancer cells did not undergo significant change after drug loading in vitro and in vivo. PEG-BPEI-rGO encapsulated in the macrophages could effectively convert the absorbed near-infrared light into heat energy, causing rapid release of DOX. The BDS showed excellent anti-tumor efficacy in vivo. CONCLUSIONS: The BDS that we developed in this study had the following characteristic features: active targeting of tumor cells, stimuli-release triggered by near-infrared laser (NIR), and effective combination of chemotherapy and photothermotherapy. Using the photothermal effect produced by PEG-BPEI-rGO and DOX released from the macrophages upon NIR irradiation, MAs-DOX/PEG-BPEI-rGO exhibited a significant inhibitory effect on tumor growth.


Assuntos
Antineoplásicos/química , Materiais Biomiméticos/química , Portadores de Fármacos/química , Macrófagos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Liberação Controlada de Fármacos , Grafite/química , Humanos , Hipertermia Induzida , Raios Infravermelhos , Lasers , Masculino , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Polietilenoimina/química , Distribuição Tecidual
18.
Biomed Khim ; 65(3): 222-226, 2019 Apr.
Artigo em Russo | MEDLINE | ID: mdl-31258145

RESUMO

Along with modern new drugs, many therapeutic schemes also include known effective drugs, particularly, glucocorticoids. One of the most distributed of them is prednisolone that has pronounced anti-inflammatory properties. Its disadvantage is short-term circulation, resulting in a number of side effects. For this reason the development of its more effective and safe formulations is carried out. We have obtained the formulation of prednisolone included in nanoparticles from soy phosphatidylcholine with an average diameter of 20 nm. With oral administration to rats and analysis by HPLC an increase in prednisolone maximal concentration in of plasma and the duration of circulation as compared with free drug administration were shown. The experiment with mice with conconavalin A induced inflammation was also carried out: conconavalin A was injected subplantary in an hour after oral administration of both prednisolone formulations in several doses. The index of the inflammatory reaction (determined by the edema degree) was suppressed more effectively in the case of prednisolone in nanoparticles. Maximal suppression (62.2% as compared with 49.6% for free prednisolone) was observed even at a minimal dose (2.5 mg/kg), at which the free drug did not act at all. The results indicate an increase in the efficiency of prednisolone included in phospholipid nanoparticles, that makes it possible to diminish its administered doses and thereby reduce the risk of side effects.


Assuntos
Anti-Inflamatórios/farmacologia , Portadores de Fármacos/química , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Prednisolona/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/farmacocinética , Glucocorticoides/farmacocinética , Camundongos , Nanopartículas , Fosfolipídeos , Prednisolona/farmacocinética , Ratos
19.
J Photochem Photobiol B ; 197: 111530, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31279287

RESUMO

A novel nano-formulations of biocompatible, biodegradable and thermo-responsive graphene quantum dots (GQDs) loaded dextran/poly(N-isopropylacrylamide) (Dex/PNIPAM) copolymeric matrix was synthesized and analyzed the materials characterization, sustained drug delivery system, tissue feasibility in the tissue implantation site. This research report was aimed to grafting and functionalizing thermo-responsive (Dex/PNIPAM) copolymeric composite with presence of graphene quantum dots to achieve thermal responsive drug delivery (TrDD) with no harm effect in the implantation site. The synthesized GQD by using ionic liquid were evaluated by spectroscopic (DLS, PL, XRD and Raman spectroscopy) and Transmission electron microscopic analysis (TEM). The ultra-small GQDs loaded Dex/PNIPAM and was appeared to be asymmetric and open uniform porous structure, which can be significantly favorable for cell uptake and greatly influenced to be an effective drug carrier into the cellular compartment with good fluid flow. The PNIPAM polymeric composite were exhibited sustained and enhanced drug release percentages with increasing temperature at above low critical solution temperature (LCST) is 39 °C comparable to the cumulative drug release profile of below LCST (32 °C), which demonstrated that thermo-responsive polymer was played a significant role in the delivery system. The treated group of GQDs-Dex/PNIPAM was observed that no inflammation and shows noteworthy stromal cell infiltration, demonstrating that the synthesized drug carriers did not harm to the nerves and tissues and only was responsible for the pain management.


Assuntos
Buprenorfina/química , Portadores de Fármacos/química , Grafite/química , Hidrogéis/química , Manejo da Dor , Pontos Quânticos/química , Resinas Acrílicas/química , Animais , Buprenorfina/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Portadores de Fármacos/farmacologia , Feminino , Corantes Fluorescentes/química , Glicóis/química , Hidrogéis/farmacologia , Camundongos , Músculo Esquelético/patologia , Dor/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
20.
Chem Commun (Camb) ; 55(61): 9015-9018, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31290867
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA