Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.384
Filtrar
1.
Biomater Sci ; 7(9): 3729-3740, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403142

RESUMO

Targeted delivery of immunosuppressants to allografts can increase the concentrations of drugs in pathological tissues, improve therapeutic effects and reduce unfavorable side effects. Therefore, we synthesized FK506-loaded microbubbles (FK506-MBs) for site-specific release of FK506 into transplanted hearts by the ultrasound-targeted microbubble destruction (UTMD) technique. The average particle size of FK506-MBs was 1.65 ± 0.32 µm and they had high drug loading and encapsulation efficiency. The in vivo drug concentration in transplanted hearts that were treated with FK506-MBs plus UTMD was about 1.64-fold higher than that in grafts that received free FK506 at the same dosage. The degree of graft rejection in the FK506-MB plus UTMD group was lower than those of other groups. Both infiltration of T cells and secretion of inflammatory cytokines were significantly reduced in the FK506-MB plus UTMD group. More importantly, the mean survival time of the grafts was significantly longer (16.00 ± 0.89 day) than those of the PBS group (6.66 ± 1.36 day) and the FK506 group (12.83 ± 1.17 day). In addition, we also found that the concentration of FK506 in whole blood was lower in the FK506-MB plus UTMD group than that in the FK506 group, which would be beneficial for reducing the side effects. Hence, our results showed that combining FK506-MBs with UTMD was an effective strategy to deliver FK506 to transplanted hearts, which can increase the local drug concentration and enhance its efficacy on rejection. Ultrasound-targeted drug release is safe and radiation-free, with great potential for clinical transformation, and could also be extended to the treatment of other graft rejection cases, such as liver transplantation, kidney transplantation and so on.


Assuntos
Portadores de Fármacos/química , Rejeição de Enxerto/tratamento farmacológico , Transplante de Coração , Imunossupressores/farmacocinética , Miocárdio/metabolismo , Tacrolimo/farmacocinética , Animais , Liberação Controlada de Fármacos , Estudos de Viabilidade , Imunossupressores/administração & dosagem , Masculino , Microbolhas , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Ratos , Tacrolimo/administração & dosagem , Ultrassonografia
2.
J Agric Food Chem ; 67(37): 10481-10488, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31433940

RESUMO

Here, we report two methods that chemically modify alginate to achieve neutral-basic pH sensitivity of the resultant hydrogel. The first method involves direct amide bond formation between alginate and 4-(2-aminoethyl)benzoic acid. The second method that arose out of the desire to achieve better control of the degradation rate of the alginate hydrogel involves reductive amination of oxidized alginate. The products of both methods result in a hydrogel vehicle for targeted delivery of encapsulated payload under physiological conditions in the gastrointestinal tract. Two-dimensional diffusion-ordered spectroscopy and internal and coaxial external nuclear magnetic resonance standards were used to establish chemical bonding and percent incorporation of the modifying groups into the alginate polymer. The hydrogel made with alginate modified by each method was found to be completely stable under acidic pH conditions while disintegrating within minutes to hours in neutral-basic pH conditions. We found that, while alginate oxidation did not affect the ß-d-mannuronate/α-l-guluronate ratio of alginate, the rate of disintegration of the hydrogel made with oxidized alginate was dependent upon the degree of oxidation.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Administração Oral , Difusão , Hidrogéis/química , Concentração de Íons de Hidrogênio , Oxirredução , Polímeros/química
3.
J Agric Food Chem ; 67(37): 10432-10447, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31466447

RESUMO

A composite nanogel was developed for cyanidin-3-O-glucoside (C3G) delivery by combining Maillard reaction and heat gelation. The starting materials utilized were ovalbumin, dextran, and pectin. C3G-loaded nanogel was spherical with a diameter of ∼185 nm, which was maintained over a wide range of pH and NaCl concentrations. The composite nanogel enhanced the chemical stability of C3G under accelerated degradation models and a simulated gastrointestinal tract. Clathrin-mediated, caveolae-mediated, and macropinocytosis-related endocytosis contributed to the higher cellular uptake of nano-C3G than that of free-C3G. The apparent permeability coefficients of C3G increased 2.16 times after nanoencapsulation. The transcytosis of the C3G-bearing nanogel occurred primarily through the clathrin-related pathway and macropinocytosis and followed the "common recycling endosomes-endoplasmic reticulum-Golgi complex-basolateral plasma membrane" route. Moreover, nano-C3G was more efficient in restoring the viability of cells and activities of endogenous antioxidant enzymes than free-C3G in oxidative models, which may be attributed to the former's high cellular absorption.


Assuntos
Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Portadores de Fármacos/química , Glucosídeos/química , Glucosídeos/metabolismo , Células CACO-2 , Composição de Medicamentos , Estabilidade de Medicamentos , Trato Gastrointestinal/metabolismo , Géis/química , Géis/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula
4.
J Agric Food Chem ; 67(33): 9371-9381, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31379162

RESUMO

A major obstacle to the clinical use of curcumin (CUR) is its reduced bioavailability because of the drug's hydrophobic nature, low intestinal absorption, and rapid metabolism. In this study, a novel oral drug delivery system was constructed for improving the stability and enhancing mucoadhesion of CUR in the gastrointestinal (GI) tract. First, CUR was encapsulated in the bovine serum albumin nanoparticles (CUR-BSA-NPs). Then, N-acetyl cysteine (NAC)-modified CUR-BSA-NPs (CUR-NBSA-NPs) were obtained. The average particle size and zeta potential of CUR-NBSA-NPs were 251.6 nm and -30.66 mV, respectively; encapsulation efficiency and drug loading were 85.79 and 10.9%, respectively. CUR-NBSA-NPs exhibited a sustained release property and prominently enhanced stability in simulated GI conditions. Additionally, enhanced mucoadhesion of CUR-NBSA-NPs was also observed. An MTT study showed that the CUR-NBSA-NPs were safe for oral administration. Overall, NAC-modified BSA-NPs may potentially serve as an oral vehicle for improving CUR stability in the GI tract and enhancing mucoadhesion.


Assuntos
Acetilcisteína/química , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Trato Gastrointestinal/metabolismo , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Células CACO-2 , Bovinos , Curcumina/metabolismo , Estabilidade de Medicamentos , Humanos , Tamanho da Partícula
5.
Int J Nanomedicine ; 14: 4895-4909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456636

RESUMO

Introduction: Insulin is given by injection, because when administered orally, it would be destroyed by enzymes in the digestive system, hence only about 0.1% reaches blood circulation. The purpose of the present study was to use pH sensitive polyelectrolyte methyl methacrylate (MMA)/itaconic acid (IA) nanogels as carriers in an attempt to improve absorption of insulin administered orally. Methods: Insulin (Ins) was incorporated into the MMA/IA nanogels (NGs) using the polyelectrolyte complexation (PEC) method to form Ins/NGs-PEC. Several parameters, including Ins:NGs ratio, pH, incubation time and stirring rate were optimized during preparation of InsNGs-PEC. The prepared formulations were characterized in terms of particle size (PS), polydispersity index (PdI), zeta potential (ZP) and percent entrapment efficiency (% EE). Results: The optimized InF12 nanogels had a PS, PdI, ZP and %EE of 190.43 nm, 0.186, -16.70 mV and 85.20%, respectively. The InF12 nanogels were lyophilized in the presence of different concentrations of trehalose as cryoprotectant. The lyophilized InF12 containing 2%w/v trahalose (InF12-Tre2 nanogels) was chosen as final formulation which had a PS, PdI, ZP and %EE of 430.50 nm, 0.588, -16.50 mv and 82.10, respectively. The in vitro release of insulin from InF12-Tre2 nanogels in the SGF and SIF were 28.71% and 96.53%, respectively. The stability study conducted at 5±3°C for 3 months showed that lnF12-Tre2 nanogels were stable. The SDS-PAGE assay indicated that the primary structure of insulin in the lnF12-Tre2 nanogels was intact. The in-vivo study in the diabetic rats following oral administration of InF12-Tre2 nanogels at a dose of 100 IU/kg body weight reduced blood glucose level significantly to 51.10% after 6 hours compared to the control groups. Conclusions: The pH sensitive MMA/IA nanogels are potential carriers for oral delivery of insulin as they enhanced the absorption of the drug.


Assuntos
Liofilização , Insulina/administração & dosagem , Polieletrólitos/química , Polietilenoglicóis/administração & dosagem , Polietilenoimina/administração & dosagem , Administração Oral , Animais , Crioprotetores/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Masculino , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura Ambiente , Fatores de Tempo
6.
Pharm Res ; 36(10): 140, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31367876

RESUMO

PURPOSE: In order to overcome the obstacles and side effects of classical chemotherapy, numerous studies have been performed to develop the treatment based on targeted transport of active compounds directly to the site of action. Since tumor cells are featured with intensified glucose metabolism, we set out to develop innovative, glucose-modified PAMAM dendrimer for the delivery of doxorubicin to breast cancer cells. METHODS: PAMAM-dox-glc conjugate was synthesized and characterized by 1H NMR, FT-IR, size and zeta potential measurements. The drug release rate from conjugate was evaluated by dialysis under different pH conditions. The expression level of GLUT family receptors in cells cultured in full and glucose-deprived medium was evaluated by quantitative real-time RT-PCR and flow cytometry. The cytotoxicity of conjugate in presence or absence of GLUT1 inhibitors was determined by MTT assay. RESULTS: We showed that PAMAM-dox-glc conjugate exhibits pH-dependent drug release and increased cytotoxic activity compared to free drug in cells cultured in medium without glucose. Further, we proved that these cells overexpress transporters of GLUT family. The toxic effect of conjugate was eliminated by the application of specific GLUT1 inhibitors. CONCLUSION: Our findings revealed that the glucose moiety plays a crucial role in the recognition of cells with high expression of GLUT receptors. By selectively blocking GLUT1 transporter we showed its importance for the cytotoxic activity of PAMAM-dox-glc conjugate. These results suggest that PAMAM-glucose formulations may constitute an efficient platform for the specific delivery of anticancer drugs to tumor cells overexpressing transporters of GLUT family.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Transportador de Glucose Tipo 1/metabolismo , Glucose/efeitos adversos , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Regulação da Expressão Gênica , Glucose/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Tamanho da Partícula
7.
Int J Nanomedicine ; 14: 5073-5085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371948

RESUMO

Purpose: To potentiate the anticancer activity of curcumin (CUR) by improving its cell penetration potentials through formulating it into nanostructured lipid carriers (NLCs) and using the prepared NLCs in photodynamic therapy. Methods: A 3×4 factorial design was used to obtain 12 CUR-NLCs using two factors on different levels: (1) the solid lipid type at four levels and (2) the solid to liquid lipid ratio at three levels. Olive oil, Tween 80 and lecithin were chosen as liquid lipid, surfactant and co-surfactant, respectively. CUR-NLCs prepared by high shear hot homogenization method were evaluated by determination of particle size (PS), polydispersity index, zeta potential (ZP), entrapment efficiency percent, drug loading percent and in vitro drug release. Optimization was based on the evaluation results using response surface modeling (RSM). Optimized formulae were tested for their in vitro release pattern and for dark and photo-cytotoxic anticancer activity on breast cancer cell line in comparison to free CUR. Results: Evaluation tests showed the appropriateness of NLCs prepared from glyceryl monooleate and Geleol™ helped choosing two optimized formulae, PE3 and GE3. PE3 (prepared using glyceryl monooleate) showed enhanced release rates compared to GE3 (prepared from Geleol) and superior cytotoxic anticancer activity compared to both GE3 and free CUR under both light and dark conditions. The small mean PS, spherical shape as well as the negative ZP enhanced the internalization of the NLCs within cells. Modulation and inhibition of P-glycoprotein expression by glyceryl monooleate synergized the cytotoxic activity of CUR. Conclusion: CUR loading in NLCs enhanced its cell penetration and cytotoxic anticancer properties both in dark and in light conditions.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/uso terapêutico , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Ácidos Oleicos/química , Azeite de Oliva/química , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Feminino , Humanos , Células MCF-7 , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
8.
Int J Nanomedicine ; 14: 5415-5434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409996

RESUMO

Over the past two decades, nano-sized biosystems have increasingly been utilized to deliver various pharmaceutical agents to a specific region, organ or tissue for controllable precision therapy. Whether solid nanohydrogel, nanosphere, nanoparticle, nanosheet, micelles and lipoproteins, or "hollow" nanobubble, liposome, nanocapsule, and nanovesicle, all of them can exhibit outstanding loading and releasing capability as a drug vehicle - in particular polymeric nanovesicle, a microscopic hollow sphere that encloses a water core with a thin polymer membrane. Besides excellent stability, toughness and liposome-like compatibility, polymeric nanovesicles offer considerable scope for tailoring properties by changing their chemical structure, block lengths, stimulus-responsiveness and even conjugation with biomolecules. In this review, we summarize the latest advances in stimulus-responsive polymeric nanovesicles for biomedical applications. Different functionalized polymers are in development to construct more complex multiple responsive nanovesicles in delivery systems, medical imaging, biosensors and so on.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Nanopartículas/química , Polímeros/química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio
10.
J Agric Food Chem ; 67(33): 9220-9231, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347838

RESUMO

Slow-release fungicide formulations (azoxystrobin, epoxiconazole, and tebuconazole) shaped as pellets and granules in a matrix of biodegradable poly(3-hydroxybutyrate) and natural fillers (clay, wood flour, and peat) were constructed. Infrared spectroscopy showed no formation of chemical bonds between components in the experimental formulations. The formulations of pesticides had antifungal activity against Fusarium verticillioides in vitro. A study of biodegradation of the experimental fungicide formulations in the soil showed that the degradation process was mainly influenced by the type of formulation without significant influence of the type of filler. More active destruction of the granules led to a more rapid accumulation of fungicides in the soil. The content of fungicides present in the soil as a result of degradation of the formulations and fungicide release was determined by their solubility. Thus, all formulations are able to function in the soil for a long time, ensuring gradual and sustained delivery of fungicides.


Assuntos
Argila/química , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Fungicidas Industriais/química , Hidroxibutiratos/química , Poliésteres/química , Solo/química , Madeira/química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Cinética , Pirimidinas/química , Pirimidinas/farmacologia , Estrobilurinas/química , Estrobilurinas/farmacologia , Triazóis/química , Triazóis/farmacologia
11.
J Agric Food Chem ; 67(33): 9232-9240, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347839

RESUMO

The hydrophobic wax layer of pepper fruit (Capsicum frutescens L.) increases the importance of selecting adjuvants that improve the wetting property of droplets on the target organism and increase the effective utilization of fungicides. In this study, the effect of adjuvants including nonionic, cationic, organosilicone, and oils on the wettability of fungicides was determined. The critical micelle concentrations for S903 (organosilicone), 1227 (cationic), AEO-5 (nonionic), GY-Tmax (oil), and XP-2 (oil) were 25, 1000, 100, 200, and 500 mg/L, respectively. Interface behaviors and in vivo tests suggested that adjuvants at appropriate concentrations (S903, 2.5 mg/L; 1227, 100 mg/L; AEO-5, 1 mg/L; GY-Tmax, 50 mg/L; and XP-2, 5 mg/L) resulted in optimum efficiency. Adjuvants significantly increased the inhibitory activity of pyraclostrobin against the mycelial growth, spore germination, and germ tube elongation of Colletotrichum scovillei by 41.3-58.8%, 28.2-44.6%, and 27.8-39.8%, respectively. Pyraclostrobin amended with S903 and XP-2 showed higher efficacy against anthracnose than the fungicide alone on pepper fruit. The increased efficacy may have resulted from the changed crystal morphology (ellipses of similar sizes), improved wettability, and rainfastness. A structural equation model indicated that surface tension and retention play the most important roles in the application properties of fungicide. In field experiments, the efficacy of pyraclostrobin with adjuvants showed no significant difference with pyraclostrobin alone, which indicated that, except for adjuvants, other spraying technologies are important for improving the field performance of fungicides. These results provide a foundation for the synthesis of highly efficient fungicides based on crystal structure and for the sustainable management of pepper anthracnose.


Assuntos
Portadores de Fármacos/química , Fungicidas Industriais/química , Estrobilurinas/química , Capsicum/microbiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Cristalização , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Micelas , Compostos de Organossilício/química , Doenças das Plantas/microbiologia , Estrobilurinas/farmacologia , Molhabilidade
12.
Molecules ; 24(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288497

RESUMO

Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.


Assuntos
Arecaceae/microbiologia , Quitosana/química , Portadores de Fármacos/química , Fungicidas Industriais/farmacologia , Ganoderma/efeitos dos fármacos , Nanopartículas/química , Doenças das Plantas/microbiologia , Triazóis/farmacologia , Reagentes para Ligações Cruzadas/química , Liberação Controlada de Fármacos , Cinética , Tamanho da Partícula , Polifosfatos/química
13.
Chem Commun (Camb) ; 55(60): 8876-8879, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31286121

RESUMO

Here we report template-free synthesis of imine-linked calix[4]arene hollow nanocapsules and their utility in the effective delivery of a poorly soluble cancer drug into tumor cells. These stimuli-responsive nanocapsules show high drug loading and release which resulted in a 40-fold higher cytotoxicity for breast cancer cell line over normal cells.


Assuntos
Antineoplásicos/farmacologia , Calixarenos/química , Camptotecina/farmacologia , Portadores de Fármacos/química , Nanocápsulas/química , Fenóis/química , Antineoplásicos/química , Calixarenos/síntese química , Calixarenos/toxicidade , Camptotecina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanocápsulas/toxicidade , Fenóis/síntese química , Fenóis/toxicidade
14.
Chem Commun (Camb) ; 55(58): 8434-8437, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31259350

RESUMO

Phosphatidylcholine is the main component of liposomes and other phospholipid-based nanocarriers in drug delivery. However, the functions and applications of these nanocarriers are extremely limited by conventional phospholipids. Here we report novel disulfide phosphatidylcholines (SS-PCs) and SS-PC based liposomes (SS-LPs) used as alternatives to traditional phospholipids and liposomes.


Assuntos
Dissulfetos/química , Portadores de Fármacos/química , Lipossomos/química , Fosfatidilcolinas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Dissulfetos/síntese química , Dissulfetos/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Humanos , Lipossomos/síntese química , Lipossomos/metabolismo , Camundongos , Oxirredução , Fosfatidilcolinas/síntese química , Fosfatidilcolinas/metabolismo
15.
J Agric Food Chem ; 67(29): 8168-8176, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268318

RESUMO

Protein-based nanoparticles (NPs) with favorable properties including enhanced absorptivity and low toxicity still suffer a major challenge for rapid nutraceutical or drug release after oral administration. Hence, we introduced a secondary encapsulation for unstable factor to attain a controlled-release effect in a gastrointestinal environment. In this work, assembled nanoparticles engineered by nobiletin (NOB), zein, and tannin acid (TA) were first reported for drug delivery systems. The TA added was capable of obtaining further assembly to stabilize nobiletin in comparison with NOB-loaded zein NPs only. Sunflower pollens (SPGs) were selected as carriers for further oral delivery, while zein was chosen as a coating material for capping SPGs absolutely. As a result, the NOB/zein/TA NPs (NZT NPs) obtained had a stable size of 100 nm after 48 h. Besides, they could improve the chemical stability of NOB for at least 120 days at 4 °C compared with zein NPs (ZT NPs). Owing to the secondary capping by SPGs, the final system was able to release selectively via an oral route, that is, achieving no release in a gastric environment and slow release in an intestine environment. Generally, our research proposed a secondary protection model to prevent drug-loaded NPs from resolving after oral administration, which provided a new perspective for nutraceutical or drug encapsulation and controlled-release delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Flavonas/química , Helianthus/química , Pólen/química , Administração Oral , Cápsulas/administração & dosagem , Cápsulas/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Flavonas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Taninos/química , Zeína/química
16.
Chem Commun (Camb) ; 55(63): 9363-9366, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31317136

RESUMO

We developed a biodegradable, oncosensitive, megamer-based delivery system for miRNA therapy. The miRNA nanotherapeutics, activatable by stepwise stimulation of acidity and reduction mimicking tumor microenvironment, efficiently improve liver-specific miR-122 expression, increasing the possibility of translational application of miR-122 therapy against liver cancer.


Assuntos
Portadores de Fármacos/química , MicroRNAs/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Dendrímeros/química , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Transplante Heterólogo
17.
Biomed Khim ; 65(3): 222-226, 2019 Apr.
Artigo em Russo | MEDLINE | ID: mdl-31258145

RESUMO

Along with modern new drugs, many therapeutic schemes also include known effective drugs, particularly, glucocorticoids. One of the most distributed of them is prednisolone that has pronounced anti-inflammatory properties. Its disadvantage is short-term circulation, resulting in a number of side effects. For this reason the development of its more effective and safe formulations is carried out. We have obtained the formulation of prednisolone included in nanoparticles from soy phosphatidylcholine with an average diameter of 20 nm. With oral administration to rats and analysis by HPLC an increase in prednisolone maximal concentration in of plasma and the duration of circulation as compared with free drug administration were shown. The experiment with mice with conconavalin A induced inflammation was also carried out: conconavalin A was injected subplantary in an hour after oral administration of both prednisolone formulations in several doses. The index of the inflammatory reaction (determined by the edema degree) was suppressed more effectively in the case of prednisolone in nanoparticles. Maximal suppression (62.2% as compared with 49.6% for free prednisolone) was observed even at a minimal dose (2.5 mg/kg), at which the free drug did not act at all. The results indicate an increase in the efficiency of prednisolone included in phospholipid nanoparticles, that makes it possible to diminish its administered doses and thereby reduce the risk of side effects.


Assuntos
Anti-Inflamatórios/farmacologia , Portadores de Fármacos/química , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Prednisolona/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/farmacocinética , Glucocorticoides/farmacocinética , Camundongos , Nanopartículas , Fosfolipídeos , Prednisolona/farmacocinética , Ratos
18.
J Photochem Photobiol B ; 197: 111530, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31279287

RESUMO

A novel nano-formulations of biocompatible, biodegradable and thermo-responsive graphene quantum dots (GQDs) loaded dextran/poly(N-isopropylacrylamide) (Dex/PNIPAM) copolymeric matrix was synthesized and analyzed the materials characterization, sustained drug delivery system, tissue feasibility in the tissue implantation site. This research report was aimed to grafting and functionalizing thermo-responsive (Dex/PNIPAM) copolymeric composite with presence of graphene quantum dots to achieve thermal responsive drug delivery (TrDD) with no harm effect in the implantation site. The synthesized GQD by using ionic liquid were evaluated by spectroscopic (DLS, PL, XRD and Raman spectroscopy) and Transmission electron microscopic analysis (TEM). The ultra-small GQDs loaded Dex/PNIPAM and was appeared to be asymmetric and open uniform porous structure, which can be significantly favorable for cell uptake and greatly influenced to be an effective drug carrier into the cellular compartment with good fluid flow. The PNIPAM polymeric composite were exhibited sustained and enhanced drug release percentages with increasing temperature at above low critical solution temperature (LCST) is 39 °C comparable to the cumulative drug release profile of below LCST (32 °C), which demonstrated that thermo-responsive polymer was played a significant role in the delivery system. The treated group of GQDs-Dex/PNIPAM was observed that no inflammation and shows noteworthy stromal cell infiltration, demonstrating that the synthesized drug carriers did not harm to the nerves and tissues and only was responsible for the pain management.


Assuntos
Buprenorfina/química , Portadores de Fármacos/química , Grafite/química , Hidrogéis/química , Manejo da Dor , Pontos Quânticos/química , Resinas Acrílicas/química , Animais , Buprenorfina/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Portadores de Fármacos/farmacologia , Feminino , Corantes Fluorescentes/química , Glicóis/química , Hidrogéis/farmacologia , Camundongos , Músculo Esquelético/patologia , Dor/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
19.
J Agric Food Chem ; 67(31): 8609-8616, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31314514

RESUMO

Quercetin (QUE)-loaded nanoparticles (QCG-NPs) were fabricated by ionic gelation between chitosan (CS) and gum arabic (GA) at pH 3.5. At constant CS (0.5 mg/mL) and QUE (60 µM) concentrations, QCG-NPs (260-490 nm) were prepared uniformly with 0.8-2.2 mg/mL GA and exhibited high QUE encapsulation efficiency (94.8-98.0%) and sustained QUE release (4.42-8.89% after 8 h). Because of the electrostatic interaction between QCG-NPs and the mucin layer, in vitro mucin and cell adhesion of QUE were significantly (p < 0.05) enhanced in QCG-NPs (0.44-0.48 mg/mL and 31.7-78.5%), respectively, and the adhesiveness was significantly (p < 0.05) increased with an increase of GA. Because particle size and adhesion properties affect the surface area and retention time of QCG-NPs at the absorption site, cell permeation of QUE through simple diffusion by QCG-NPs exhibited the same tendency as the adhesion results. These data were verified in cellular antioxidant and in vivo ferric reducing abilities of plasma assays that evaluated the antioxidant activities of QUE absorbed into an intestinal cell model and rat blood, respectively. The results provide a better understanding of QCG-NP absorption and indicate that QCG-NPs with mucoadhesion properties can be an effective delivery system for improving QUE absorption.


Assuntos
Antioxidantes/química , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Nanopartículas/química , Quercetina/química , Quercetina/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Células CACO-2 , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Tamanho da Partícula , Quercetina/administração & dosagem , Ratos , Ratos Sprague-Dawley
20.
J Nanobiotechnology ; 17(1): 78, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269964

RESUMO

BACKGROUND: The construction of a multifunctional drug delivery system with a variety of advantageous features, including targeted delivery, controlled release and combined therapy, is highly attractive but remains a challenge. RESULTS: In this study, we developed a MoS2-based hyaluronic acid (HA)-functionalized nanoplatform capable of achieving targeted delivery of camptothecin (CPT) and dual-stimuli-responsive drug release. HA was connected to MoS2 via a disulfide linkage, forming a sheddable HA shell on the surface of MoS2. This unique design not only effectively prevented the encapsulated CPT from randomly leaking during blood circulation but also significantly accelerated the drug release in response to tumor-associated glutathione (GSH). Moreover, the MoS2-based generated heat upon near-infrared (NIR) irradiation could further increase the drug release rate as well as induce photothermal ablation of cancer cells. The results of in vitro and in vivo experiments revealed that MoS2-SS-HA-CPT effectively suppressed cell proliferation and inhibited tumor growth in lung cancer cell-bearing mice under NIR irradiation via synergetic chemo-photothermal therapy. CONCLUSIONS: The as-prepared MoS2-SS-HA-CPT with high targeting ability, dual-stimuli-responsive drug release, and synergistic chemo-photothermal therapy may provide a new strategy for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/administração & dosagem , Dissulfetos/química , Portadores de Fármacos/química , Molibdênio/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Feminino , Corantes Fluorescentes/química , Humanos , Ácido Hialurônico/química , Hipertermia Induzida , Raios Infravermelhos , Camundongos Nus , Transplante de Neoplasias , Oxirredução , Fotoquimioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA