Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.044
Filtrar
1.
Chin J Physiol ; 62(4): 166-174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31535632

RESUMO

Although force steadiness varies with visuospatial information, accountable motor unit (MU) behaviors are not fully understood. This study investigated the modulation of MU discharges and force-discharge relation due to variations in the spatial resolution of visual feedback, with a particular focus on discharge variability among MUs. Fourteen young adults produced isometric force at 10% of maximal voluntary contraction (MVC) through index abduction, under the conditions of force trajectory displayed with low visual gain (LVG) and high visual gain (HVG). Together with smaller and more complex force fluctuations, HVG resulted in greater variabilities of the mean interspike interval and discharge irregularity among MUs than LVG did. Estimated via smoothening of a cumulative spike train of all MUs, global discharge rate was tuned to visual gain, with a more complex global discharge rate and a lower force-discharge relation in the HVG condition. These higher discharge variabilities were linked to larger variance of the common drive received by MUs for regulation of muscle force with higher visuospatial information. In summary, higher visuospatial information improves force steadiness with more complex force fluctuations, underlying joint effects of low-pass filter property of the musculotendon complex and central modulation of discharge variability among MUs.


Assuntos
Neurônios Motores , Potenciais de Ação , Eletromiografia , Humanos , Contração Muscular , Músculo Esquelético , Alta do Paciente
2.
Science ; 365(6453): 546-547, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395772
3.
Med Clin North Am ; 103(5): 821-834, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31378328

RESUMO

The narrow therapeutic window of antiarrhythmic drugs makes their use clinically challenging. A solid understanding of the mechanisms of arrhythmias and how antiarrhythmics affect these mechanisms is only a preliminary step in their appropriate selection. Clinical factors, side-effect profiles, and proarrhythmic risks are more important than the cellular mechanisms of actions in drug selection and monitoring. This article provides a simplified approach to understanding cellular mechanisms and provides a practical approach to the selection and use of this important class of medications.


Assuntos
Antiarrítmicos/administração & dosagem , Arritmias Cardíacas/tratamento farmacológico , Potenciais de Ação , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/fisiopatologia , Humanos , Ablação por Radiofrequência , Medição de Risco
4.
J Headache Pain ; 20(1): 87, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375062

RESUMO

BACKGROUND: Migraine is a debilitating neurological disorder involving abnormal trigeminovascular activation and sensitization. However, the underlying cellular and molecular mechanisms remain unclear. METHODS: A rat model of conscious migraine was established through the electrical stimulation (ES) of the dural mater surrounding the superior sagittal sinus. Using patch clamp recording, immunofluorescent labelling, enzyme-linked immunosorbent assays and western blot analysis, we studied the effects of ES on sensory neuronal excitability and elucidated the underlying mechanisms mediated by voltage-gated ion channels. RESULTS: The calcitonin gene-related peptide (CGRP) level in the jugular vein blood and the number of CGRP-positive neurons in the trigeminal ganglia (TGs) were significantly increased in rats with ES-induced migraine. The application of ES increased actional potential firing in both small-sized IB4-negative (IB4-) and IB4+ TG neurons. No significant changes in voltage-gated Na+ currents were observed in the ES-treated groups. ES robustly suppressed the transient outward K+ current (IA) in both types of TG neurons, while the delayed rectifier K+ current remained unchanged. Immunoblot analysis revealed that the protein expression of Kv4.3 was significantly decreased in the ES-treated groups, while Kv1.4 remained unaffected. Interestingly, ES increased the P/Q-type and T-type Ca2+ currents in small-sized IB4- TG neurons, while there were no significant changes in the IB4+ subpopulation of neurons. CONCLUSION: These results suggest that ES decreases the IA in small-sized TG neurons and increases P/Q- and T-type Ca2+ currents in the IB4- subpopulation of TG neurons, which might contribute to neuronal hyperexcitability in a rat model of ES-induced migraine.


Assuntos
Estimulação Elétrica/métodos , Seio Sagital Superior/metabolismo , Gânglio Trigeminal/metabolismo , Potenciais de Ação , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Masculino , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Seio Sagital Superior/citologia , Gânglio Trigeminal/citologia
5.
Zool Res ; 40(5): 394-403, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31393096

RESUMO

Information flow between the prefrontal and visual cortices is critical for visual behaviors such as visual search. To investigate its mechanisms, we simultaneously recorded spike and local field potential (LFP) signals in the frontal eye field (FEF) and area V4 while monkeys performed a free-gaze visual search task. During free-gaze search, spike-LFP coherence between FEF and V4 was enhanced in the theta rhythm (4-8 Hz) but suppressed in the alpha rhythm (8-13 Hz). Cross-frequency couplings during the Cue period before the search phase were related to monkey performance, with higher FEF theta-V4 gamma coupling and lower FEF alpha-V4 gamma coupling associated with faster search. Finally, feature-based attention during search enhanced spike-LFP coherence between FEF and V4 in the gamma and beta rhythms, whereas overt spatial attention reduced coherence at frequencies up to 30 Hz. These results suggest that oscillatory coupling may play an important role in mediating interactions between the prefrontal and visual cortices during visual search.


Assuntos
Atenção , Lobo Frontal/fisiologia , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Masculino
6.
Neuron ; 103(4): 551-553, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31437449

RESUMO

Mutations in voltage-dependent sodium channels cause severe autism/intellectual disability. In this issue of Neuron, Spratt et al. (2019) show that lowering expression of Nav1.2 channels attenuates backpropagation of action potentials into dendrites of cortical neurons, preventing spike-timing-dependent synaptic plasticity.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Potenciais de Ação , Dendritos , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2 , Córtex Pré-Frontal
7.
Neuron ; 103(4): 563-581, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31437453

RESUMO

Spike-timing-dependent synaptic plasticity (STDP) is a leading cellular model for behavioral learning and memory with rich computational properties. However, the relationship between the millisecond-precision spike timing required for STDP and the much slower timescales of behavioral learning is not well understood. Neuromodulation offers an attractive mechanism to connect these different timescales, and there is now strong experimental evidence that STDP is under neuromodulatory control by acetylcholine, monoamines, and other signaling molecules. Here, we review neuromodulation of STDP, the underlying mechanisms, functional implications, and possible involvement in brain disorders.


Assuntos
Plasticidade Neuronal/fisiologia , Neurotransmissores/fisiologia , Potenciais de Ação , Animais , Astrócitos/fisiologia , Comportamento/fisiologia , Encefalopatias/tratamento farmacológico , Encefalopatias/fisiopatologia , Mapeamento Encefálico , Humanos , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Modelos Neurológicos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/fisiologia , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/fisiopatologia , Terminações Pré-Sinápticas/fisiologia , Receptores de Neurotransmissores/fisiologia , Reforço (Psicologia) , Transdução de Sinais/fisiologia , Especificidade da Espécie , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Fatores de Tempo
8.
Zhonghua Xin Xue Guan Bing Za Zhi ; 47(8): 608-613, 2019 Aug 24.
Artigo em Chinês | MEDLINE | ID: mdl-31434431

RESUMO

Objective: To investigate the effects and mechanism of digoxin on atrium electrical remodeling and susceptibility of atrial fibrillation (AF) in aged rabbits. Methods: Twenty aged male New Zealand rabbits were divided into aged group and aged plus digoxin group (n=10 each). Electrical parameters including heart rate (HR), RR and QT interval, ST segment and P wave dispersion from normal Ⅱ electrocardiogram, and the maximum upstroke velocity (Max(dv/dt)), plateau potential (plateau P), action potential duration of 10%, 20% and 90% (APD(10), APD(20), APD(90)) from recording of monophasic action potential (MAP), as well as atrial effective refractory period (AERP(200)) and dispersion (dERP(200)) with 200 ms of basic cycle length (BCL), and frequency self adaptation of AERP with 300 ms and 150 ms of BCLs (fERP) were recorded and compared between the 2 groups. BCLs and inducibility of AF post programmed electrical stimulation and Burst-pacing in left atrium tissue of rabbits in vivo were also analyzed. The L-type calcium current (I(Ca-L)) in 2 groups were recorded via whole-cell patch clamp technique, and the fluorescence intensity of intracellular free Ca(2+) was detected with Flup-3/AM loading by the laser scanning confocal microscope in enzymatically dissociated single rabbit atrial myocytes. Results: Compared with aged group, the heart rate was faster, RR and QT interval were obvious shorter, ST segment was raised and P wave dispersion was significantly increased in aged plus digoxin group (all P<0.05). Moreover, compared with aged group, the Max(dv/dt) and plateau P were obviously increased, APD(10) and APD(20) were significantly prolongated, and APD(9)0 was significantly shorter in aged plus digoxin group (all P<0.01). Otherwise, the fERP was markedly increased (0.81±0.15 vs. 0.67±0.05), and the induced rate of AF was obviously higher in aged plus digoxin group than in aged group (6/8 vs. 4/9) (all P<0.01). With voltage clamp model, digoxin significantly increased I(Ca-L) of atrial myocytes of aged rabbits, When command potential was 10 mV, the current densities of I(Ca-L) were significantly higher in digoxin group than that in aged group ((15.45±2.38) pA/pF vs. (7.03±1.69) pA/pF, P<0.01). Otherwise, the I-V curve of I(Ca-L) was downward shifted of all I-V curves in digoxin perfused aged atrial cells of rabbits. Moreover, the fluorescence intensities of intracellular free Ca(2+) was significantly higher in aged plus digoxin group than in aged group ((1 748±173) µmol/L vs. (478.13±87.63) µmol/L, P<0.01). Conclusion: Digoxin could aggravate the atrial electrical remodeling in atrium of aged rabbits, facilitate susceptibility of atrial fibrillation in aged rabbit, increased current density of I(Ca-L) and concentration of intracellular free Ca(2+), followed Ca(2+) overload and oscillations might be part of the underlying mechanisms.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Potenciais de Ação , Animais , Digoxina , Átrios do Coração , Masculino , Técnicas de Patch-Clamp , Coelhos
9.
Int J Sports Med ; 40(9): 555-562, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31291650

RESUMO

We aimed to determine whether blood flow restriction (BFR) alters the characteristics of individual motor units during low-intensity (LI) exercise. Eight men (26.0±3.8 yrs) performed 5 sets of 15 knee extensions at 20% of one-repetition maximum (with and without BFR). Maximal isometric voluntary contractions (MVC) were performed before and after exercise to quantify force decrement. Submaximal isometric voluntary contractions were additionally performed for 18 s, matching trapezoidal target-force trajectories at 40% pre-MVC. EMG activity was recorded from the vastus lateralis muscle. Then, signals were decomposed to extract motor unit recruitment threshold, firing rates and action potential amplitudes (MUAP). Force decrement was only seen after LI BFR exercise (-20.5%; p<0.05). LI BFR exercise also induced greater decrements in the linear slope coefficient of the regression lines between motor unit recruitment threshold and firing rate (BFR: -165.1±120.4 vs. non-BFR: -44.4±33.1%, p<0.05). Finally, there was a notable shift towards higher values of firing rate and MUAP amplitude post-LI BFR exercise. Taken together, our data indicate that LI BFR exercise increases the activity of motor units with higher MUAP amplitude. They also indicate that motor units with similar MUAP amplitudes become activated at higher firing rates post-LI BFR exercise.


Assuntos
Potenciais de Ação , Constrição , Músculo Quadríceps/fisiologia , Treinamento de Resistência , Adulto , Humanos , Contração Isométrica , Masculino , Fluxo Sanguíneo Regional , Adulto Jovem
10.
Neuron ; 103(1): 5-7, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271755

RESUMO

In this issue of Neuron, Pagani et al. (2019) find that itch signaling occurs only when GRP neurons fire action potentials in bursts. This enables GRP release and the activation of GRPR neurons, which help carry the itch signal to the brain.


Assuntos
Prurido , Medula Espinal , Potenciais de Ação , Peptídeo Liberador de Gastrina , Humanos , Neurônios
11.
Neuron ; 103(2): 177-179, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319044

RESUMO

Neuronal populations respond within a small number of relevant dimensions. New research by Trautmann et al. (2019) shows that spike sorting is not necessary to extract the important features of this low-dimensional population signal. Combined responses of multiple neurons (multiunit activity) only generate small changes in the extracted signals.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Potenciais de Ação , Neurônios , Dinâmica Populacional
12.
Nat Commun ; 10(1): 3019, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289272

RESUMO

Auditory cortex is required for sound localisation, but how neural firing in auditory cortex underlies our perception of sound sources in space remains unclear. Specifically, whether neurons in auditory cortex represent spatial cues or an integrated representation of auditory space across cues is not known. Here, we measured the spatial receptive fields of neurons in primary auditory cortex (A1) while ferrets performed a relative localisation task. Manipulating the availability of binaural and spectral localisation cues had little impact on ferrets' performance, or on neural spatial tuning. A subpopulation of neurons encoded spatial position consistently across localisation cue type. Furthermore, neural firing pattern decoders outperformed two-channel model decoders using population activity. Together, these observations suggest that A1 encodes the location of sound sources, as opposed to spatial cue values.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Estimulação Acústica/instrumentação , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/citologia , Comportamento Animal/fisiologia , Sinais (Psicologia) , Feminino , Furões , Microeletrodos , Modelos Animais
13.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(3): 232-238, 2019 May 28.
Artigo em Chinês | MEDLINE | ID: mdl-31257805

RESUMO

OBJECTIVE: To quantitatively investigate the effects of Ringer's solution with different concentrations of alcohol (1%~80%) on biphasic compound action potentials (AP) from frog sciatic nerve trunk, and their recoveries from alcohol effects. METHODS: Individual segments of frog sciatic nerve trunk with a length of 6 to 8 cm were prepared. Ringer's solution with different concentrations of alcohol (0%, 1%, 2%, 4%, 8%, 16%, 32%, 48%, 64% and 80%) was applied onto the segment of the trunk between the stimulus and ground electrodes via an agent reservoir which was newly armed in a nerve trunk shielded chamber for 5 minutes. The nerve trunk was respectively electro-stimulated to generate the biphasic compound AP which was recorded using the experimental system of BL-420F. This was followed by 5 times washout plus 5 min administration with Ringer's solution before recovery recording of AP. RESULTS: Compared to normal Ringer's solution, Ringer's solution with alcohol at ≤4% did not have dramatic impacts on the AP amplitude and conduction velocity, while Ringer's solution with alcohol at ≥8% there was significant decrease in these two parameters. Ringer's solution with alcohol at the conentrations of 16%, 32% and ≥48% could prevent a small proportion (30%), a large proportion (90%) and all (100%) of sciatic nerve trunks, respectively, from generating AP. Washout with normal Ringer's solution after alcohol application at the concentration of ≤32%, AP could totally recover to normal status. While alcohol at the concentration of 48%, 64% and 80%, the probabilities to regenerate APs were 90%, 40% and 0%, and the AP amplitudes were decreased to 60%, 36% and 0%, respectively. After washout, AP conduction velocity showed no difference with alcohol at the concentration of ≤8% when compared with that before washout, while it could not be recovered to normal under alcohol at ≥16%. CONCLUSION: Ringer's solution with different concentrations of alcohol exerts different effects on biphasic compound AP amplitude and conduction velocity. Hopefully, our findings could be helpful for the alcoholic usage and its recovery from alcoholic damage.


Assuntos
Potenciais de Ação , Anuros , Etanol/farmacologia , Solução de Ringer/farmacologia , Nervo Isquiático/efeitos dos fármacos , Animais
14.
Adv Exp Med Biol ; 1124: 357-377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183835

RESUMO

The lymphatic system extends its network of vessels throughout most of the body. Lymphatic vessels carry a fluid rich in proteins, immune cells, and long-chain fatty acids known as lymph. It results from an excess of interstitial tissue fluid collected from the periphery and transported centrally against hydrostatic pressure and protein concentration gradients. Thus, this one-way transport system is a key component in the maintenance of normal interstitial tissue fluid volume, protein concentration and fat metabolism, as well as the mounting of adequate immune responses as lymph passes through lymph nodes. In most cases, lymph is actively propelled via rhythmical phasic contractions through a succession of valve-bordered chambers constituting the lymphatic vessels. This contraction/relaxation cycle, or lymphatic pumping, is initiated in the smooth muscle cells present in the vessel wall by a pacemaker mechanism generating voltage-gated Ca2+ channel-induced action potentials. The action potentials provide the depolarization and Ca2+ influx essential for the engagement of the contractile machinery leading to the phasic constrictions of the lymphatic chambers and forward movement of lymph. The spontaneous lymphatic constrictions can be observed in isolated vessels in the absence of any external stimulation, while they are critically regulated by physical means, such as lymph-induced transmural pressure and flow rate, as well as diffusible molecules released from the lymphatic endothelium, perivascular nerve varicosities, blood and surrounding tissues/cells. In this chapter, we describe the latest findings which are improving our understanding of the mechanisms underlying spontaneous lymphatic pumping and discuss current theories about their physiological initiation.


Assuntos
Sinalização do Cálcio , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Contração Muscular , Potenciais de Ação , Canais de Cálcio/fisiologia , Líquido Extracelular , Humanos , Linfonodos
16.
Nat Commun ; 10(1): 2889, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253831

RESUMO

The sinus node is a collection of highly specialised cells constituting the heart's pacemaker. The molecular underpinnings of its pacemaking abilities are debated. Using high-resolution mass spectrometry, we here quantify >7,000 proteins from sinus node and neighbouring atrial muscle. Abundances of 575 proteins differ between the two tissues. By performing single-nucleus RNA sequencing of sinus node biopsies, we attribute measured protein abundances to specific cell types. The data reveal significant differences in ion channels responsible for the membrane clock, but not in Ca2+ clock proteins, suggesting that the membrane clock underpins pacemaking. Consistently, incorporation of ion channel expression differences into a biophysically-detailed atrial action potential model result in pacemaking and a sinus node-like action potential. Combining our quantitative proteomics data with computational modeling, we estimate ion channel copy numbers for sinus node myocytes. Our findings provide detailed insights into the unique molecular make-up of the cardiac pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Proteômica , Nó Sinoatrial/metabolismo , Transcriptoma , Potenciais de Ação , Animais , Cromatografia Líquida , Regulação da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Espectrometria de Massas em Tandem
17.
Nat Neurosci ; 22(7): 1132-1139, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182867

RESUMO

An approaching predator and self-motion toward an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other probably receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.


Assuntos
Drosophila melanogaster/fisiologia , Reação de Fuga/fisiologia , Voo Animal/fisiologia , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Vias Eferentes/fisiologia , Octopamina/farmacologia , Técnicas de Patch-Clamp , Estimulação Luminosa
18.
Nat Neurosci ; 22(7): 1182-1195, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209381

RESUMO

Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly accessible online database, the Allen Cell Types Database, to display these datasets. Intrinsic physiological properties were measured from 1,938 neurons from the adult laboratory mouse visual cortex, morphological properties were measured from 461 reconstructed neurons, and 452 neurons had both measurements available. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We established a taxonomy of morphologically and electrophysiologically defined cell types for this region of the cortex, with 17 electrophysiological types, 38 morphological types and 46 morpho-electric types. There was good correspondence with previously defined transcriptomic cell types and subclasses using the same transgenic mouse lines.


Assuntos
Conjuntos de Dados como Assunto , Neurônios/classificação , Córtex Visual/citologia , Potenciais de Ação , Animais , Forma Celular , Bases de Dados Factuais , Genes Reporter , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Transcriptoma , Córtex Visual/fisiologia
19.
Neuron ; 103(2): 309-322.e7, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31151773

RESUMO

Body temperature control is essential for survival. In mammals, thermoregulation is mediated by the preoptic area of anterior hypothalamus (POA), with ∼30% of its neurons sensitive to brain temperature change. It is still unknown whether and how these temperature-sensitive neurons are involved in thermoregulation, because for eight decades they have only been identified via electrophysiological recording. By combining single-cell RNA-seq with whole-cell patch-clamp recordings, we identified Ptgds as a genetic marker for temperature-sensitive POA neurons. Then, we demonstrated these neurons' role in thermoregulation via chemogenetics. Given that Ptgds encodes the enzyme that synthesizes prostaglandin D2 (PGD2), we further explored its role in thermoregulation. Our study revealed that rising temperature of POA alters the activity of Ptgds-expressing neurons so as to increase PGD2 production. PGD2 activates its receptor DP1 and excites downstream neurons in the ventral medial preoptic area (vMPO) that mediates body temperature decrease, a negative feedback loop for thermoregulation.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Prostaglandina D2/metabolismo , Temperatura Ambiente , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Clozapina/farmacologia , Dinoprostona/genética , Dinoprostona/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Prostaglandina D2/genética
20.
Neuron ; 103(2): 266-276.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31153647

RESUMO

Motor skills improve with practice, requiring outcomes to be evaluated against ever-changing performance benchmarks, yet it remains unclear how performance error signals are computed. Here, we show that the songbird ventral pallidum (VP) is required for song learning and sends diverse song timing and performance error signals to the ventral tegmental area (VTA). Viral tracing revealed inputs to VP from auditory and vocal motor thalamus, auditory and vocal motor cortex, and VTA. Our findings show that VP circuits, commonly associated with hedonic functions, signal performance error during motor sequence learning.


Assuntos
Prosencéfalo Basal/fisiologia , Dopamina/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/fisiologia , Acelerometria , Potenciais de Ação/fisiologia , Animais , Biofísica , Toxina da Cólera/metabolismo , Estimulação Elétrica/efeitos adversos , Tentilhões , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Comportamento Imitativo/fisiologia , Masculino , Movimento/fisiologia , Fosfopiruvato Hidratase/metabolismo , Tempo de Reação/fisiologia , Fatores de Tempo , Transdução Genética , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA