Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.753
Filtrar
1.
Oxid Med Cell Longev ; 2022: 8011850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419170

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of childbearing age. Cryptotanshinone (CRY) has been shown to be effective in reversing reproductive disorders, but whether it can be used in the treatment of polycystic ovary syndrome remains unclear. We aimed to explore whether the mechanism of cryptotanshinone (CRY) in the treatment of polycystic ovary syndrome (PCOS) can be driven via regulating ferroptosis. A rat model of PCOS was established by daily injection of human chorionic gonadotropin and insulin for 22 days. An in vitro model of ischemia-reperfusion (IR) of granulosa cells was established. The in vitro and rat models of PCOS were subjected to different treatments including ferroptosis activators and inhibitors, CRY, and MAPK inhibitor. Oxidative stress was evaluated by measuring the activities of SOD, MDA, and GSH-PX. Total body weight and ovarian weight, as well as the levels of LH and the LH to FSH ratio, significantly increased in rats with PCOS, compared with controls. The expression of Bax was increased in PCOS tissues while PGC1α, NFR1, GPX4, catalase p-ERK, and Bcl-2 were all downregulated. Ferroptosis activator, erastin, had effects similar to those of PCOS while the contrary was found with CRY and ferroptosis inhibitor treatment groups. In vitro, CRY inhibited oxidative stress, MMP, and NF-κB and activated MAPK/ERK signaling by regulating ferroptosis. Overall, this study indicated that CRY protects against PCOS-induced damage of the ovarian tissue, via regulating oxidative stress, MMP, inflammation, and apoptosis via regulating ferroptosis.


Assuntos
Ferroptose , Síndrome do Ovário Policístico , Animais , Apoptose , Feminino , Humanos , Inflamação/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Fenantrenos , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos
2.
Biochem Biophys Res Commun ; 608: 45-51, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390671

RESUMO

Neuroinflammation is a hallmark of various neurological disorders including autoimmune-, neurodegenerative and neuropsychiatric diseases. In neuroinflammation, activated microglia and astrocytes release soluble mediators such as cytokines, glutamate, and reactive oxygen species that negatively affect neuronal function and viability, and thus contribute to neurodegeneration during disease progression. Therefore, the development of neuroprotective strategies might be important in addition to treating inflammation in these diseases. Mitochondria are promising cellular targets for neuroprotective interventions: They are among the first structures affected in many neuroinflammatory diseases, with mitochondrial impairment ranging from impaired respiratory activity and reduced mitochondrial membrane potential to mitochondrial oxidation and fragmentation. Therefore, we developed a cell culture model that resembles an early state of inflammation-induced neuronal mitochondrial dysfunction preceding neuronal cell death, and can be used to test mito- and neuroprotective strategies. Rat primary cortical neurons were challenged with conditioned medium from mixed primary cultures of rat microglia and astrocytes that had been activated with lipopolysaccharide and ATP. When sublethal amounts of glia-conditioned medium were added to neurons for 24 h, mitochondrial membrane potential and ATP levels were decreased, whereas mitochondrial redox state remained unaffected. Effects on mitochondrial membrane potential and ATP levels were ameliorated by knock-down of the mitochondrial calcium uniporter in neurons. This study suggests that neuronal bioenergetic failure is an early event during neuroinflammation and it identifies the mitochondrial calcium uniporter as a candidate target for neuroprotection in this context.


Assuntos
Neuroglia , Neurônios , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio , Meios de Cultivo Condicionados/farmacologia , Inflamação/metabolismo , Potencial da Membrana Mitocondrial , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos
3.
Ecotoxicol Environ Saf ; 236: 113494, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413622

RESUMO

Cadmium could induce cell apoptosis, probably related to the dysfunction of the mitochondrial respiratory chain. The human renal proximal tubule (HK-2) was used to explore the mechanism of mitochondrial respiratory chain dysfunction during apoptosis induced by cadmium chloride (CdCl2). Cell viability was evaluated by cell proliferation assay and different concentrations of 60, 80 and 100 µM were selected to evaluate the mitochondrial toxicity of CdCl2 respectively. Under the CdCl2 treatment for 24 h, the mitochondrial reactive oxygen species (ROS) of HK-2 cells increased and the superoxide dismutase (SOD) activity was inhibited at the above three concentrations separately. Both ATP content and mitochondrial membrane potential decreased significantly at 100 µM concentration. The levels of procaspase-3 and Bcl-2 had fallen in a concentration-dependent manner and Bax was significantly increased at 60, 80 and 100 µM concentration compared with no CdCl2 treatment respectively, which activated the mitochondrial apoptosis pathway. N-acetyl-cysteine (NAC) could partially resist CdCl2-induced cell apoptosis, while myxothiazol (Myx) promoted the process. Mitochondria relative alterations manifested as inhibition of complex III and V. In addition, both the quantity of mitochondrial coenzyme Q-binding protein CoQ10 homolog B (CoQ10B) and cytochrome c (Cyt c) had decreased significantly. Taken together, CdCl2 induced HK-2 apoptosis due to the mitochondrial respiratory chain dysfunction by reducing the CoQ10B level, offering a novel evaluating indicator for the environmental toxicity of CdCl2.


Assuntos
Apoptose , Cloreto de Cádmio , Cádmio/toxicidade , Cloreto de Cádmio/toxicidade , Transporte de Elétrons , Humanos , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
Nutrients ; 14(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406117

RESUMO

Vitamin K2, a natural fat-soluble vitamin, is a potent neuroprotective molecule, owing to its antioxidant effect, but its mechanism has not been fully elucidated. Therefore, we stimulated SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) in a proper dose-dependent manner, followed by a treatment of vitamin K2. In the presence of 6-OHDA, cell viability was reduced, the mitochondrial membrane potential was decreased, and the accumulation of reactive oxygen species (ROS) was increased. Moreover, the treatment of 6-OHDA promoted mitochondria-mediated apoptosis and abnormal mitochondrial fission and fusion. However, vitamin K2 significantly suppressed 6-OHDA-induced changes. Vitamin K2 played a significant part in apoptosis by upregulating and downregulating Bcl-2 and Bax protein expressions, respectively, which inhibited mitochondrial depolarization, and ROS accumulation to maintain mitochondrial structure and functional stabilities. Additionally, vitamin K2 significantly inhibited the 6-OHDA-induced downregulation of the MFN1/2 level and upregulation of the DRP1 level, respectively, and this enabled cells to maintain the dynamic balance of mitochondrial fusion and fission. Furthermore, vitamin K2 treatments downregulated the expression level of p62 and upregulated the expression level of LC3A in 6-OHDA-treated cells via the PINK1/Parkin signaling pathway, thereby promoting mitophagy. Moreover, it induced mitochondrial biogenesis in 6-OHDA damaged cells by promoting the expression of PGC-1α, NRF1, and TFAM. These indicated that vitamin K2 can release mitochondrial damage, and that this effect is related to the participation of vitamin K2 in the regulation of the mitochondrial quality-control loop, through the maintenance of the mitochondrial quality-control system, and repair mitochondrial dysfunction, thereby alleviating neuronal cell death mediated by mitochondrial damage.


Assuntos
Apoptose , Mitocôndrias , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxidopamina/metabolismo , Oxidopamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 2/metabolismo , Vitamina K 2/farmacologia
5.
J Biol Chem ; 298(4): 101829, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293314

RESUMO

The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Proteínas de Protozoários , Trypanosoma brucei brucei , Animais , Mamíferos/metabolismo , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
6.
Toxicol In Vitro ; 81: 105346, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35288263

RESUMO

PURPOSE: Pendulone, an isoflavone compound, is known to act against human cancer cells. However, its role in human non-small cell lung cancer (NSCLC) and the exact molecular mechanisms of action have never been reported. METHODS: We investigated the effects of pendulone on cell proliferation and apoptosis in human NSCLC H1299 cells. Cell viability was examined using the methyl-thiazol-diphenyl-tetrazolium (MTT) assay. Flow cytometry was employed to evaluate apoptotic indices such as the cell cycle, mitochondrial membrane potential, cytochrome c release, caspase activity, and death receptor expression. The expression of proteins related to the cell cycle and apoptosis were analyzed by Western blot analysis. RESULTS: Pendulone significantly decreased H1299 cell viability by inducing endoplasmic reticulum (ER) stress through the accumulation of reactive oxygen species (ROS). Pendulone induced the expression of ER stress-associated proteins, such as ATF4 and CHOP, which promoted the expression of death receptors. Activation of caspase 8 induced extrinsic pathway apoptosis. Pendulone also caused the loss of mitochondrial membrane potential, inhibited the anti-apoptotic proteins BCL-2 and activated the pro-apoptotic protein BAX, which promoted the release of cytochrome c to activate caspase 9. Antioxidant N-acetylcysteine (NAC), with its ROS-suppressive property, reversed pendulone-induced ER stress and cell apoptosis. CONCLUSION: Our findings provide evidence that pendulone induces apoptosis by inducing ER stress through ROS accumulation and mitochondrial dysfunction in NSCLC cell lines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Isoflavonas , Neoplasias Pulmonares , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Isoflavonas/farmacologia , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial , Quinonas , Espécies Reativas de Oxigênio/metabolismo
7.
Cardiovasc Ther ; 2022: 8430733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356068

RESUMO

Background: Chronic heart failure (CHF) is the end stage of cardiac disease with a 5-year mortality rate reaching 50%. Simvastatin is an antioxidant with lipid-lowering effects, which is commonly used to treat CHF. Resistance training is a nondrug treatment for CHF and exerts a positive effect on both the myocardial structure and function. Objective: This study is aimed at exploring the effects and outcomes of simvastatin combined with resistance training on the mitochondrial membrane potential (MMP) of peripheral blood lymphocytes and the Janus kinase/signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway in patients with CHF. Methods: One hundred and eleven patients with CHF were allocated to the control group (CNG) (n = 55) and intervention group (IG) (n = 56) using the random number table method. The CNG received simvastatin treatment only, whereas the IG received simvastatin treatment plus resistance training. Treatment efficacy, diastolic interventricular septal thickness (IVST), left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVDD), MMP fluorescence intensity, JAK mRNA and STAT3 mRNA relative expression levels, serum C-reactive protein (CRP), galectin-3, interleukin-6 (IL-6), N-terminal-probrain natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-cTnT), and heart-type fatty acid-binding protein (H-FABP) levels were compared in both groups. Results: After 6 months of treatment, diastolic IVST, LVDD, and serum levels of CRP, galectin-3, IL-6, NT-proBNP, hs-cTnT, and H-FABP decreased in both groups and were lower in the IG than in the CNG (P < 0.05), whereas LVEF, JAK and STAT3 mRNA relative expression levels, and MMP fluorescence intensity of peripheral blood lymphocytes were higher in the IG than in the CNG (P < 0.05). Conclusion: Simvastatin combined with resistance training improves heart function and reduces myocardial damage as well as the occurrence of adverse cardiac events compared with simvastatin alone. The mechanism may be related to the increase of expression of MMP, JAK, and STAT3, the regulation of MMP and JAK/STAT3 signaling pathways in peripheral lymphocytes, the alleviation of mitochondrial damage, and the inhibition of inflammatory response.


Assuntos
Insuficiência Cardíaca , Treinamento de Força , Sinvastatina , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Janus Quinases/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Fator de Transcrição STAT3/genética , Transdução de Sinais , Sinvastatina/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda
8.
Methods Mol Biol ; 2474: 11-19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294751

RESUMO

Mitochondrial function, a key indicator of cell health, can be assessed through monitoring changes in mitochondrial membrane potential (MMP). Cationic fluorescent dyes are commonly used tools to assess MMP. We used a water-soluble mitochondrial membrane potential indicator (m-MPI) to detect changes in MMP in various types of cells, such as HepG2, HepaRG, and AC16 cells. A homogenous cell-based MMP assay has been optimized and performed in a 1536-well plate format, which can be used to screen several compound libraries for mitochondrial toxicity by evaluating the effects of chemical compounds on MMP.


Assuntos
Bioensaio , Mitocôndrias , Corantes Fluorescentes/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo
9.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335332

RESUMO

Three benzoxanthone derivatives were synthesized through a new photochemical strategy. The in vitro cytotoxic activity of these compounds was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and their partition coefficients (logP) were measured by shake flask method. The pKa values of the compounds were detected by potentionmetric titration. The interaction of the compounds with calf thymus DNA (CT-DNA) was investigated by electronic absorption, luminescence spectra and viscosity. A molecular docking analysis was performed. The antitumor efficacy of the compounds was evaluated by cell apoptosis, cell cycle arrest, intracellular Ca2+ concentrations and reactive oxygen species (ROS) levels. The mitochondrial membrane potential was assayed using JC-1 (5,5',6,6'-tetrachloro-1,1,3',3'-tetraethyl-imidacarbocyanine iodide) as the fluorescence probe. The expression of Bcl-2 family protein, caspase 3 and poly ADP-ribose polymerase (PARP) was explored by western blot. The results showed that the compounds induced apoptosis through a ROS-mediated mitochondrial dysfunction pathway. This work provides an efficient approach to synthesize benzoxanthone derivatives, and is helpful for understanding the apoptotic mechanism.


Assuntos
Neoplasias Gástricas , Pontos de Checagem do Ciclo Celular , Humanos , Potencial da Membrana Mitocondrial , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(1): 143-149, 2022 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-35249882

RESUMO

OBJECTIVE: To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS). METHODS: Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting. RESULTS: RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001). CONCLUSION: MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.


Assuntos
Aterosclerose , Ferroptose , MicroRNAs , Apoptose , Aterosclerose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Potencial da Membrana Mitocondrial , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Cell Mol Life Sci ; 79(3): 173, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244789

RESUMO

During embryo implantation, apoptosis is inevitable. These apoptotic cells (ACs) are removed by efferocytosis, in which macrophages are filled with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to the relationship between efferocytosis-related metabolism and the immune behavior of decidual macrophages (dMΦs) and its effect on pregnancy outcome. Here, we report positive feedback of IL-33/ST2-AXL-efferocytosis leading to pregnancy failure through metabolic reprogramming of dMΦs. We compared the serum levels of IL-33 and sST2, along with IL-33 and ST2, efferocytosis and metabolism of dMΦs, from patients with normal pregnancies and unexplained recurrent pregnancy loss (RPL). We revealed disruption of the IL-33/ST2 axis, increased apoptotic cells and elevated efferocytosis of dMΦs from patients with RPL. The dMΦs that engulfed many apoptotic cells secreted more sST2 and less TGF-ß, which polarized dMΦs toward the M1 phenotype. Moreover, the elevated sST2 biased the efferocytosis-related metabolism of RPL dMΦs toward oxidative phosphorylation and exacerbated the disruption of the IL-33/ST2 signaling pathway. Metabolic disorders also lead to dysfunction of efferocytosis, resulting in more uncleared apoptotic cells and secondary necrosis. We also screened the efferocytotic molecule AXL regulated by IL-33/ST2. This positive feedback axis of IL-33/ST2-AXL-efferocytosis led to pregnancy failure. IL-33 knockout mice demonstrated poor pregnancy outcomes, and exogenous supplementation with mouse IL-33 reduced the embryo losses. These findings highlight a new etiological mechanism whereby dMΦs leverage immunometabolism for homeostasis of the microenvironment at the maternal-fetal interface.


Assuntos
Apoptose , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Aborto Espontâneo/imunologia , Aborto Espontâneo/patologia , Animais , Decídua/citologia , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/sangue , Interleucina-33/deficiência , Interleucina-33/genética , Macrófagos/citologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oligomicinas/farmacologia , Fosforilação Oxidativa , Gravidez , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328335

RESUMO

Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase-3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Flavonas , Glucosídeos , Humanos , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Tretinoína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328402

RESUMO

Cryptocaryone (CPC) was previously reported as preferential for killing natural products in oral cancer cells. However, its radiosensitizing potential combined with ultraviolet C (UVC) cell killing of oral cancer cells remains unclear. This study evaluates the combined anti-proliferation effect and clarifies the mechanism of combined UVC/CPC effects on oral cancer cells. UVC/CPC shows higher anti-proliferation than individual and control treatments in a low cytotoxic environment on normal oral cells. Mechanistically, combined UVC/CPC generates high levels of reactive oxygen species and induces mitochondrial dysfunction by generating mitochondrial superoxide, increasing mitochondrial mass and causing the potential destruction of the mitochondrial membrane compared to individual treatments. Moreover, combined UVC/CPC causes higher G2/M arrest and triggers apoptosis, with greater evidence of cell cycle disturbance, annexin V, pancaspase, caspases 3/7 expression or activity in oral cancer cells than individual treatments. Western blotting further indicates that UVC/CPC induces overexpression for cleaved types of poly (ADP-ribose) polymerase and caspase 3 more than individual treatments. Additionally, UVC/CPC highly induces γH2AX and 8-hydroxy-2'-deoxyguanosine adducts as DNA damage in oral cancer cells. Taken together, CPC shows a radiosensitizing anti-proliferation effect on UVC irradiated oral cancer cells with combined effects through oxidative stress, apoptosis and DNA damage.


Assuntos
Apoptose , Neoplasias Bucais , 8-Hidroxi-2'-Desoxiguanosina , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/radioterapia , Poli(ADP-Ribose) Polimerases/metabolismo , Pironas , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
14.
Bioengineered ; 13(3): 6688-6697, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235756

RESUMO

Oxaliplatin is an effective chemotherapeutic agent for the treatment of malignant tumors. However, severe oxaliplatin-induced neurotoxicity has been well documented. Memantine is a drug for the management of Alzheimer's Disease (AD) due to its promising neuroprotective properties. We hypothesize that Memantine possesses a beneficial role against chemotherapy-induced neuronal damages. In this study, we established an oxaliplatin-induced neurotoxicity assay model in human SHSY-5Y neuronal cells and investigated the protective effect of Memantine. We showed that Memantine treatment ameliorated oxaliplatin-elevated intracellular production of reactive oxygen species (ROS), lipid product malondialdehyde (MDA), and NOX-2 expression. Memantine alleviated impairment of the mitochondrial membrane potential and ATP production by oxaliplatin. As a result, Memantine showed a protective role against oxaliplatin-induced cytotoxicity. Moreover, the terminal deoxynucleotidyl Transferase-mediated dUTP nick end labeling (TUNEL) apoptosis assay revealed that Memantine protected oxaliplatin-induced apoptosis through mitigating the ratio of Bax/Bcl-2 and Caspase-3 cleavage. We concluded Memantine ameliorated the neurotoxicity of oxaliplatin in a mitochondrial-dependent pathway.


Assuntos
Memantina , Mitocôndrias , Apoptose , Humanos , Memantina/metabolismo , Memantina/farmacologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxaliplatina/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
15.
ACS Appl Mater Interfaces ; 14(10): 12050-12058, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234031

RESUMO

Mitochondria-targeting photodynamic therapy (PDT) can block mitochondrial function and trigger the inherent proapoptotic cascade signal of mitochondria, which has been considered to have the potential to amplify the efficiency of PDT. However, the dynamic change of mitochondrial membrane potential (MMP) makes most cationic photosensitizers easily fall off from the mitochondria, which greatly limits the efficiency of PDT. Here, we have developed a smart liposome encapsulation method based on a mitochondria-stapling photosensitizer for efficient theranostic photodynamic therapy. The stapling photosensitizer can be covalently bound inside mitochondria via two reaction sites without a falloff effect, regardless of the change of MMP. As a result, the liposome-based nanophotosensitizer showed a high efficiency of PDT (IC50 = 0.98 µM) under 630 nm light. At the same time, the nanophotosensitizer had fluorescence imaging-guided ability to monitor abnormal mitochondrial morphology during PDT. Importantly, the results of mice experiments also showed that the liposome-based nanophotosensitizer possessed excellent antitumor PDT activity because the released photosensitizer can stay inside mitochondria during the whole process of PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
16.
Cell Death Dis ; 13(3): 264, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332127

RESUMO

Our previous study demonstrates that a juxtamembrane 2 (JM2) mimic peptide can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism remains unclear. In this study, JM2 is found to suppress the growth of 4T1 breast tumors by inducing apoptosis and inhibiting the proliferation of 4T1 tumor cells. Further study indicates that JM2 can stimulate the mitochondria to gather near the microtubule-organizing center of tumor cells and subsequently induce ROS-induced ROS release responses, which results in mitochondrial dysfunction and mitochondria-mediated apoptosis. In addition, JM2 can arrest cell cycle in S phase by regulating the expression of cell cycle-related proteins and consequently inhibit proliferation of tumor cells. Then, a previously designed JM2 grafted hyaluronic acid (HA) injectable hydrogel system (HA-JM2) is injected in a breast tumor-resected model and the HA-JM2 hydrogel can inhibit the malignant proliferation of residual tumor cells and suppress the breast tumor recurrence. These findings not only confirm the application potentials of JM2 in anti-tumor therapy and tumor post-surgery treatments but also provide greater understanding on the mechanisms by which JM2 inhibits tumor growth.


Assuntos
Neoplasias da Mama , Mitocôndrias , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Hidrogéis/farmacologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo
17.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326423

RESUMO

Photobiomodulation (PBM) has recently emerged in cellular therapy as a potent alternative in promoting cell proliferation, migration, and differentiation during tissue regeneration. Herein, a single-cell near-infrared (NIR) laser irradiation system (830 nm) and the image-based approaches were proposed for the investigation of the modulatory effects in mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), and vesicle transport in single living human adipose mesenchymal stem cells (hADSCs). The irradiated-hADSCs were then stained with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and Rhodamine 123 (Rh123) to represent the ΔΨm and ROS production, respectively, with irradiation in the range of 2.5-10 (J/cm2), where time series of bright-field images were obtained to determine the vesicle transport phenomena. Present results showed that a fluence of 5 J/cm2 of PBM significantly enhanced the ΔΨm, ROS, and vesicle transport phenomena compared to the control group (0 J/cm2) after 30 min PBM treatment. These findings demonstrate the efficacy and use of PBM in regulating ΔΨm, ROS, and vesicle transport, which have potential in cell proliferation, migration, and differentiation in cell-based therapy.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Tecido Adiposo/metabolismo , Sobrevivência Celular , Humanos , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Toxicol In Vitro ; 80: 105325, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35121064

RESUMO

Mitochondria are at the core of cellular energy metabolism and are also involved in the oxidative stress response and programmed cell death pathways. Mitochondrial dysfunction is found to be associated with many disease conditions like metabolic syndrome, neurodegenerative disorders, coronary artery diseases, cancer, etc. This has generated considerable interest in the scientific community over the assessment of mitochondrial function and mitochondrial damage. One of the most common methodologies in these studies is by analysing the mitochondrial activity in the presence of mitochondrial substrates, inhibitors and uncouplers. Apart from the specific effects of these molecules on mitochondria, their interactions with the components of the experimental system could interfere with the results derived. Therefore, the role some specific experimental conditions would have on the outcome should be carefully elucidated. Fetal Bovine Serum or Bovine Serum Albumin (BSA); routinely used in in vitro experiments for their growth promoting and surfactant properties; can have profound impact on the pharmacokinetics of chemical compounds as albumin residue can bind to and affect their bioavailability. In the present study, we demonstrate that Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) induced mitochondrial depolarization is hindered in the presence of albumin due to the molecular interaction between CCCP and albumin.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Mitocôndrias/efeitos dos fármacos , Desacopladores/toxicidade , Animais , Linhagem Celular , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Soroalbumina Bovina/metabolismo
19.
Acta Biochim Pol ; 69(1): 177-187, 2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35151247

RESUMO

One of the rare malignant tumors developing within the glands of the buccal cavity in human beings is salivary gland tumors (SGTs). The hallmark of SGTs is the fusion of nuclear factor IB (NFIB) and myeloblastosis (MYB) genes developed after the translocation of q22-23; p23-24. Although the aetiology of SGTs is not clear, however, the therapeutic modalities are surgical resection followed by the combination of chemotherapy and radiotherapy if a chance of recurrence seems to develop. Owing to have numerous side effects of chemotherapy, the drug development has been shifted to natural products with minimal side effects. One of the key phytochemical artemisinin derived from wormwood Artemisia annua exhibits various pharmacological activities against various in-vivo and in-vitro cellular models. Here, we evaluated the cytotoxic potential of artemisinin against A-253 cells with possible underlying cell death mechanisms. Our results showed that artemisinin reduces the proliferation of cells in a concentration-dependent manner and displays IC50 value in a range of 10.23, 14.21 µM, and 203.18 µM against A-253/HTB-41 and transformed salivary gland SMIE cells, respectively. Flow cytometry analysis demonstrated that artemisinin promotes a significant amount of apoptotic cellular population and triggers G0/G1 arrest of A-253 cells in a concentration-dependent manner. To verify the mechanism of cell death induced by artemisinin in A-253 cells, we found an increased level of Bax, Bim, Bad, Bak and reduced level of antiapoptotic protein Bcl-2, Bcl-XL with concomitant release of mitochondrial resident protein cytochrome c into the cytoplasm. Additionally, we found that artemisinin augments the production of reactive oxygen species which further leads to the activation of proapoptotic proteins PARP1, and caspase-3, in a concentration-dependent manner thereby triggering apoptosis. In conclusion, artemisinin exhibits promising anticancer therapeutic potential against A-253 cells and needs further validation of in-vitro results in preclinical models.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias das Glândulas Salivares/patologia , Artemisia annua , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/metabolismo
20.
Oxid Med Cell Longev ; 2022: 8245614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116094

RESUMO

Osteosarcoma (OS) is the most common malignancy of bone. Liensinine exerts antitumor effects on cancers of the colon, breast, and gallbladder. However, its antitumor activity in OS remains unclear. This study is aimed at investigating the efficacy of liensinine against OS and the underlying mechanism of action. Cell proliferation, apoptosis, and cycle arrest in OS were detected using the Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays, respectively. The production of reactive oxygen species (ROS), glutathione (GSH) and glutathione disulfide (GSSG) concentrations, and mitochondrial membrane potential (MMP) of OS cells were measured by flow cytometry, colorimetry, and JC-1 staining. The expressions of factors related to apoptosis, cell cycle, and activation of the JAK2/STAT3 pathway were determined by Western blotting. To examine the potential role of ROS, an antioxidant (N-acetyl cysteine, NAC) was used in combination with liensinine. In vivo, we generated a xenograft mouse model to assess its antitumor efficacy. Tissue level expressions of factors related to apoptosis and activation of the JAK2/STAT3 pathway were assessed by immunohistochemistry or Western blotting. Liensinine inhibited the proliferation and induced G0/G1 phase arrest and apoptosis of OS cells in a dose-dependent manner. Additionally, liensinine promoted intracellular ROS production, enhanced the GSSG/GSH ratio, and induced MMP loss and ROS-mediated suppression of the JAK2/STAT3 pathway. NAC significantly attenuated the liensinine-induced antitumor activities and activated the JAK2/STAT3 pathway. In vivo, liensinine effectively inhibited the OS growth and promoted apoptosis; however, it had no negative effect on the internal organs. In conclusion, liensinine-induced ROS production could suppress the activation of the JAK2/STAT3 pathway and inhibit the OS growth both in vivo and in vitro. Our findings provided a new rationale for subsequent academic and clinical research on OS treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Isoquinolinas/farmacologia , Fenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Isoquinolinas/uso terapêutico , Janus Quinase 2/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fenóis/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...