Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
Mikrobiyol Bul ; 54(3): 479-489, 2020 Jul.
Artigo em Turco | MEDLINE | ID: mdl-32755522

RESUMO

This study was aimed to investigate the anti-leishmanial effects of bee products (honey and propolis) by using the causative agent of cutaneous leishmaniasis Leishmania tropica promastigotes, in in vitro culture. In vitro anti-leishmanial efficacy of honey (pine, flower and chestnut) and propolis used in the study were evaluated using the microdilution method. Honey, which is a bee product, was dissolved with RPMI medium containing fetal calf serum (FCS) and diluted in the same medium, and serial dilutions were prepared in concentrations between 62.5-1000 mg/ml. Propolis, on the other hand, was dissolved with ethyl alcohol and only 2.5 µl was used from all these concentrations since the alcohol content was more than 50% in these concentrations prepared and we thought that this rate would negatively effect the parasite development. Then, RPMI containing FCS was diluted in the medium and serial dilutions were prepared at concentrations between 50-800 µg/ml. To the dilutions prepared, the promastigot suspension was added so that their final concentrations in the wells were 1 x 106 promastigot/ml and then the medium was incubated for 24 and 48 hours in 26°C. After the incubation, promastigotes were determined microscopically for morphology, mobility and live parasite density, and cell viability was determined by MTS method and 50% inhibitor concentrations (IC50) were compared with control groups. Anti-leishmanial activity of propolis (50, 100, 200, 400 and 800 µg/ml) and honey (62.5, 125, 250, 500 and 1000 mg/ml) on promastigotes was evaluated in vitro. In microscopic examinations, pine honey showed anti-leishmanial activity starting from 62.5 mg/ml, flower honey 250 mg/ml, and chestnut honey 125 mg/ml, and pine honey was more effective on promastigotes (p< 0.05), and propolis was effective from 100 µg/ml concentration. It has been determined that very low concentrations of propolis caused changes in the morphological structure of the parasites and were more effective than the other bee products. The prevention of cell proliferation and decreasing of the IC50 values according with the time of pine honey (IC50= 109.28 mg/ml), flower honey (IC50= 248.07 mg/ml), chestnut honey (IC50= 147.65 mg/ml) and propolis (IC50= 82.98 µg/ml) applied on L.tropica promastigot cell culture was determined by MTS method. In this study, it was found that various concentrations of pine, flower, chestnut honey and propolis showed anti-leishmanial activity on L. tropica promastigotes. It has been observed that pine honey is more effective on promastigotes after 48 hours of incubation period, and propolis is more effective in both morphology and cell inhibition of the parasites even at very low concentrations. It is believed that these data can be used as an alternative treatment method against cutaneous leishmaniasis infections and further studies are required.


Assuntos
Mel , Leishmania tropica , Própole , Animais , Antiparasitários/farmacologia , Abelhas/química , Sobrevivência Celular/efeitos dos fármacos , Leishmania tropica/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Própole/farmacologia
2.
BMC Complement Med Ther ; 20(1): 104, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245474

RESUMO

BACKGROUND: Peri-implant inflammation resulting from the presence of Candida biofilms may compromise the longevity of implant-supported dentures. This study evaluated the inhibitory effect of Brazilian red propolis on mono-species biofilms of C. albicans (ATCC 90028) and co-culture biofilms of C. albicans (ATCC 90028) and C. glabrata (ATCC 2001), developed on titanium surfaces. METHODS: Titanium specimens were pre-conditioned with artificial saliva and submitted to biofilm formation (1 × 106 CFU/mL). After 24 h (under microaerophilic conditions at 37 °C) biofilms were submitted to treatment for 10 min, according to the groups: sterile saline solution (growth control), 0.12% chlorhexidine and 3% red propolis extract. Treatments were performed every 24 h for 3 days and analyses were conducted 96 h after initial adhesion. After that, the metabolic activity (MTT assay) (n = 12/group), cell viability (CFU counts) (n = 12/group) and surface roughness (optical profilometry) (n = 6/group) were evaluated. Data from viability and metabolic activity assays were evaluated by ANOVA and Tukey tests. Surface roughness analysis was determined by Kruskal Wallis e Mann Whitney tests. RESULTS: Regarding the mono-species biofilm, the cell viability and the metabolic activity showed that both chlorhexidine and red propolis had inhibitory effects and reduced the metabolism of biofilms, differing statistically from the growth control (p < 0.05). With regards the co-culture biofilms, chlorhexidine had the highest inhibitory effect (p < 0.05). The metabolic activity was reduced by the exposure to chlorhexidine and to red propolis, different from the growth control group (p < 0.05). The surface roughness (Sa parameter) within the mono-species and the co-culture biofilms statistically differed among groups (p < 0.05). CONCLUSIONS: Brazilian red propolis demonstrated potential antifungal activity against Candida biofilms, suggesting it is a feasible alternative for the treatment of peri-implantitis.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Própole/farmacologia , Anti-Infecciosos Locais/farmacologia , Brasil , Clorexidina/farmacologia , Propriedades de Superfície , Titânio
3.
World J Microbiol Biotechnol ; 36(3): 50, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157464

RESUMO

Despite the deep knowledge of the honey bee (Apis mellifera) gut microbiome, information on the microbial communities of other hive components is still scarce. Propolis originates from a natural resinous mixture that honeybees collect from different plants sources and modify; it is used mainly to ensure the hygiene of the hive. By virtue of its antimicrobial properties, propolis has been considered relatively aseptic, yet its ability to harbor microorganisms has not been previously investigated. In this study we report the first description of the diversity of the microbial community of propolis by both targeted-metagenomics analysis and cultivation. We demonstrated that propolis hosts a variety of microbial strains belonging to taxa already described in other hive components. Some of them are cultivable in standard laboratory conditions, and show metabolic characteristics compatible with their persistence in different physiological states inside propolis. Isolated bacteria produce antimicrobials against Gram-negative and Gram-positive bacteria, and entomopathogenic fungi, with different spectra of inhibition. Metagenomics analysis shows the presence of bacteria and fungi with great potential to outcompete potentially harmful microorganisms. These findings suggest that the characterized microbiota could contribute to the overall antimicrobial properties of propolis and to its ecological role as "disinfectant" within the hive.


Assuntos
Bactérias/classificação , Fungos/classificação , Microbiota , Própole/farmacologia , Animais , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Abelhas , DNA Ribossômico/genética , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Microbioma Gastrointestinal , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Filogenia
4.
Arch Oral Biol ; 112: 104684, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32120052

RESUMO

OBJECTIVES: The aim of this study was to evaluate the efficiency of xylitol chewing gums enriched with propolis, remineralizing softly demineralized dentin in vitro. DESIGN: Four groups of chewing gum were developed; Group1: xylitol (1.8 %), Group2: xylitol + casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) (3%), Group3: xylitol+Hydroxyapatite (3%) and Group4: xylitol + propolis (5%). A control group was designed without chewing gum, but with artificial saliva. Sections of embedded crowns and cleaned roots of twenty five bovine incisors were demineralized in carbonated drink. Crown specimens were half-varnished. Remineralization process was run for all the dental specimens in the 4 groups with gum extracts and in the control group with artificial saliva for 20 min at 37 °C three times a day during 7 days. Mineral contents were evaluated by scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX-SEM). Surface morphology and roughness were analyzed using atomic force microscopy (AFM). Micro-hardness was measured using Vickers micro-hardness tester among varnished and unvarnished sides. RESULTS: Calcium/Phosphate mean ratio showed a significant decrease between the control group, group1, group2 and group4. Control group and group3 were not significantly different. Micro-hardness increased significantly for all treated groups. AFM showed obstruction of dentinal tubules in all the groups and roughness decreased in the treated side of the dentin compared to the untreated side for tested groups. CONCLUSION: Xylitol chewing gum enriched with propolis showed dentinal tubules occlusion, significant improvement of micro-hardness and slight decrease in roughness. Ca/P ratio analysis suggests that a mineral compound other than hydroxyapatite is responsible of tubules occlusion.


Assuntos
Goma de Mascar , Dentina , Própole/farmacologia , Remineralização Dentária , Xilitol/farmacologia , Animais , Bovinos
5.
J Appl Microbiol ; 129(2): 296-310, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32145138

RESUMO

AIMS: A multidisciplinary approach was used to compare phenolic composition, radical scavenging and antimicrobial activity of propolis samples from different geographical localities, and plant resin against various microorganisms. METHODS AND RESULTS: Using UHPLC-qqqMS quantitative analysis, 28 phenolic compounds were determined. Caffeic and p-coumaric acids were identified as main phenolic acids in poplar propolis samples, except samples from Russia (P6) and China (P7). Radical scavenging activity (applying DPPH spectrophotometric assay) showed the highest activity of Serbian (40·51%) and Chinese (53·21%) propolis samples. Broth microdilution method was used for the oral cavity, fungal phytopathogenic and human vaginal isolates which have been identified at a molecular level. The most sensitive bacterial isolates were Lactobacillus acidophilus (MIC of 0·03-0·13 mg ml-1 ) and the oral streptococci isolates (MIC values of 0·19-0·13 mg ml-1 ). The most sensitive fungal phytopathogenic isolate was Fusarium oxysporum (MIC 0·003 mg ml-1 ). All samples, except propolis from Serbia (P4) and Turkey (P5), showed a strong antifungal activity against Fusarium sporotrichioides, Fusarium subglutinans and Fusarium proliferatum. CONCLUSION: The results of various tests indicate good radical scavenging and antimicrobial activity against important human and plant pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: A detailed propolis analysis is important when proposing a preparation of new biological antimicrobial products which have a positive impact on human health and reduce antibacterial resistance.


Assuntos
Anti-Infecciosos/farmacologia , Depuradores de Radicais Livres/farmacologia , Fenóis/análise , Populus/química , Própole/química , Anti-Infecciosos/análise , Feminino , Depuradores de Radicais Livres/análise , Fusarium/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Boca/microbiologia , Fenóis/farmacologia , Própole/farmacologia , Vagina/microbiologia
6.
Mikrobiyol Bul ; 54(1): 79-94, 2020 Jan.
Artigo em Turco | MEDLINE | ID: mdl-32050880

RESUMO

While acyclovir, a nucleoside analogue, is widely used for herpes simplex virus type 1 (HSV-1), emergence of drug-resistant viruses due to frequent usage of this class of medicines, and their toxic side effects require exploring novel active molecules. Despite the studies on developing synthetic molecules in medical sciences and pharmacology, herbs as a natural source of biologically-active compounds remain popular. In this in vitro study, olive leaf extract (OLE) and propolis alone or in combination with acyclovir were investigated for their antiviral efficacy in HSV-1.Toxic doses of OLE, propolis, and dimethyl sulfoxide, propolis diluent, for Hep-2 (ATCC, CCL-23) cells were determined by conventional cell culture. Using "endpoint" method, the viral dose infecting half of the cell culture (TCID50) was calculated, and viral quantity was determined with Spearman-Karber method. Antiviral effects of OLE and propolis on HSV-1 were investigated by conventional cell culture and real-time cell analysis (RTCA). Combinations of the two extracts with one another and with acyclovir were evaluated by RTCA. Active substances prepared at three different dilutions were added to tubes with HSV-1 of logTCID50: 11.5 in descending order starting from the highest non-toxic concentration, and they were left at room temperature for two different durations (one hour and three hours). The aliquots taken from the tubes were cultured in plates containing Hep-2 cells and evaluated after 72 hours. Combinations of extracts and acyclovir at concentrations at least four times lower than the lowest concentration showing antiviral efficacy against HSV-1 were cultured with Hep-2 cells in the e-plates of the xCELLigence RTCA device, measurements were obtained at 30 minute intervals, and data were recorded in real time. In the test with two different durations and at different concentrations of OLE and propolis, antiviral efficacy was observed both with one-hour and three-hour incubation at a concentration of 10 µg/ ml for propolis and 1.2 mg/ml for OLE with RTCA. The duration and concentration of the greatest decrease in viral quantity were in the first one hour and 10 µg/ml for propolis, and in the first one hour and 1.2 mg/ ml for OLE. Combination of propolis and OLE with acyclovir caused no cytopathic effects, and the combination of extracts led to delayed cytopathic effect. According to these results, propolis and OLE, alone and in combinations with acyclovir, have antiviral efficacy against HSV-1. These agents may reduce the dose and side effects of acyclovir in case of co-administration since they exert their effects through a different mechanism than acyclovir,possibly through direct virucidal activity, inhibition of virus internalization or viral inhibition in early stages of replication (inhibition of adsorption/binding of viral particles to the cell). These extracts that do not require conversion to active form have the potential to reduce infectivity in oral lesions, prevent spread, and be used in the topical treatment of acyclovir-resistant HSV infections, particularly in immunocompromised patients. However, in vivo studies should be conducted to determine their medicinal properties and potential toxicities. These results should be supported by further comprehensive studies and the efficacy against other viruses should also be investigated.


Assuntos
Aciclovir , Antivirais , Herpesvirus Humano 1 , Olea , Extratos Vegetais , Própole , Aciclovir/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Olea/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Própole/farmacologia
7.
Environ Toxicol ; 35(7): 768-773, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32061154

RESUMO

Propolis is a natural resinous substance obtained from beehives, and emerging evidence supports that it has antitumor, antiinflammatory, antioxidant, and antimicrobial activities. The aim of the study is to examine the cytotoxic, antioxidant, and apoptotic features of ethanolic propolis extract (PE) on C6 glioma cells. The cells were treated with ethanolic PE at various concentrations for 24 hours, after which the total antioxidant status (TAS) and total oxidant status; malondialdehyde, protein carbonyl, 8-hydroxy-2'-deoxyguanosine, and glutathione (GSH) levels; Cu/Zn-superoxide dismutase (Cu/Zn-SOD) activity; and apoptotic markers were measured. Ethanolic PE at 100, 250, and 500 µg/mL concentrations showed optimal activity on C6 glioma cells. TAS and GSH levels were significantly increased in C6 glioma cells treated with 100 and 500 µg/mL PE compared to control cells (P < .05). Similarly, the activity of Cu/Zn-SOD was higher in C6 glioma cells treated with 250 or 500 µg/mL ethanolic PE compared to control cells (P < .05), as was the caspase-3 mRNA expression level. The highest levels of caspase-8 and -9 expression were in C6 glioma cells treated with 500 µg/mL PE. Collectively, our results indicate that ethanolic PE has cytotoxic and apoptotic effects on C6 glioma cells. Furthermore, it may provide a protective role in the antioxidant defense system. PE shows potential for development as a natural antioxidant and apoptotic agent for the treatment of brain tumors.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Glioma/patologia , Própole/farmacologia , Animais , Antineoplásicos/química , Antioxidantes/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Composição de Medicamentos , Etanol/química , Glutationa/metabolismo , Malondialdeído/metabolismo , Própole/química , Superóxido Dismutase/metabolismo
8.
AAPS PharmSciTech ; 21(2): 49, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900606

RESUMO

Microbial biofilms, structured communities of microorganisms, have been often associated to the infection and bacterial multiresistance problem. Conventional treatment of infection involves the use of antibiotics, being an alternative approach is the use of red propolis, a natural product, to prepare polymer nanoparticles. The aim of the present study was to encapsulate red propolis extract in poly(lactic-co-glycolic acid) (PLGA) nanoparticles for destruction in vitro of pathogenic biofilms. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) containing red propolis hydroethanolic extract (2 mg/mL) were produced by emulsification solvent diffusion method. The extract and developed nanoparticles were analyzed for antimicrobial activity and inhibition of bacterial biofilm formation in vitro against Staphylococcus aureus and Pseudomonas aeruginosa. Transmission electron microscopy images confirmed spherical nanoparticles in the range size from 42.4 nm (PLGA NPs) to 69.2 nm (HERP PLGA NPs), with encapsulation efficiencies of 96.99%. The free extract and encapsulated in polymer nanoparticle presented antimicrobial potential, with a minimum inhibitory concentration from 15.6 to 125 µg mL-1 and from 100 to 1560 µg mL-1 to inhibit biofilm formation for the Staphylococcus aureus and Pseudomonas aeruginosa, respectively.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Própole/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Própole/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
Braz Oral Res ; 33: e117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31939498

RESUMO

The aim of this study was to evaluate the effect of mineral trioxide aggregate (MTA) and Brazilian propolis on the cell viability, mineralization, anti-inflammatory ability, and migration of human dental pulp cells (hDPCs). The cell viability was evaluated with CCK-8 kit after 1, 5, 7, and 9 days. The deposition of calcified matrix and the expression of osteogenesis-related genes were evaluated by Alizarin Red staining and real-time PCR after incubation in osteogenic medium for 21 days. The expression of inflammation-related genes in cells was determined after exposure to 1 µg/mL LPS for 3 h. Finally, the numbers of cells that migrated through the permeable membranes were compared during 15 h. Propolis and MTA significantly increased the viability of hDPCscompared to the control group on days 7 and 9. In the propolis group, significant enhancement of osteogenic potential and suppressed expression of IL-1ß and IL-6 was observed after LPS exposure compared to the MTA and control groups. The number of migration cells in the propolis group was similar to that of the control group, while MTA significantly promoted cell migration. Propolis showed comparable cell viability to that of MTA and exhibited significantly higher anti-inflammatory and mineralization promotion effects on hDPCs.


Assuntos
Compostos de Alumínio/farmacologia , Anti-Inflamatórios/farmacologia , Compostos de Cálcio/farmacologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Óxidos/farmacologia , Própole/farmacologia , Silicatos/farmacologia , Antraquinonas , Brasil , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Combinação de Medicamentos , Humanos , Interleucina-1beta/análise , Interleucina-6/análise , Odontoblastos/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Fator de Necrose Tumoral alfa/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-31936519

RESUMO

Propolis is a potent anti-microbial and natural anti-inflammatory by-product obtained from the beehive. Studies have demonstrated the superior biocompatibility and anti-microbial properties of propolis as compared to calcium hydroxide. However, its effect on postoperative endodontic pain is unknown. Therefore, this study aimed to investigate the impact of Chinese propolis paste as an intracanal medicament on postoperative endodontic pain intensities compared with calcium hydroxide (control) at different time intervals in necrotic teeth with periapical radiolucency. Eighty patients with single-rooted necrotic teeth with visible periapical radiolucency were recruited and randomly allocated to either the calcium hydroxide or propolis groups. After chemo-mechanical preparation and intracanal medicament insertion, patients were given the VAS (visual analogue scale) to record pain scores. Inter-group data were compared and analyzed using two-way repeated measure ANOVA (Bonferroni test). A p-value of < 0.025 was considered significant. In total, >78% of the patients experienced no or only mild post-operative pain in both the groups at all time intervals, without any significant difference in pain scores between the two groups (p > 0.025). An overall flare-up rate of 14.8% was found. The results suggest that either of these medicaments can be used as an inter-appointment medication for the prevention of postoperative pain in necrotic cases.


Assuntos
Analgésicos/farmacologia , Anti-Infecciosos/farmacologia , Dor Pós-Operatória/prevenção & controle , Própole/farmacologia , Irrigantes do Canal Radicular/farmacologia , Analgésicos/administração & dosagem , Anti-Infecciosos/administração & dosagem , Hidróxido de Cálcio , Método Duplo-Cego , Humanos , Própole/administração & dosagem , Irrigantes do Canal Radicular/administração & dosagem
11.
Recent Pat Biotechnol ; 14(1): 41-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31448718

RESUMO

BACKGROUND: Early childhood caries is a sugar-dependent disease with multifactorial modulating factors affecting deciduous dentition. It is defined as the presence of at least one decayed tooth, absence of a tooth due to caries or the existence of a temporary restoration in a tooth in a child between zero and 71 months of age. No BRP varnish was found in intellectual property banks, therefore it was registered and deposited with patent number BR1020160190142. OBJECTIVE: The objective of this study was to evaluate the dose-response concentration of alcoholic extract of Brazilian red propolis (BRP), in the form of dental varnish, against Streptococcus mutans (S. mutans) in children. METHODS: Twenty-four children, aged between 36 and 71 months, of both genders and without caries, were selected to participate in this pilot study and grouped randomly into four groups to receive different concentrations of BRP varnish (1%, 2.5%, 5% and 10%). The varnish was applied to the surface of all second deciduous molars. The antimicrobial activity was observed in saliva, which was collected in two phases: before applying the BRP varnish and after use. RESULTS: There was microbiological reduction of S. mutans in the oral cavity of the children in all the tested concentrations. The highest percentage reduction of S. mutans was observed at the concentration of 2.5% (P = 0.0443). CONCLUSION: The BRP extract in the form of dental varnish has antimicrobial activity against S. mutans and constitutes a possible alternative in the prevention of dental caries.


Assuntos
Cariostáticos , Cárie Dentária/prevenção & controle , Própole , Cariostáticos/administração & dosagem , Cariostáticos/farmacologia , Cariostáticos/uso terapêutico , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Patentes como Assunto , Projetos Piloto , Própole/administração & dosagem , Própole/farmacologia , Própole/uso terapêutico , Saliva/microbiologia , Streptococcus mutans/efeitos dos fármacos
12.
J Agric Food Chem ; 68(10): 2861-2871, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369255

RESUMO

Brazilian organic propolis (BOP) is an unexplored Brazilian propolis that is produced organically and certified according to international legislation. Our results showed that BOP has strong anti-inflammatory effects and acts by reducing nuclear factor κB activation, tumor necrosis factor α release, and neutrophil migration. In addition, BOP6 exhibited antifungal activity on planktonic and biofilm cultures of Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsisolis and reduced in vitro yeast cell adhesion to human keratinocytes at sub-inhibitory concentrations. BOP demonstrated significantly low toxicity in Galleria melonella larvae at antifungal doses. Lastly, a chemical analysis revealed the presence of caffeoyltartaric acid, 3,4-dicaffeoylquinic acid, quercetin, and gibberellins A7, A9, and A20, which may be responsible for the biological properties observed. Thus, our data indicate that BOP is a promising source of anti-inflammatory and antifungal molecules that may be used as a functional food.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Alimento Funcional/análise , Própole/farmacologia , Animais , Anti-Inflamatórios/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Brasil , Candida/fisiologia , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Própole/química
13.
J Sci Food Agric ; 100(4): 1369-1382, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31487405

RESUMO

Propolis is a resinous substance composed of a mixture of different plant parts and molecules secreted by bees. Chemically, it is defined as a complex matrix containing biologically active molecules with antibacterial, antifungal, antiviral, antiparasitic, hepatoprotective, and immunomodulatory activities. It is widely employed in cosmetic formulations and pharmaceutical products and is one of the most widely used natural products. However, the effects and strength of these biological activities depend on the chemical profile and composition of each propolis type. This composition is associated with the diversity of local flora, the place and period of collection, and the genetics of the bees. In this context, the objective of this review was to investigate the biological, chemical, and microbiological properties of propolis. A technological prospection was also performed on patents for products designed to be used in animal health. Our investigation shows that the literature contains diverse studies dedicated to comparing and describing the composition and therapeutic properties of propolis. These studies demonstrate the potential biological use of propolis in veterinary medicine, showing the applications of propolis extracts in different formulations. However, there are a low number of propolis-based veterinary products with a registered patent. Thus, the development of products based on propolis is a promising market to be exploited. © 2019 Society of Chemical Industry.


Assuntos
Própole/química , Medicina Veterinária , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Abelhas , Descoberta de Drogas , Humanos , Patentes como Assunto , Própole/farmacologia
14.
J Chem Ecol ; 46(2): 150-162, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872313

RESUMO

The botanical source of Brazilian green propolis (BGP) is Baccharis dracunculifolia DC, which interacts not only with Apis mellifera, but also with galling insects. In the last decade, because of green propolis´ important biologic activities, the international demand for BGP overcame the production capacity, consequently, new approaches are required to increase this production. Hence, the understanding of the chemical ecology interactions of B. dracunculifolia with galls and bees in field conditions may provide insights to increase BGP's production. A "bee pasture" experiment aiming to better understand this plant-insect interaction was therefore performed. For that, 48 B. dracunculifolia individuals, being 24 females and 24 males, were cultivated and investigated for the following parameters: (1) phenolic and volatile compounds in both B. dracunculifolia leaves and green propolis, (2) environmental variables, (3) visiting rate by bees, (4) time of resin collection, and (5) number of galls. Regression analyses by independent linear mixed-effect models were run to correlate phenolic and volatile compounds concentration with the environmental and field variables. Significant differences in chemical profile and field variables were observed between male and female plants. Male plants showed higher infestation by galling insects while female plants showed higher number of visiting bees, time of resin collection and terpenes concentration, contributing to the differences observed in the field. The obtained results suggest that increasing the percentage of female B. dracunculifolia plants in the field may attract more bees and therefore enhance propolis production.


Assuntos
Baccharis/química , Abelhas/fisiologia , Própole/química , Animais , Baccharis/metabolismo , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Feminino , Masculino , Espectrometria de Massas , Fenol/análise , Fenol/química , Fenol/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Tumores de Planta/parasitologia , Própole/análise , Própole/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
15.
J Food Sci ; 84(12): 3850-3865, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31750945

RESUMO

The influences of ultrasound-assisted, pharmacopeia, and supercritical fluid extraction methods on bioactive compounds and biological activities of propolis were evaluated. Results showed that propolis extracted by ultrasound-assisted method contained more phenolic compounds, and showed the highest total phenolic content (245.84 ± 6.41 mg GAE/g DW), total flavonoids content (198.82 ± 5.74 mg RE/g DW), and stronger in vitro antioxidant activity (DPPH·: 1.03 ± 0.04 mmol Trolox/g DW, ABTS+·: 2.19 ± 0.05 mmol Trolox/g DW, and FRAP: 1.48 ± 0.12 mmol FeSO4 /g DW) than those of pharmacopoeia and supercritical fluid methods. A total of 36 phenolic compounds were identified in propolis. Among them, quercetin, quercetin-3-methyl-ether, kaempferol, isorhamnetin, luteolin-methyl-ether, and quercetin-7-methyl-ether could only be found in ultrasound-assisted and pharmacopoeia methods. Moreover, the phenolic compounds had the similar metabolic pathways in rats and were mainly metabolized by sulfation and glucuronidation pathways. Additionally, ultrasonic-treated propolis have good in vivo antioxidant activity and could repair D-galactose-induced oxidative damage in rats. Therefore, ultrasound-assisted method could replace pharmacopeia method to be considered as bioactive compounds extraction from propolis, taking into consideration of yield, short extraction time, and high antioxidant activity.


Assuntos
Antioxidantes , Fenóis , Própole , Sonicação/métodos , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Própole/química , Própole/isolamento & purificação , Própole/farmacologia , Ratos
16.
Lipids Health Dis ; 18(1): 200, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733650

RESUMO

BACKGROUND: Neuroinflammation plays a major role in the pathogenesis of autism because the cytokine levels are typically disturbed in the brain in autistic patients. Prebiotics-rich diet maintains the healthy gut microbiota and hence can regulate the neuroinflammation indirectly. The study aimed to investigate the role of bee pollen and propolis in ameliorating neuroinflammation, including cytokine levels, in an animal model of autism. METHODS: Hamsters were classified as four groups: Group I, control; Group II, autistic model/animals treated with 250 mg propionic acid (PPA)/kg body weight (BW)/day for 3 days; Group III, animals treated with bee pollen at a dose of 250 mg/kg BW/day for 4 weeks; and Group IV, animals treated with propolis at a dose of 250 mg/kg BW/day for 4 weeks. Neuroinflammatory responses were evaluated using the levels of interferon γ (IFN-γ), interleukin 1 alpha (IL-1α), IL-6, IL-10, IL-12 (p70), vascular endothelial growth factor (VEGF), and tumor necrosis factor α (TNFα). RESULTS: Significant decrease of IL-10 (P<0.026), VEGF (P<0.005), and TNFα(P<0.005) levels and increased IL-1α (P<0.032), IL-6(P<0.028), and IFN-γ (P<0.013) levels were observed between the four studied groups. The neurotoxic effects of PPA was clearly presented as much higher IL-6, as pro-inflammatory cytokine (P<0.05), concomitant with much lower IL-10, as anti-inflammatory cytokine(P<0.015) compared to controls. Both bee pollen and propolis were effective in ameliorating the neurotoxic effects of PPA demonstrating non-significant changes of IL-6 and IL-10 when compared to control healthy hamsters. CONCLUSIONS: Our findings indicate that both bee pollen and propolis protect against neuroinflammation in the rodent model of autism. However, further studies are needed to investigate the clinical benefits of prebiotics-rich diet in neurodevelopmental disorders, such as autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Pólen/metabolismo , Propionatos/farmacologia , Própole/farmacologia , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Química Encefálica/efeitos dos fármacos , Citocinas/análise , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Mesocricetus
17.
Int J Nanomedicine ; 14: 8379-8398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695372

RESUMO

Background: Propolis is a unique natural adhesive product collected by honeybees. It contains a diversity of bioactive compounds with reported functional properties such as antioxidants, antibacterial, antifungal, anti-inflammatory, antiviral and anticancer activity. Dental caries is a worldwide problem that caused by microbial growth usually progress from tooth enamel to the underlying pulpal tissues and root canal. This situation could be controlled by a sequence of steps to remove microorganisms and fill root canal with a suitable long-lasting root canal sealer. Unfortunately, leachable and degradation products of the currently used sealers compromised their antimicrobial activity by inflammatory modulation associated with irritation and toxicity of periapical tissues. Materials and methods: Hence, propolis was selected to be designed as a natural root canal sealer due to its amazing functional properties. Moreover, its handling properties were enhanced and potentiated by its incorporation in polymeric nanoparticles (NPs). Frist, propolis was collected, extracted and analyzed for its bioactive compounds. After that, propolis-loaded NPs of PLGA (ProE-loaded NPs) were developed and fully characterized regarding physicochemical properties, in vitro release and in vitro cytotoxicity. Then, root canal sealers were fabricated and assayed for their antimicrobial activity. Both cytotoxicity and antimicrobial activity were compared to those of a model sealer; AH Plus®. Results: The results revealed that spherical nanoscopic NPs with narrow size distribution were obtained. ProE-loaded NPs exhibited accepted entrapment efficiency (>80) and prolonged release. In vitro cytotoxicity study confirmed the safety of ProE-loaded NPs. Also, the developed sealers showed antimicrobial activity versus bacterial strains of Enterococcus faecalis and Streptococcus mutans and antifungal activity against Candida albicans. Conclusion: ProE-loaded NPs could be incorporated in and represented as a root canal sealer with prolonged release and enhanced cytocompatibility as well as antimicrobial activities.


Assuntos
Antibacterianos/farmacologia , Nanopartículas/química , Própole/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Cimento de Óxido de Zinco e Eugenol/farmacologia , Varredura Diferencial de Calorimetria , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Egito , Enterococcus faecalis/efeitos dos fármacos , Humanos , Cinética , Teste de Materiais , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Materiais Restauradores do Canal Radicular/química , Streptococcus mutans/efeitos dos fármacos
18.
Chem Biodivers ; 16(12): e1900492, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31642168

RESUMO

This study was undertaken to analyze the phenolic profiles of 19 propolis samples from Turkey by using a high-performance thin-layer chromatographic (HPTLC) method in order to identify their plant origins. Furthermore, their antioxidant and antimicrobial activity profiles were comparatively evaluated. For the appraisal of antioxidant potential, total phenolic (TPC) and total flavonoid contents (TFC) of propolis samples were firstly determined and then their effects on free radicals were evaluated by FRAP, ABTS.+ , CUPRAC, DPPH. and HPTLC-DPPH. methods. Antimicrobial activity of propolis samples against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 15442), Escherichia coli (ATCC 11229) and Candida albicans ATCC 10231 were determined by disc diffusion and broth dilution methods. HPTLC fingerprinting analyses revealed that O-type (botanical origin from Populus nigra L.) was the primarily available propolis type in Turkey. Moreover, 3-O-methylquercetin (3MQ) rich propolis was identified as a new propolis type for the first time. Principal component analysis (PCA) indicated that 3MQ-type propolis differs from the O-type. Antioxidant activity studies showed that O-type of propolis possesses higher antioxidant effect than the other tested propolis types. Quercetin, caffeic acid, caffeic acid phenethyl ester (CAPE) and galangin were determined to contribute significantly to the antioxidant potential of O-type propolis among others. Propolis extracts exerted moderate antimicrobial activity against the tested microorganisms with MIC values between the ranges of 128-512 µg/mL.


Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Própole/química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Flavonoides/química , Testes de Sensibilidade Microbiana , Fenóis/química , Fenóis/farmacologia , Populus/química , Populus/metabolismo , Análise de Componente Principal , Própole/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Turquia
19.
Molecules ; 24(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590214

RESUMO

The chemical compositions of ethanol extracts of propolis from China (EEP-C) and the United States (EEP-A) and their antifungal activity against Penicillium notatum were determined. The result showed that a total of 49 compounds were detected by UPLC-Q-TOF-MS, 30 of which were present in samples from two regions. The major compounds of EEP-C and EEP-A were similar, including pinocembrin, pinobanksin-3-O-acetate, galanin, chrysin, pinobanksin, and pinobanksin-methyl ether, and both of them showed antifungal activity against P. notatum with same minimum inhibitory concentration (MIC) value of 0.8 mg·mL-1. In the presence of propolis, the mycelial growth was inhibited, the hyphae became shriveled and wrinkled, the extracellular conductivities were increased, and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were decreased. In addition, iTRAQ-based quantitative proteomic analysis of P. notatum in response to propolis revealed that a total of 341 proteins were differentially expressed, of which 88 (25.8%) were upregulated and 253 (74.2%) were downregulated. Meanwhile, the differentially expressed proteins (DEPs) involved in energy production and conversion, carbohydrate transport and metabolism, and the sterol biosynthetic pathway were identified. This study revealed that propolis could affect respiration, interfere with energy metabolism, and influence steroid biosynthesis to inhibit the growth of P. notatum.


Assuntos
Antifúngicos/química , Proteínas Fúngicas/metabolismo , Penicillium chrysogenum/efeitos dos fármacos , Própole/química , Antifúngicos/farmacologia , China , Regulação para Baixo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Penicillium chrysogenum/metabolismo , Própole/farmacologia , Proteômica , Succinato Desidrogenase/metabolismo , Estados Unidos
20.
Int J Biol Macromol ; 140: 1260-1268, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472212

RESUMO

Cellulose acetate (CA) electrospun nanofibers are one of the most practical cellulosic material which normally applied as carriers for drug delivery and wound healing systems. In this study, CA and polycaprolactone (PCL) was applied to fabricate the electrospun nanofibrous for wound dressing application. Propolis is a resin-like macromolecule produced by honeybees from the buds and diverse plants. Among many applications of this macromolecule, it has been occasionally employed directly to the skin for wound healing applications. Herein, owing to the significance of propolis, CA/PCL nanofibers were impregnated with a propolis-extracted solution to reach antibacterial and antioxidant mat. The scanning electron microscopy (SEM) images revealed that electrospinning of 10% (w/w) CA along with 14% (w/w) PCL produced excellent nanofibers compared to the resultant nanofibers. Hydrophobicity/hydrophilicity nature of CA/PCL mats was measured using water contact-angle method before and after treatment with NaOH. The nanofibrous mats exhibited a high water absorption capacity of about 400%. Antioxidant effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and propolis-CA/PCL presented a high antioxidant activity. Additionally, propolis-CA/PCL mats showed antibacterial activity against both the Gram-positive and Gram-negative bacteria. In conclusion, our results have confirmed that the propolis-impregnated CA/PCL mats have provided an appropriate surface for wound healing system.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Celulose/análogos & derivados , Nanofibras/química , Poliésteres/química , Própole/farmacologia , Bactérias/efeitos dos fármacos , Celulose/química , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA