Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.787
Filtrar
1.
J Hazard Mater ; 416: 125861, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492809

RESUMO

Neonicotinoid insecticides have been widely used due to their excellent systemic activity and high insecticidal activity, but the problems of low utilization rate and environmental risk have attracted widespread attention. Controlled-release technology is an approach to realize the efficient utilization of pesticides and reduce environmental pressure. In this study, clothianidin (CLO) controlled-release granules (CLO@GR- TA (tannic acid)/Fe (III)) were prepared with TA/Fe (III) coordination chelate as the coating material. These granules exhibited the core-shell structure with 500-1200 µm of particle size, and had obvious release performance and hydrolysis behavior of coating materials. Pot experiments by root application showed that the CLO@GR-TA/Fe (III) showed balanced and lasting control efficacy to broad bean aphids. The plants have a stronger capacity for absorption and enrichment and a higher utilization rate of CLO for CLO@GR-TA/Fe (III), than those for 10% suspension concentrate (SC). One of the hydrolysates of coating materials, TA, a polyphenolic antioxidant, could improve the bioaccumulation amount and alleviating the oxidative stress response of CLO in plants. Our study illustrates that the controlled-release granules base on TA have efficient controlled-release properties and free radical scavenging performance that may eventually be used as pesticide carriers and antioxidants in the field of plant protection.


Assuntos
Praguicidas , Disponibilidade Biológica , Preparações de Ação Retardada , Guanidinas , Neonicotinoides/toxicidade , Estresse Oxidativo , Praguicidas/toxicidade , Tiazóis
2.
Braz J Biol ; 83: e248842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495166

RESUMO

Acetylcholinesterase (AChE) activity levels can be used as an indicator for AChE inhibition due to pesticide poisoning in bird species. We assessed the comparative brain cholinesterase (AChE) activity level of five bird species inhabiting pesticide exposed croplands and Protected Area i.e. Deva Vatala National Park (DVNP), Bhimber by using a spectrophotometric method. AChE activity levels ranged from 56.3 to 85.9 µmol/min/g of brain tissue of birds representing DVNP. However, AChE activity levels ranged from 27.6 to 79.9 µmol/min/g of brain tissue of birds representing croplands. AChE activity levels observed in Jungle babbler, Common babbler, and Red-vented bulbul showed significant differences (P < 0.05) at two sites. However, White wagtail and Black drongo demonstrated non-significant differences (P > 0.05). Maximum inhibition was recorded in Jungle babbler (53%) followed by Common babbler (35%), Red-vented bulbul (18%), White wagtail (15%), and Black drongo (7%). The brain cholinesterase inhibition levels under-protected ecosystems (DVNP, Bhimber) and agricultural landscape suggest insecticidal contamination and its impact on avifauna diversity. The study also emphasizes on the importance of pesticide-free zones to protect the biodiversity of birds.


Assuntos
Praguicidas , Acetilcolinesterase , Animais , Aves , Inibidores da Colinesterase/toxicidade , Produtos Agrícolas , Ecossistema , Paquistão , Praguicidas/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-34444445

RESUMO

Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.


Assuntos
MicroRNAs , Praguicidas , Metilação de DNA , Epigênese Genética , Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Praguicidas/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-34444056

RESUMO

OBJECTIVE: To investigate if case fatality and other indicators of the severity of human pesticide poisonings can be used to prioritize pesticides of public health concern. To study the heterogeneity of data across countries, cause of poisonings, and treatment facilities. METHODS: We searched literature databases as well as the internet for studies on case-fatality and severity scores of pesticide poisoning. Studies published between 1990 and 2014 providing information on active ingredients in pesticides or chemical groups of active ingredients were included. The variability of case-fatality-ratios was analyzed by computing the coefficient of variation as the ratio of the standard deviation to the mean. FINDINGS: A total of 149 papers were identified of which 67 could be included after assessment. Case-fatality-ratio (CFR) on 66 active ingredients and additionally on 13 groups of active ingredients were reported from 20 countries. The overall median CFR for group of pesticides was 9%, for single pesticides 8%. Of those 12 active ingredients with a CFR above 20% more than half are WHO-classified as "moderately hazardous" or "unlikely to present acute hazard". Two of seven pesticides considered "unlikely to present hazard in normal use" showed a CFR above 20%. The cross-study variability of reported case fatality was rather low. Studies most often utilized the Glasgow Coma Score for grading the severity of poisoning. CONCLUSION: Although human pesticide poisoning is a serious public health problem, an unexpectedly small number of publications report on the clinical outcomes within our study period. However, CFRs of acute human pesticide poisoning are available for several groups of pesticides as well as for active ingredients showing moderate cross-study variability. Our results underline that CFR is an indicator of the human toxicity of pesticides and can be utilized to prioritize highly hazardous pesticides especially since there is limited correspondence between the animal-test-based hazard classification and the human CFR of the respective pesticide. The reporting of available poisoning data should be improved, human case-fatality data are a reasonable tool to be included systematically in the periodic statutory review of pesticides and their regulation.


Assuntos
Praguicidas , Envenenamento , Animais , Coleta de Dados , Bases de Dados Factuais , Instalações de Saúde , Humanos , Praguicidas/toxicidade , Saúde Pública
5.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361024

RESUMO

The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.


Assuntos
Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Cobre/toxicidade , Coração/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Carbofurano/farmacologia , Cardiotoxicidade , Sinergismo Farmacológico , Praguicidas/farmacologia , Ligação Proteica , Peixe-Zebra
6.
Chemosphere ; 277: 130254, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34384174

RESUMO

Liver S9 fractions from common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were incubated with seven pesticides (fenamidone, fenoxaprop-p-ethyl, penflufen, spirotetramat, tebuconazole, tembotrione and trifloxystrobin) and the metabolic pathways of the applied chemicals were determined by HPLC-high-resolution mass spectrometry. Five of the seven pesticides (fenamidone, penflufen, spirotetramat, trifloxystrobin and fenoxaprop-p-ethyl) revealed a higher metabolic capacity of rainbow trout liver fractions compared to carp liver fractions. The other two pesticides (tebuconazole and tembotrione) showed a similar and marginal biotransformation for liver S9 fractions of both species. Furthermore, four compounds (penflufen, spirotetramat, tembotrione and tebuconazole) were incubated with cryo-preserved hepatocytes of rainbow trout showing additional conjugated metabolites compared to liver S9 fractions. The incubations were performed with concentrations of 1 and 10 µM for experiments with liver S9 fractions and 5 µM with hepatocytes for up to 120 (liver S9 fractions) or 240 min (hepatocytes). A set of positive controls was used to confirm the metabolic capability of the in vitro systems. The comparison of the in vitro results from hepatocyte assays of penflufen and tebuconazole with the data from corresponding in vivo studies performed according to OECD (Organisation for Economic Co-operation and Development) guideline 305 exhibited a similar metabolic behavior for these pesticides and emphasizes the reliability of the in vitro assays. Besides investigation of the metabolism of plant protection products for research purposes, inter-species comparison by in vitro assays and the use of PBTK modelling approaches will allow improved environmental and dietary risk assessments.


Assuntos
Carpas , Oncorhynchus mykiss , Praguicidas , Animais , Biotransformação , Fígado/metabolismo , Praguicidas/metabolismo , Praguicidas/toxicidade , Reprodutibilidade dos Testes
7.
Artigo em Inglês | MEDLINE | ID: mdl-34360014

RESUMO

Environmental risk assessment is a key process for the authorization of pesticides, and is subjected to continuous challenges and updates. Current approaches are based on standard scenarios and independent substance-crop assessments. This arrangement does not address the complexity of agricultural ecosystems with mammals feeding on different crops. This work presents a simplified model for regulatory use addressing landscape variability, co-exposure to several pesticides, and predicting the effect on population abundance. The focus is on terrestrial vertebrates and the aim is the identification of the key risk drivers impacting on mid-term population dynamics. The model is parameterized for EU assessments according to the European Food Safety Authority (EFSA) Guidance Document, but can be adapted to other regulatory schemes. The conceptual approach includes two modules: (a) the species population dynamics, and (b) the population impact of pesticide exposure. Population dynamics is modelled through daily survival and seasonal reproductions rates; which are modified in case of pesticide exposure. All variables, parameters, and functions can be modified. The model has been calibrated with ecological data for wild rabbits and brown hares and tested for two herbicides, glyphosate and bromoxynil, using validated toxicity data extracted from EFSA assessments. Results demonstrate that the information available for a regulatory assessment, according to current EU information requirements, is sufficient for predicting the impact and possible consequences at population dynamic levels. The model confirms that agroecological parameters play a key role when assessing the effect of pesticide exposure on population abundance. The integration of laboratory toxicity studies with this simplified landscape model allows for the identification of conditions leading to population vulnerability or resilience. An Annex includes a detailed assessment of the model characteristics according to the EFSA scheme on Good Modelling Practice.


Assuntos
Praguicidas , Agricultura , Animais , Ecossistema , Inocuidade dos Alimentos , Mamíferos , Praguicidas/análise , Praguicidas/toxicidade , Coelhos , Medição de Risco
8.
Ecotoxicol Environ Saf ; 223: 112563, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343900

RESUMO

Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of individual pesticides and mixtures of clothianidin (CLO) with eight other pesticides [carbaryl (CAR), thiodicarb (THI), chlorpyrifos (CHL), beta-cyfluthrin (BCY), gamma-cyhalothrin (GCY), tetraconazole (TET), spinosad (SPI) and indoxacarb (IND)] on honey bees using a feeding method. Toxicity tests of a 4-day exposure to individual pesticides revealed that CLO had the highest toxicity to A. mellifera, with an LC50 value of 0.24 µg a.i. mL-1, followed by IND and CHL with LC50 values of 3.40 and 3.56 µg a.i. mL-1, respectively. SPI and CAR had relatively low toxicities, with LC50 values of 7.19 and 8.42 µg a.i. mL-1, respectively. In contrast, TET exhibited the least toxicity, with an LC50 value of 258.7 µg a.i. mL-1. Most binary mixtures of CLO with other pesticides exerted additive and antagonistic effects. However, all the ternary mixtures containing CLO and TET (except for CLO+TET+THD) elicited synergistic responses to bees. Either increased numbers of components in the mixture or/and a unique mode of action appeared to be responsible for the higher toxicity of mixtures. Our findings emphasized the need for risk assessment of pesticide mixtures rather than the individual chemicals. Our data also provided information that might help growers avoid increased toxicity and unnecessary injury to pollinators.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Tiazóis
9.
Environ Int ; 156: 106766, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34271428

RESUMO

BACKGROUND: Occupational exposure to pesticides has been reported among general population worldwide. However, little is known about the associations between non-occupational exposure to pesticides, and biological markers of health and their response by sex. OBJECTIVES: We aimed to assess the associations between non-occupational overall pesticide exposure, length of exposure and specific pesticides reported with 35 biological markers of health representing cardiometabolic, haematological, lung function, sex hormones, liver and kidney function profiles, and vitamin D in Finnish cohort. METHODS: 31-year cross-sectional examination of the Northern Finland Birth Cohort 1966 provided blood samples for biomarker measurements in 1997-1998. Number of subjects varied between 2361 and 5037 for given exposures and certain outcome associations. Multivariable regression analyses were performed to examine associations between overall pesticide exposure (OPE), length of pesticide exposure in months (PEM), in years (PEY), and specific pesticides use (PEU) or not with cardiometabolic [SBP, DBP, TC, LDL, HDL, triglycerides, fasting glucose, insulin, HOMA-IR, HOMA-B, HOMA-S, hs-CRP], hematological [WBC, RBC, Hb, HCT, MCV, MCH, MCHC, platelets], lung function (FVC, FEV1), sex hormones [luteinizing hormone (LH), testosterone (TT), sex-hormone binding globulin (SHBG)], liver and kidney function profiles [total protein, albumin, globulin, ALP, ALT, GGT, urea, creatinine], and vitamin D adjusting for sex, BMI, socioeconomic position (SEP) and season of pesticide use. RESULTS: This cohort study on up to 5037 adults with non-occupational OPE, PEM, PEY and PEU differed by sex and SEP. In regression analyses, all the exposures were positively associated with total cholesterol and low-density lipoprotein cholesterol, and PEU was negatively associated with high-density lipoprotein cholesterol in females. OPE and PEM were positively associated with haematocrit in females and PEU with platelets in males. PEU was negatively associated with mean corpuscular haemoglobin. OPE and PEM were positively associated with LH in males. OPE was negatively associated with total protein and albumin in males. DISCUSSION: In Finnish young adults, non-occupational overall pesticide exposure, length of exposure and specific pesticides were associated with multiple biological markers of health. The biological markers seem to be indicative of adverse effects of pesticides and warrant for further studies to replicate the findings and determine the underlying mechanisms.


Assuntos
Exposição Ocupacional , Praguicidas , Biomarcadores , Estudos de Coortes , Estudos Transversais , Feminino , Finlândia , Humanos , Masculino , Praguicidas/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-34281107

RESUMO

In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.


Assuntos
Praguicidas , Piretrinas , Adulto , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Humanos , Neonicotinoides , Obesidade/induzido quimicamente , Obesidade/epidemiologia , Organofosfatos , Praguicidas/toxicidade , Gravidez
11.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2543-2553, 2021 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-34327919

RESUMO

We designed and fabricated a novel high throughput brain-on-chip with three dimensional structure with the aim to simulate the in vivo three-dimensional growth environment for brain tissues. The chip consists of a porous filter and 3D brain cell particles, and is loaded into a conventional 96-well plate for use. The filter and the particle molds were fabricated by using computer modeling, 3D printing of positive mold and agarose-PDMS double reversal mold. The 3D cell particles were made by pouring and solidifying a suspension of mouse embryonic brain cells with sodium alginate into a cell particle mold, and then cutting the resulting hydrogel into pieces. The loaded brain-on-chip was used to determine the neurotoxicity of pesticides. The cell particles were exposed to 0, 10, 30, 50, 100 and 200 µmol/L of chlorpyrifos or imidacloprid, separated conveniently from the medium by removing the porous filter after cultivation. Subsequently, cell proliferation, acetylcholinesterase activity and lactate dehydrogenase release were determined for toxicity evaluation. The embryonic brain cells were able to grow and proliferate normally in the hydrogel particles loaded into the filter in a 96-well plate. Pesticide neurotoxicity test showed that both chlorpyrifos and imidacloprid presented dose-dependent inhibition on cell growth and proliferation. Moreover, the pesticides showed inhibition on acetylcholinesterase activity and increase release of lactate dehydrogenase. However, the effect of imidacloprid was significantly weaker than that of chlorpyrifos. In conclusion, a novel brain-on-chip was developed in this study, which can be used to efficiently assess the drug neurotoxicity, pharmacodynamics, and disease mechanism by combining with a microtiterplate reader.


Assuntos
Clorpirifos , Praguicidas , Animais , Encéfalo , Clorpirifos/toxicidade , Meios de Cultura , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Praguicidas/toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-34207279

RESUMO

A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical exposures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine disruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.


Assuntos
Infertilidade , Doenças Neurodegenerativas , Exposição Ocupacional , Praguicidas , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Infertilidade/induzido quimicamente , Infertilidade/epidemiologia , Exposição Ocupacional/efeitos adversos , Praguicidas/toxicidade , Gravidez , Saúde Reprodutiva
13.
Artigo em Inglês | MEDLINE | ID: mdl-34200547

RESUMO

Pesticides have been considered as potential chemical mutagens; however, little is known about toxic and genotoxic effects during pesticide application in Zamora-Jacona, Michoacan State in Mexico. This study sought to determine DNA damage and cholinesterase activities inhibitions in 54 agricultural workers exposed to complex mixtures of pesticides vs. control group (26 individuals) using Comet assay in peripheral whole blood, micronucleus (MN) test in oral mucosa cells, Cytokinesis-blocked MN assay in lymphocytes (L-CBMNcyt) and measuring AChE and BChE activities in whole blood and plasma samples, respectively. Exposed subjects demonstrated significantly elevated levels of primary (Comet assay: tail intensity, tail length, tail moment, Olive tail moment) and permanent DNA damage (MN assay: in blood/buccal cells; frequencies of nuclear buds, binucleated cells, cells with condensed chromatin, karyorrhexis, pyknosis, and karyolysis). However, inhibition of cholinesterase activities (AChE and BChE) was not observed in the workers. Confounding factors including sex, age, BMI, working exposure period, protection level, smoking habit (cigarettes per day units), alcohol consumption (weekly), medication, were considered in the analysis. These combined techniques demonstrated usefulness in the health hazards risks pesticide exposure assessment and suggested the need for periodic monitoring together with the education and the training of occupational workers for the safe application of potentially harmful pesticides.


Assuntos
Exposição Ocupacional , Praguicidas , Colinesterases , Ensaio Cometa , Análise Citogenética , Dano ao DNA , Humanos , Linfócitos , México , Testes para Micronúcleos , Mucosa Bucal , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Praguicidas/toxicidade
14.
Environ Pollut ; 284: 117498, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261216

RESUMO

A monitoring network was established in streams within a catchment near the Costa Rican Pacific coast (2008-2011) to estimate the impact of pesticides in surface water (84 samples) and sediments (84 samples) in areas under the influence of melon and watermelon production. A total of 66 (water) and 47 (sediment) pesticides were analyzed, and an environmental risk assessment (ERA) was performed for four taxa (algae, Daphnia magna, fish and Chironomus riparius). One fungicide and seven insecticides were detected in water and/or sediment; the fungicide azoxystrobin (water) and the insecticide cypermethrin (sediments) were the most frequently detected pesticides. The insecticides endosulfan (5.76 µg/L) and cypermethrin (301 µg/kg) presented the highest concentrations in water and sediment, respectively. The ERA revealed acute risk in half of the sampling points of the melon-influenced area and in every sampling point from the watermelon-influenced area. Safety levels were exceeded within and around the crop fields, suggesting that agrochemical contamination was distributed along the catchment, with potential influence of nearby crops. Acute risk was caused by the insecticides chlorpyrifos, cypermethrin and endosulfan to D. magna, fish and C. riparius; the latter was the organism with the overall highest/continuous risk. High chronic risk was determined in all but one sampling point, and revealed a higher number of pesticides of concern. Cypermethrin was the only pesticide to pose chronic risk for all benchmark organisms. The results provide new information on the risk that tropical crops pose to aquatic ecosystems, and highlight the importance of including the analysis of sediment concentrations and chronic exposure in ERA.


Assuntos
Citrullus , Cucurbitaceae , Praguicidas , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Sci Total Environ ; 796: 149017, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328899

RESUMO

Pesticide applications in agricultural crops often comprise a mixture of plant protection products (PPP), and single fields face multiple applications per year leading to complex pesticide mixtures in the environment. Restricted to single PPP, the current European Union PPP regulation, however, disregards the ecological risks of pesticide mixtures. To quantify this additional risk, we evaluated the contribution of single pesticide active ingredients to the additive mixture risk for aquatic risk indicators (invertebrates and algae) in 464 different PPP used, 3446 applications sprayed and 830 water samples collected in Central Europe, Germany. We identified an average number of 1.3 different pesticides in a single PPP, 3.1 for complete applications often involving multiple PPP and 30 in stream water samples. Under realistic worst-case conditions, the estimated stream water pesticide risk based on additive effects was 3.2 times higher than predicted from single PPP. We found that in streams, however, the majority of regulatory threshold exceedances was caused by single pesticides alone (69% for algae, 81% for invertebrates). Both in PPP applications and in stream samples, pesticide exposure occurred in repeated pulses each driven by one to few alternating pesticides. The time intervals between pulses were shorter than the 8 weeks considered for ecological recovery in environmental risk assessment in 88% of spray series and 53% of streams. We conclude that pesticide risk assessment should consider an additional assessment factor to account for the additive, but also potential synergistic simultaneous pesticide mixture risk. Additionally, future research and risk assessment need to address the risk from the frequent sequential pesticide exposure observed in this study.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Ecotoxicol Environ Saf ; 222: 112490, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237638

RESUMO

As pesticides can be degraded to toxic metabolites in the soil, metabolite toxicity should be considered in human health risk assessments. In this study, a screening-level modeling framework was developed to manage pesticides in surface soil, which was discussed under discrete and continuous emission scenarios. In addition, we selected glyphosate and its major metabolite (aminomethylphosphonic acid or AMPA) as examples to conduct screening-level risk management at regional, national, and global scales. The results indicated that if soil AMPA were not considered, human health risks could be significantly underestimated because of the large half-life of AMPA in the soil. For example, the added concentration factors of AMPA were simulated as 0.19 and 6.72 considering all major elimination pathways and considering the degradation pathway alone, respectively, indicating that AMPA formation could lead to severe extra health burdens. Furthermore, the evaluation of current glyphosate soil standards suggested that toxic metabolites should be considered in the regulatory process; otherwise, many standards could theoretically trigger high levels of soil AMPA, which could result in serious human health damage. Our proposed screening-level model can help to improve risk assessment and regulatory management of pesticides in surface soils.


Assuntos
Herbicidas , Praguicidas , Poluentes do Solo , Monitoramento Ambiental , Herbicidas/análise , Herbicidas/toxicidade , Humanos , Organofosfonatos , Praguicidas/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
Environ Sci Pollut Res Int ; 28(33): 44726-44754, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231153

RESUMO

Pesticides are used to control pests that harm plants, animals, and humans. Their application results in the contamination of the food and water systems. Pesticides may cause harm to the human body via occupational exposure or the ingestion of contaminated food and water. Once a pesticide enters the human body, it may create health consequences such as cardiotoxicity. There is not enough information about pesticides that cause cardiotoxicity in the literature. Currently, there are few reports that summarized the cardiotoxicity due to some pesticide groups. This necessitates reviewing the current literature regarding pesticides and cardiotoxicity and to summarize them in a concrete review. The objectives of this review article were to summarize the advances in research related to pesticides and cardiotoxicity, to classify pesticides into certain groups according to cardiotoxicity, to discuss the possible mechanisms of cardiotoxicity, and to present the agents that ameliorate cardiotoxicity. Approximately 60 pesticides were involved in cardiotoxicity: 30, 13, and 17 were insecticides, herbicides, and fungicides, respectively. The interesting outcome of this study is that 30 and 13 pesticides from toxicity classes II and III, respectively, are involved in cardiotoxicity. The use of standard antidotes for pesticide poisoning shows health consequences among users. Alternative safe medical management is the use of cardiotoxicity-ameliorating agents. This review identifies 24 ameliorating agents that were successfully used to manage 60 cases. The most effective agents were vitamin C, curcumin, vitamin E, quercetin, selenium, chrysin, and garlic extract. Vitamin C showed ameliorating effects in a wide range of toxicities. The exposure mode to pesticide residues, where 1, 2, 3, and 4 are aerial exposure to pesticide drift, home and/or office exposure, exposure due to drinking contaminated water, and consumption of contaminated food, respectively. General cardiotoxicity is represented by 5, whereas 6, 7, 8 and 9 are electrocardiogram (ECG) of hypotension due to exposure to OP residues, ECG of myocardial infraction due to exposure to OPs, ECG of hypertension due to exposure to OC and/or PY, and normal ECG respectively.


Assuntos
Inseticidas , Exposição Ocupacional , Resíduos de Praguicidas , Praguicidas , Animais , Cardiotoxicidade , Humanos , Resíduos de Praguicidas/análise , Praguicidas/toxicidade
19.
J Environ Sci (China) ; 105: 71-80, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130841

RESUMO

Copper-based pesticides and wood preservatives could end up in the environment during production, use, and end-of-life via different pathways that could cause unintended ecological and adverse health effects. This paper provides the effect of colloid-size Cu-based pesticides (CuPRO and Kocide), micronized Cu azole (MCA-1 and MCA-2) and alkaline Cu quaternary (ACQ) treated woods, Cu2+, Cu2+ spiked untreated wood (UTW), and CuCO3 solutions against Gram-positive Bacillus species using five-day biochemical oxygen demand (BOD5) standard test. The total Cu leached from MCA-1, MCA-2, and ACQ in Milli-Q water after 5 days were ~0.1, ~0.11, and ~0.64 g/kg of wood, respectively. However, the form of Cu leached from MCA woods was mostly ionic (> 90%). The total organic carbon (TOC) content of any tested wood (UTW/MCA-1/MCA-2/ACQ) was ~99% of its corresponding total carbon (TC) content, whereas the TOC of any tested wood sawdust exceeded that of its corresponding piece/block by > 300%. The dissolved oxygen (DO) consumption value in the presence of Cu2+, CuCO3, CuPRO, and Kocide solutions was significantly influenced by Cu particles/ions. However, the DO consumption value in the presence of UTW/MCA-1/MCA-2/ACQ woods was significantly influenced by organics leached from woods. On the other hand, the DO consumption of MCA sawdust was greater than (300%) that of MCA pieces/block. The findings of this study provide more insight into how organics leached from woods significantly reduce the toxic effects of Cu ions against Gram-positive Bacillus species.


Assuntos
Bacillus , Praguicidas , Coloides , Cobre/toxicidade , Oxigênio , Praguicidas/toxicidade , Madeira
20.
Sci Total Environ ; 788: 147921, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134388

RESUMO

Pesticides pose a serious risk to ecosystems. In this study, we used European Food Safety Authority methods, such as risk quotient (RQ) and toxicity exposure ratios (TER), to assess the potential ecological risks of 15 pesticide residues detected in agricultural soils in the Gaidahawa Rural Municipality of Nepal. The mean and maximum concentrations of the detected pesticide residues in the soil were used for risk characterization related to soil organisms. RQmean, TERmean and RQmaximum, TERmaximum were used to determine general and the worst-case scenarios, respectively. Of all the detected pesticides in soils, the no observed effect concentration (NOEC) for 27% of the pesticides was not available in literature for the tested soil organisms and their TER and RQ could not be calculated. RQ threshold value of ≥1 indicates high risk for organisms. Similarly, TER threshold value of ≥5, which is acceptable trigger point value for chronic exposure, indicates an acceptable risk. The results showed that the worst-case scenario (RQmaximum) indicated a high risk for soil organisms from chlorpyrifos [RQmaximum > 9 at depths (cm) of 0-5, 15-20 and 35-40 soil layer]; imidacloprid (1.78 in the 35-40 cm soil layer) and profenofos (3.37 in the 0-5 cm and 1.09 in the 35-40 cm soil layer). Likewise, for all the soil depths, the calculated TER for both the general and worst-case scenarios for chlorpyrifos ranged from 0.37 to 3.22, indicating chronic toxicity to F. candida. Furthermore, the risk of organophosphate pesticides for soil organisms in the sampling sites was mainly due to chlorpyrifos, except for two study sites where the risk was from profenofos. Ecological risk assessment (EcoRA) of the pesticide use in the study area indicated that the EFSA soil organisms were at risk at some of the localities where farmers practiced conventional farming.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Ecossistema , Nepal , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...