Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.420
Filtrar
1.
Biomaterials ; 312: 122721, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106817

RESUMO

Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.


Assuntos
Células Matadoras Naturais , Pulmão , Nanopartículas Metálicas , Infecções por Orthomyxoviridae , Prata , Animais , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Pulmão/virologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Camundongos , Células Matadoras Naturais/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos Endogâmicos C57BL , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Feminino , Ativação Linfocitária/efeitos dos fármacos
2.
Georgian Med News ; (351): 102-108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39230231

RESUMO

BACKGROUND: Control of rifampicin-resistant tuberculosis (RR-MTB) requires novel technologies for restoring the anti-TB efficacy of priority drugs. We sought to evaluate the ability of nanotechnology application in the recovery of the anti-tuberculosis efficacy of rifampicin. METHODS: Nanocomposite- standard dose of rifampicin and 20 nm silver nanoparticles (AgNPs) suspension solution of 6 different concentrations: 0.25%; 0.5%; 1%; 2.5%; 5%; and 10%, were supplemented to 70 rifampicin-resistant mycobacterium tuberculosis (RR-MTB) isolates. The control arm consisted of 35 RR-MTB isolates and AgNPs suspension with identical concentrations. The inhibitory effect of nanocomposites was evaluated by MTB growth rate using the BACTECTM MGIT 960TM. The safety assessment of single-use AgNPs was conducted in experimental animals. RESULTS: The suppression process of AgNPs on RR-MTB isolates started with 2,5% nanocomposite solution application and full suppression was achieved in 5% and 10% nanocomposite solutions. A standard dose of rifampicin and a 2.5% solution of AgNPs increased the minimal inhibitory effect on RR-MTB by 10% (total 80%) vs the isolated use of a 2.5% solution of AgNPs (70%). An experiment on animals revealed the complete safety of a single injection of ultra-high doses of AgNPs. CONCLUSION: The study showed the potentiating effect of AgNPs in overcoming the resistance of MTB to rifampicin providing a scientific basis for further research.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Nanocompostos , Rifampina , Prata , Rifampina/farmacologia , Prata/química , Prata/farmacologia , Nanocompostos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Animais , Humanos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Antibióticos Antituberculose/farmacologia
3.
Cell Biochem Funct ; 42(7): e4113, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223765

RESUMO

Due to their exceptional physicochemical features, green synthesized silver nanoparticles (AgNPs) have been of considerable interest in cancer treatment. In the present study, for the first time, we aimed to green synthesize AgNPs from Euphorbia retusa and explore their anticancer potential on human breast cancer (MCF-7) cells. First, the green synthesized AgNPs (EU-AgNPs) were well characterized by UV-visible spectroscopy, Fourier transmission infrared (FTIR) spectrum, XRD, scanning and transmission electron microscopy (SEM and TEM), and EDX techniques. The characterization data exhibited that EU-AgNPs were spherical in shape and crystalline in nature with an average size of 17.8 nm. FTIR results established the presence of active metabolites in EU-AgNPs. Second, the anticancer effect of EU-AgNPs was evaluated against MCF-7 cells by MTT and neutral red uptake (NRU) assays. Moreover, morphological changes, ROS production, MMP, and apoptotic marker genes were also studied upon exposure to cytotoxic doses of EU-AgNPs. Our results showed that EU-AgNPs induce cytotoxicity in a concentration-dependent manner, with an IC50 value of 40 µg/mL. Morphological changes in MCF-7 cells exposed to EU-AgNPs also confirm their cytotoxic effects. Increased ROS and decreased MMP levels revealed that EU-AgNPs induced oxidative stress and mitochondrial membrane dysfunction. Moreover, ROS-mediated apoptosis was confirmed by elevated levels of proapoptotic marker genes (p53, Bax, caspase-3, and caspase-9) and reduced levels of an antiapoptotic gene (Bcl-2). Altogether, these findings suggested that EU-AgNPs could induce potential anticancer effects through ROS-mediated apoptosis in MCF-7 cells.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Química Verde , Nanopartículas Metálicas , Mitocôndrias , Espécies Reativas de Oxigênio , Prata , Humanos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células MCF-7 , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Euphorbia/química , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
4.
J Biomed Mater Res B Appl Biomater ; 112(9): e35461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39225464

RESUMO

In laboratory conditions, composite sutures based on polylactide (PLA) containing chitin nanofibrils modified with polyethylene glycol (CN-PEG) and poviargol (silver nanoparticles stabilized with poly(N-vinylpyrrolidone)) were obtained, studied, and used as a prototype. Surgical sutures threads with the addition of CN-PEG have stable mechanical properties both in air and in a buffer simulating the environment of a living organism. The yield strength of oriented threads decreased by an average of 15%, whereas for non-oriented threads the decrease was 3-4 times. The strength values in simple units of unfilled PLA, PLA containing 5 wt % CN-PEG, and PLA with 1 wt % Poviargol were on average 50% higher than the national standard 31620-2012. The results of in vivo experiments on albino rats (cross-linking skin and muscle tissue in the linea alba area) showed that composite sutures are best for suturing muscle tissue, whereas unfilled PLA sutures are more suitable for suturing skin. When suturing muscle tissue, suturing with composite sutures increased the number of collagen fibers of different diameters.


Assuntos
Poliésteres , Suturas , Cicatrização , Animais , Poliésteres/química , Ratos , Cicatrização/efeitos dos fármacos , Teste de Materiais , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ferida Cirúrgica/patologia , Ferida Cirúrgica/terapia , Masculino , Prata/química , Prata/farmacologia , Quitina/química , Quitina/farmacologia
5.
Int J Nanomedicine ; 19: 8901-8927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233743

RESUMO

Introduction: Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods: Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results: The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion: Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.


Assuntos
Antibacterianos , Grafite , Hidrogéis , Prata , Cicatrização , Grafite/química , Grafite/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Humanos , Camundongos , Terapia Fototérmica/métodos , Nanopartículas/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
6.
Luminescence ; 39(9): e4891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39229976

RESUMO

Lepidagathis cristata (L. cristata) plant produces reducing and capping agents; this study utilized microwave-assisted biogenic synthesis to manufacture silver nanoparticles (AgNPs) using this plant. The structure, morphology, and crystallinity phases of prepared nanoparticles (NPs) were characterized by ultraviolet-visible spectroscopy (UV-viz), powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Biologically synthesized AgNPs were treated against pathogenic bacteria species including Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus) and its highest zone of inhibition 10 ± 1.45 mm, 10 ± 0.74 mm, and 6 ± 0.43 mm, respectively, at the concentration of 100 µg/mL. The cytotoxic activity of AgNPs against MCF-7 breast cancer cells revealed significant growth inhibition by inhibiting cell viability, inhibitory concentration of 50% (IC50) of NPs observed at 55.76 µg/mL concentration. Finally, our findings concluded that the L. cristata-mediated biosynthesized AgNPs proved its potential antibacterial and neoplastic properties against MCF cells by endorsing the inhibition of cell proliferation especially with low concentration.


Assuntos
Antibacterianos , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Água/química , Relação Dose-Resposta a Droga , Feminino
7.
Int J Nanomedicine ; 19: 8159-8174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139505

RESUMO

Background: Wound healing has always been a focal point in clinical work. Bacterial infections and immune microenvironment disorders can both hinder normal wound healing. Current wound dressings only serve a covering function. Developing wound dressings with antibacterial and immunomodulatory functions is crucial for aiding wound healing. To address this issue, we have developed a hydrogel with antibacterial and immunomodulatory functions for managing infected wounds. Methods: The present study describes a photo-crosslinked antibacterial hydrogel composed of curcumin, silver nanoparticles-loaded reduced graphene oxide, and silk fibroin methacryloyl for the treatment of infected wounds. The study assessed its antibacterial properties and its capacity to induce macrophage M2 polarization through in vitro and in vivo experiments. Results: The hydrogel demonstrates robust antibacterial properties and enhances macrophage M2 polarization in both in vitro and in vivo settings. Moreover, it accelerates the healing of infected wounds in vivo by stimulating collagen deposition and angiogenesis. Conclusion: Overall, this hydrogel shows great potential in managing wound infections.


Assuntos
Antibacterianos , Grafite , Hidrogéis , Nanopartículas Metálicas , Prata , Cicatrização , Infecção dos Ferimentos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Camundongos , Grafite/química , Grafite/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Curcumina/farmacologia , Curcumina/química , Macrófagos/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Células RAW 264.7 , Humanos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Masculino
8.
Sci Rep ; 14(1): 19013, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152125

RESUMO

The beekeeping industry plays a crucial role in local economies, contributing significantly to their growth. However, bee colonies often face the threat of American foulbrood (AFB), a dangerous disease caused by the Gram-positive bacterium Paenibacillus larvae (P. l.). While the antibiotic Tylosin has been suggested as a treatment, its bacterial resistance necessitates the search for more effective alternatives. This investigation focused on evaluating the potential of bee venom (BV) and silver nanoparticles (Ag NPs) as antibacterial agents against AFB. In vitro treatments were conducted using isolated AFB bacterial samples, with various concentrations of BV and Ag NPs (average size: 25nm) applied individually and in combination. The treatments were administered under both light and dark conditions. The viability of the treatments was assessed by monitoring the lifespans of treated bees and evaluating the treatment's efficiency within bee populations. Promising results were obtained with the use of Ag NPs, which effectively inhibited the progression of AFB. Moreover, the combination of BV and Ag NPs, known as bee venom/silver nanocomposites (BV/Ag NCs), significantly extended the natural lifespan of bees from 27 to 40 days. Notably, oral administration of BV in varying concentrations (1.53, 3.12, and 6.25 mg/mL) through sugary syrup doubled the bees' lifespan compared to the control group. The study established a significant correlation between the concentration of each treatment and the extent of bacterial inhibition. BV/Ag NCs demonstrated 1.4 times greater bactericidal efficiency under photo-stimulation with visible light compared to darkness, suggesting that light exposure enhances the effectiveness of BV/Ag NCs. The combination of BV and Ag NPs demonstrated enhanced antibacterial efficacy and prolonged honeybee lifespan. These results offer insights that can contribute to the development of safer and more efficient antibacterial agents for maintaining honeybee health.


Assuntos
Antibacterianos , Venenos de Abelha , Nanopartículas Metálicas , Paenibacillus larvae , Prata , Animais , Abelhas/microbiologia , Venenos de Abelha/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Paenibacillus larvae/efeitos dos fármacos , Longevidade/efeitos dos fármacos
9.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124987

RESUMO

(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.


Assuntos
Enzima de Conversão de Angiotensina 2 , Fibroblastos , Grafite , Queratinócitos , Nanoestruturas , SARS-CoV-2 , Prata , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Prata/química , Prata/farmacologia , SARS-CoV-2/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/virologia , Queratinócitos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Nanoestruturas/química , Grafite/química , Grafite/farmacologia , COVID-19/virologia , Linhagem Celular , Pele/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
10.
Dent Med Probl ; 61(4): 593-598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150236

RESUMO

BACKGROUND: The probability of a positive outcome of root canal therapy is substantially higher if the infection is eradicated successfully before the obturation of the root canal system. Irrigation is an essential aspect of root canal debridement, as it enables more thorough cleaning than is possible with root canal instrumentation alone. To overcome the side effects of chemical irrigants, there has been a search for herbal medicines as substitutes. OBJECTIVES: The aim of the present study was to explore the antimicrobial efficacy of white tea-mediated silver nanoparticles (AgNPs) formulated as an intracanal irrigant against Enterococcus faecalis, and to compare it with the efficacy of chlorhexidine and sodium hypochlorite irrigants. MATERIAL AND METHODS: The experimental groups were as follows: group I - white tea-mediated AgNPs; group II - 2% chlorhexidine; and group III - 2.5% sodium hypochlorite. The characterization of AgNPs was performed using ultraviolet-visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM) analysis. Enterococcus faecalis was inoculated onto Mueller-Hinton agar plates. The disks impregnated with irrigants were placed on the inoculated plates and incubated aerobically at 37°C for 24 h. Then, the growth inhibition zones were measured. Statistical analysis was performed using the one-way analysis of variance (ANOVA) and the post hoc tests. RESULTS: A concentration of 50 µL of white tea-mediated AgNPs exhibited the greatest zone of inhibition (32 ±2 mm), followed by 2% chlorhexidine (25 ±1 mm) and 2.5% sodium hypochlorite (23 ±3 mm). CONCLUSIONS: White tea-mediated AgNPs showed promising results in the elimination of E. faecalis, being superior to chlorhexidine and sodium hypochlorite irrigants.


Assuntos
Clorexidina , Enterococcus faecalis , Nanopartículas Metálicas , Irrigantes do Canal Radicular , Prata , Hipoclorito de Sódio , Enterococcus faecalis/efeitos dos fármacos , Prata/farmacologia , Irrigantes do Canal Radicular/farmacologia , Irrigantes do Canal Radicular/administração & dosagem , Clorexidina/farmacologia , Clorexidina/administração & dosagem , Hipoclorito de Sódio/farmacologia , Técnicas In Vitro , Chá , Humanos
11.
Mil Med ; 189(Supplement_3): 493-500, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160817

RESUMO

INTRODUCTION: Bloodstream infections are a significant threat to soldiers wounded in combat and contribute to preventable deaths. Novel and combination therapies that can be delivered on the battlefield or in lower roles of care are urgently needed to address the threat of bloodstream infection among military personnel. In this manuscript, we tested the antibacterial capability of silver ions (Ag+), with long-appreciated antibacterial properties, against ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli) pathogens. MATERIALS AND METHODS: We used the GENESYS (RAIN LLC) device to deliver Ag+ to Gram-positive and Gram-negative ESKAPEE organisms grown in broth, human blood, and serum. Following the Ag+ treatment, we quantified the antibacterial effects by quantifying colony-forming units. RESULTS: We found that Ag+ was bactericidal against 5 Gram-negative organisms, K pneumoniae, A baumannii, P aeruginosa, E cloacae, and E coli, and bacteriostatic against 2 Gram-positive organisms, E faecium and S aureus. The whole blood and serum inhibited the bactericidal activity of Ag+ against a common agent of bloodstream infection, P aeruginosa. Finally, when Ag+ was added in conjunction with antibiotic in the presence of whole blood, there was no significant effect of Ag+ over antibiotic alone. CONCLUSIONS: Our results confirmed that Ag+ has broad-spectrum antibacterial properties. However, the therapeutic value of Ag+ may not extend to the treatment of bloodstream infections because of the inhibition of Ag+ activity in blood and serum.


Assuntos
Antibacterianos , Prata , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Prata/farmacologia , Prata/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos
12.
BMC Plant Biol ; 24(1): 756, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107683

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS: TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS: Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.


Assuntos
Nanopartículas Metálicas , Nicotiana , Doenças das Plantas , Extratos Vegetais , Prata , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/fisiologia , Prata/farmacologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Extratos Vegetais/farmacologia , Nicotiana/genética , Nicotiana/virologia , Resistência à Doença/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Biotechnol J ; 19(8): e2400288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115337

RESUMO

Bone tissue engineering offers a promising alternative to stimulate the regeneration of damaged tissue, overcoming the limitations of conventional autografts and allografts. Recently, titanium alloy (Ti) implants have garnered significant attention for treating critical-sized bone defects, especially with the advancement of 3D printing technology. Although Ti alloys have impressive versatility, their lack of cellular adhesion, osteogenic and antibacterial properties are significant factors that contribute to their failure. Hence, to overcome these obstacles, this study aimed to incorporate osteoinductive and antibacterial cue-loaded hydrogels into 3D-printed Ti (3D-Ti) scaffolds. 3D-Ti scaffolds were synthesized using the direct metal laser sintering method and loaded with a gelatin (Gel) hydrogel containing strontium-doped silver nanoparticles (Sr-Ag NPs). Compared with Ag NPs, Sr-doped Ag NPs increased the expression of Runx2 mRNA, which is a key bone transcription factor. We subjected the bioactive 3D-hybrid scaffolds (3D-Ti/Gel/Sr-Ag NPs) to physicochemical and material characterization, followed by cytocompatibility and osteogenic evaluation. The microporous and macroporous topographies of the scaffolds with Sr-Ag NPs showed increased Runx2 expression and matrix mineralization, with potent antibacterial properties. Therefore, the 3D-Ti scaffolds incorporated with Sr-Ag NP-loaded Gel hydrogels favored osteoblast differentiation and antibacterial activity, indicating their potential for orthopedic applications.


Assuntos
Antibacterianos , Diferenciação Celular , Gelatina , Hidrogéis , Nanopartículas Metálicas , Osteoblastos , Osteogênese , Impressão Tridimensional , Prata , Estrôncio , Engenharia Tecidual , Alicerces Teciduais , Titânio , Prata/química , Prata/farmacologia , Gelatina/química , Estrôncio/química , Estrôncio/farmacologia , Titânio/química , Titânio/farmacologia , Engenharia Tecidual/métodos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Antibacterianos/química , Antibacterianos/farmacologia , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas Metálicas/química , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Osso e Ossos/efeitos dos fármacos
14.
Int J Nanomedicine ; 19: 7895-7926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108405

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a common nosocomial pathogen that can cause severe infections in critically ill patients. Due to its resistance to multiple drugs, it is challenging to treat, which can result in serious illness and death. Conventional treatments for infected wounds often involve the topical or systemic application of antibiotics, which can lead to systemic toxicity and the development of drug resistance. The combination of wound dressings that promote wound healing with nanoparticles (NPs) represents a revolutionary strategy for optimizing the safety and efficacy of antibiotics. This review assesses a systematic search to identify the latest approaches where the evaluation of wound dressings loaded with antibiotic NPs is conducted. The properties of NPs, the features of wound dressings, the antimicrobial activity and biocompatibility of the different strategies are analyzed. The results indicate that most research in this field is focused on dressings loaded with silver NPs (57.1%) or other inorganic materials (22.4%). Wound dressings loaded with polymeric NPs and carbon-based NPs represent 14.3% and 6.1% of the evaluated studies, respectively. Nevertheless, there are no clinical trials that have evaluated the efficacy of NPs-loaded wound dressings in patients. Further research is required to ensure the safety of these treatments and to translate the findings from the bench to the bedside.


Assuntos
Antibacterianos , Bandagens , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Prata/administração & dosagem
15.
ACS Appl Bio Mater ; 7(8): 5530-5540, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39093994

RESUMO

This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit ∼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Celulose , Escherichia coli , Grafite , Teste de Materiais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Staphylococcus aureus , Cicatrização , Grafite/química , Grafite/farmacologia , Prata/química , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Gluconacetobacter xylinus/química , Humanos , Camundongos , Bandagens , Animais
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124877, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096680

RESUMO

The ability of right-angled synchronous fluorescence spectroscopy (SFS) was explored to analyse the bacterial load in water treated with green synthesized silver nanoparticles (AgNPs) coated polyurethane foam (PUF). Gram negative (Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus) bacteria cultured in nutrient broth were diluted in autoclaved water containing NPs-coated PUF. The survival rate of S. aureus and E. coli lowered after ten minutes as compared to P. aeruginosa; however, after thirty minutes, the percentage viability dropped and recorded as 3.4%, 0.9%, and 0.1% for E. coli, P. aeruginosa and S. aureus respectively in the treated suspensions. No spectral change was observed in the fluorescence emission from the positive control and treated bacterial suspension owing to the masking effect of the emission from nutrient broth. In parallel, SF spectra recorded for directly picked bacterial colony dissolved in water showed remarkable drop in tryptophan emission after treatment with NPs-coated PUF. The SF data changes were assisted by hierarchical cluster analysis, which also made it possible to distinguish between positive control and treated bacterial suspensions. SFS has shown to be a reliable substitute for the culture plate approach for the quick identification of bacterial contamination in water.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Poliuretanos , Prata , Espectrometria de Fluorescência , Poliuretanos/química , Espectrometria de Fluorescência/métodos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
17.
Water Res ; 263: 122200, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111212

RESUMO

Prophages are prevalent among bacterial species, including strains carrying antibiotic resistance genes (ARGs). Prophage induction can be triggered by the SOS response to stressors, leading to cell lysis. In environments polluted by chemical stressors, ARGs and prophage co-harboring strains might pose an unknown risk of spreading ARGs through chemical pollutant-mediated prophage induction and subsequent cell lysis. In this study, we investigated the effects of common non-antibiotic water pollutants, triclosan and silver nanoparticles, on triggering prophage induction in clinical isolates carrying ARGs and the subsequent uptake of released ARGs by the naturally competent bacterium Acinetobacter baylyi. Our results demonstrate that both triclosan and silver nanoparticles, at environmentally relevant concentrations and those found in commercial products, significantly enhance prophage induction among various clinical isolates. Transmission electron microscopy imaging and plaque assays confirmed the production of infectious phage particles under non-antibiotic pollutants-mediated prophage induction. In addition, the rate of ARG transformation to A. baylyi significantly increased after the release of extracellular ARGs from prophage induction-mediated cell lysis. The mechanism of non-antibiotic pollutants-mediated prophage induction is primarily associated with excessive oxidative stress, which provokes the SOS response. Our findings offer insights into the role of non-antibiotic pollutants in promoting the dissemination of ARGs by triggering prophage induction.


Assuntos
Prófagos , Prófagos/genética , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Resistência Microbiana a Medicamentos/genética , Triclosan/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Nanopartículas Metálicas , Prata/farmacologia
18.
Sci Rep ; 14(1): 18944, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147839

RESUMO

Bilharzia is a parasitic flatworm that causes schistosomiasis, a neglected tropical illness worldwide. Praziquantel (PZQ) is a commercial single treatment of schistosomiasis so alternative drugs are needed to get rid of its side effects on the liver. The current study aimed to estimate the effective role of Ficus carica nanoparticles (Fc-NPCs), silver nanoparticles (Ag-NPCs) and Ficus carica nanoparticles loaded on silver nanoparticles (Fc-Ag NPCs) on C57BL/6 black female mice infected by Schistosoma mansoni and treated with PZQ treatment. It was proved that schistosomiasis causes liver damage in addition to the PZQ is ineffective as an anti-schistosomiasis; it is recorded in the infected mice group and PZQ treated group as in liver function tests, oxidative stress markers & anti-oxidants, pro-inflammatory markers, pro-apoptotic and anti-apoptotic markers also in liver cells' DNA damage. The amelioration in all tested parameters has been clarified in nanoparticle-protected mice groups. The Fc-Ag NPCs + PZQ group recorded the best preemptive effects as anti-schistosomiasis. Fc-NPCs, Ag-NPCs and Fc-Ag NPCs could antagonize PZQ effects that were observed in amelioration of all tested parameters. The study showed the phytochemicals' nanoparticles groups have an ameliorated effect on the health of infected mice.


Assuntos
Ficus , Nanopartículas Metálicas , Praziquantel , Schistosoma mansoni , Esquistossomose mansoni , Prata , Animais , Ficus/química , Camundongos , Praziquantel/farmacologia , Feminino , Schistosoma mansoni/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Camundongos Endogâmicos C57BL , Fígado/parasitologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cercárias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico
19.
Sci Rep ; 14(1): 18870, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143137

RESUMO

The characteristics of dopamine self-polymerization were used to cover the nano-titanium dioxide (TiO2) surface and produce nano-titanium dioxide-polydopamine (TiO2-PDA). The reducing nature of dopamine was then used to reduce silver nitrate to silver elemental particles on the modified nano-titanium dioxide: The resulting TiO2-PDA-Ag nanoparticles were used as antimicrobial agents. Finally, the antibacterial agent was mixed with silicone to obtain an antibacterial silicone composite material. The composition and structure of antibacterial agents were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron energy spectroscopy, and X-ray diffraction. Microscopy and the antibacterial properties of the silicone antibacterial composites were studied as well. The TiO2-PDA-Ag antimicrobial agent had good dispersion versus nano-TiO2. The three were strongly combined with obvious characteristic peaks. The antibacterial agents were evenly dispersed in silicone, and the silicone composite has excellent antibacterial properties. Bacillus subtilis (B. subtilis) adhesion was reduced from 246 × 104 cfu/cm2 to 2 × 104 cfu/cm2, and colibacillus (E. coli) reduced from 228 × 104 cfu/cm2 leading to bacteria-free adhesion.


Assuntos
Bacillus subtilis , Escherichia coli , Silicones , Prata , Titânio , Titânio/química , Titânio/farmacologia , Silicones/química , Prata/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Polímeros/química , Polímeros/farmacologia , Difração de Raios X , Testes de Sensibilidade Microbiana , Aderência Bacteriana/efeitos dos fármacos , Indóis
20.
Biomed Mater ; 19(5)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39094626

RESUMO

Because of its superior strength, esthetic properties, and excellent biocompatibility, zirconia is preferred for dental prosthetic such as crowns and bridges. However, zirconia crowns and bridges are susceptible to secondary caries owing to margin leakage. Silver is a well-known antibacterial agent, making it a desirable additive to zirconia crowns and bridges for secondary caries prevention. This study focuses on imparting zirconia composite with antibacterial properties to enhance its protective capacity in dental restorations. We used the sol-gel method to dope Ag into zirconia. Silver-doped zirconia powders were prepared at Zr:Ag molar ratios of 100:0,100:0.1, 100:0.5, 100:1, 100:3, and 100:5 (respective samples denoted as Ag-0, Ag-0.1, Ag-0.5, Ag-1, Ag-3, and Ag-5) and were subjected to firing at various temperatures (400 °C-1000 °C). We performed x-ray diffraction to investigate the crystal phase of these powders and x-ray fluorescence and field emission scanning electron microscopy to analyze their elemental composition and surface morphology, respectively. Moreover, we performed spectrophotometry to determine theL*a*b* color values, conducted dissolution tests, and quantified the Ag content through inductively coupled plasma optical emission spectroscopy. In addition, we studied the antibacterial activity of the samples. Analyses of the samples fired at ⩽600 °C revealed a predominantly white to grayish-white coloration and a tetragonal crystal phase. Firing at ⩾700 °C resulted in gray or dark gray coloration and a monoclinic crystal phase. The Ag content decreased after firing at 900 °C or 1000 °C. Ag-0.5 and above exhibited antibacterial activity against bothEscherichia coliandStaphylococcus aureus. Therefore, the minimum effective silver-doped zirconia sample was found to be Ag-0.5. This study allows the exploration of the antimicrobial potential of silver-doped zirconia materials in dental applications such as prosthdontical lining materials, promoting the development of innovative restorations with protective capacity against secondary caries.


Assuntos
Antibacterianos , Teste de Materiais , Prata , Difração de Raios X , Zircônio , Zircônio/química , Prata/química , Prata/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Materiais Dentários/química , Materiais Dentários/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Pós , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA