Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.753
Filtrar
1.
Nat Commun ; 11(1): 4455, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901005

RESUMO

Dysregulated alternative splicing (AS) driving carcinogenetic mitosis remains poorly understood. Here, we demonstrate that cancer metastasis-associated antigen 1 (MTA1), a well-known oncogenic chromatin modifier, broadly interacts and co-expresses with RBPs across cancers, contributing to cancerous mitosis-related AS. Using developed fCLIP-seq technology, we show that MTA1 binds abundant transcripts, preferentially at splicing-responsible motifs, influencing the abundance and AS pattern of target transcripts. MTA1 regulates the mRNA level and guides the AS of a series of mitosis regulators. MTA1 deletion abrogated the dynamic AS switches of variants for ATRX and MYBL2 at mitotic stage, which are relevant to mitosis-related tumorigenesis. MTA1 dysfunction causes defective mitotic arrest, leads to aberrant chromosome segregation, and results in chromosomal instability (CIN), eventually contributing to tumorigenesis. Currently, little is known about the RNA splicing during mitosis; here, we uncover that MTA1 binds transcripts and orchestrates dynamic splicing of mitosis regulators in tumorigenesis.


Assuntos
Carcinogênese/genética , Carcinogênese/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Mitose/fisiologia , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina/genética , Instabilidade Cromossômica , Feminino , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transativadores/antagonistas & inibidores , Transativadores/genética
2.
PLoS One ; 15(8): e0236226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866160

RESUMO

Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the peroxisome, apoplast and cytoplasm and play an essential role in growth and developmental processes and response to biotic and abiotic stresses. Here, we identified PAO genes in common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the genome organization, evolutionary features and expression profiles of the wheat PAO genes (TaPAO). Expression analysis using publicly available RNASeq data showed that TaPAO genes are expressed redundantly in various tissues and developmental stages. A large percentage of TaPAOs respond significantly to abiotic stresses, especially temperature (i.e. heat and cold stress). Some TaPAOs were also involved in response to other stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may have various functions in stress tolerances responses, and play vital roles in different tissues and developmental stages. Our results provided a reference for further functional investigation of TaPAO proteins.


Assuntos
Resposta ao Choque Frio/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas de Plantas/genética , Termotolerância/genética , Triticum/genética , Aegilops/enzimologia , Aegilops/genética , Processamento Alternativo , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Cadeias de Markov , Modelos Genéticos , Peso Molecular , Família Multigênica , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos/genética , RNA-Seq , Alinhamento de Sequência , Triticum/enzimologia
3.
PLoS Pathog ; 16(9): e1008844, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886716

RESUMO

The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing.


Assuntos
Processamento Alternativo , Ilhas de CpG , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Replicação Viral , Linhagem Celular , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Humanos , Proteínas Imediatamente Precoces , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
PLoS Comput Biol ; 16(9): e1008195, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898151

RESUMO

We present VALERIE (Visualising alternative splicing events from single-cell ribonucleic acid-sequencing experiments), an R package for visualising alternative splicing events at single-cell resolution. To explore any given specified genomic region, corresponding to an alternative splicing event, VALERIE generates an ensemble of informative plots to visualise cell-to-cell heterogeneity of alternative splicing profiles across single cells and performs statistical tests to compare percent spliced-in (PSI) values across the user-defined groups of cells. Among the features available, VALERIE displays PSI values, in lieu of read coverage, which is more suitable for representing alternative splicing profiles for a large number of samples typically generated by single-cell RNA-sequencing experiments. VALERIE is available on the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/VALERIE/index.html.


Assuntos
Processamento Alternativo/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Animais , Células Cultivadas , Biologia Computacional , Camundongos
5.
Am J Hum Genet ; 107(3): 461-472, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32781045

RESUMO

RNA sequencing (RNA-seq) is a powerful technology for studying human transcriptome variation. We introduce PAIRADISE (Paired Replicate Analysis of Allelic Differential Splicing Events), a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across multiple individuals in a population. By treating the two alleles of an individual as paired, and multiple individuals sharing a heterozygous SNP as replicates, we formulate ASAS detection using PAIRADISE as a statistical problem for identifying differential alternative splicing from RNA-seq data with paired replicates. PAIRADISE outperforms alternative statistical models in simulation studies. Applying PAIRADISE to replicate RNA-seq data of a single individual and to population-scale RNA-seq data across many individuals, we detect ASAS events associated with genome-wide association study (GWAS) signals of complex traits or diseases. Additionally, PAIRADISE ASAS analysis detects the effects of rare variants on alternative splicing. PAIRADISE provides a useful computational tool for elucidating the genetic variation and phenotypic association of alternative splicing in populations.


Assuntos
Processamento Alternativo/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Transcriptoma/genética , Alelos , Feminino , Perfilação da Expressão Gênica , Genética Populacional/métodos , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Estatísticos , RNA-Seq , Sequenciamento Completo do Exoma
6.
Proc Natl Acad Sci U S A ; 117(33): 20325-20333, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747542

RESUMO

Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1ß. Unlike DSP1α, DSP1ß is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , RNA Nuclear Pequeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Pólen , Sementes/genética , Sementes/metabolismo
7.
PLoS One ; 15(7): e0233582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735620

RESUMO

The craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, branch point to 3' splice site (BPS-3'SS) distance and splice site strengths, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.


Assuntos
Processamento Alternativo , Atresia das Cóanas/patologia , Surdez/congênito , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Ribonucleoproteína Nuclear Pequena U5/deficiência , Spliceossomos/fisiologia , Apoptose , Diferenciação Celular , Técnicas de Reprogramação Celular , Atresia das Cóanas/genética , Células Clonais , Surdez/genética , Surdez/patologia , Transição Epitelial-Mesenquimal , Éxons/genética , Face/embriologia , Facies , Feminino , Cabeça/embriologia , Cardiopatias Congênitas/genética , Humanos , Crista Neural/citologia , Regiões Promotoras Genéticas/genética , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Via de Sinalização Wnt
8.
Gene ; 760: 145021, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32763489

RESUMO

Human B cell activating factor (TNFSF13B, BAFF) is a tumor necrosis factor superfamily member. Binding its unique receptor (TNFRSF13C, BAFF-R) mediates gene expression and cell survival in B cells via activation of NFκB pathway. Furthermore, there is data indicating a role in T cell function. A functionally inhibitory isoform (ΔBAFF) resulting from the deletion of exon 3 in the TNFSF13B pre-RNA has already been reported. However, data on the complexity of post-transcriptional regulation is scarce. Here, we report molecular cloning of nine TNFSF13B transcript variants resulting from alternative splicing of the TNFSF13B pre-mRNA including BAFFX1. This variant is characterized by a partial retention of intron 3 of the TNFSF13B gene causing the appearance of a premature stop codon. We demonstrate the expression of the corresponding BAFFX1 protein in Jurkat T cells, in ex vivo human immune cells and in human tonsillar tissue. Thereby we contribute to the understanding of TNFSF13B gene regulation and reveal that BAFF is regulated through a post-transcriptional mechanism to a greater extent than reported to date.


Assuntos
Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Processamento Alternativo/genética , Fator Ativador de Células B/metabolismo , Linfócitos B/metabolismo , Éxons , Expressão Gênica , Humanos , NF-kappa B/metabolismo , Isoformas de Proteínas/genética , Precursores de RNA/metabolismo , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/genética
9.
Mol Immunol ; 125: 83-94, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652363

RESUMO

Leukocyte immune-type receptors (LITRs) are a multigene family of teleost immunoregulatory proteins that share structural, phylogenetic, and likely functional relationships with several innate immune receptor proteins in other vertebrates, including mammals. Originally discovered in channel catfish (Ictalurus punctatus), representative IpLITR-types have been shown to regulate diverse innate immune cell effector responses including phagocytosis, degranulation, and cytokine secretion. To date, IpLITRs have been primarily characterized using mammalian cell line expression systems, therefore many unanswered questions remain regarding their actual regulatory roles in fish immunity. In the present study, we report on the preliminary molecular characterization of five goldfish (Carassius auratus) CaLITR-types and the identification of several putative splice variants of these receptors cloned from various goldfish tissues and primary myeloid cell cultures. In general, CaLITR mRNA transcripts were detected in all goldfish tissues tested, and also in primary kidney macrophage and neutrophil cultures. Specifically, CaLITR1 is a functionally ambiguous receptor with no charged amino acids in its transmembrane (TM) segment and is devoid of tyrosine-based signaling motifs in its short cytoplasmic tail (CYT) region. CaLITR2 is a putative activating receptor-type that contains immunotyrosine-based activation motifs (ITAMs) within its long CYT region, and CaLITR3 has a positively charged TM segment, suggesting that it may recruit intracellular stimulatory adaptor signaling molecules. CaLITR4 and CaLITR5 appear to have diverse signaling capabilities since they contain various immunoregulatory signaling motifs within their CYT regions including putative Nck and STAT recruitment motifs as well as ITAM-like and ITIM sequences. We also identified putative CaLITR splice variants with altered extracellular Ig-like domain compositions and variable CYT regions. Interestingly, this suggests that alternative splicing-mediated diversification of CaLITRs can generate receptor forms with possible variable binding and/or intracellular signaling abilities. Overall, these findings reveal new information about the teleost LITRs and sets the stage for exploring how alternative splicing leads to the functional diversification of this complex multigene immunoregulatory receptor family.


Assuntos
Carpa Dourada/imunologia , Imunidade Inata/imunologia , Leucócitos/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Processamento Alternativo , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Carpa Dourada/genética , Imunidade Inata/genética
10.
Nucleic Acids Res ; 48(14): 7728-7747, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32609811

RESUMO

UHRF1 is an important epigenetic regulator associated with apoptosis and tumour development. It is a multidomain protein that integrates readout of different histone modification states and DNA methylation with enzymatic histone ubiquitylation activity. Emerging evidence indicates that the chromatin-binding and enzymatic modules of UHRF1 do not act in isolation but interplay in a coordinated and regulated manner. Here, we compared two splicing variants (V1, V2) of murine UHRF1 (mUHRF1) with human UHRF1 (hUHRF1). We show that insertion of nine amino acids in a linker region connecting the different TTD and PHD histone modification-binding domains causes distinct H3K9me3-binding behaviour of mUHRF1 V1. Structural analysis suggests that in mUHRF1 V1, in contrast to V2 and hUHRF1, the linker is anchored in a surface groove of the TTD domain, resulting in creation of a coupled TTD-PHD module. This establishes multivalent, synergistic H3-tail binding causing distinct cellular localization and enhanced H3K9me3-nucleosome ubiquitylation activity. In contrast to hUHRF1, H3K9me3-binding of the murine proteins is not allosterically regulated by phosphatidylinositol 5-phosphate that interacts with a separate less-conserved polybasic linker region of the protein. Our results highlight the importance of flexible linkers in regulating multidomain chromatin binding proteins and point to divergent evolution of their regulation.


Assuntos
Processamento Alternativo , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Código das Histonas , Humanos , Camundongos , Ligação Proteica , Domínio Tudor , Ubiquitina-Proteína Ligases/genética
11.
Mol Cell ; 79(5): 836-845.e7, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649884

RESUMO

The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.


Assuntos
Processamento Alternativo , Reparo do DNA , Epigênese Genética , Instabilidade Genômica , Histonas/fisiologia , Anáfase , Animais , Linhagem Celular , Instabilidade Cromossômica , Cromossomos Humanos X , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Cytogenet Genome Res ; 160(5): 238-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32659759

RESUMO

X-linked Alport syndrome (XLAS) is a common hereditary nephropathy caused by COL4A5 gene mutations. To date, many splice site mutations have been described but few have been functionally analyzed to verify the exact splicing effects that contribute to disease pathogenesis. Here, we accidentally discovered 2 COL4A5 gene splicing mutations affecting the same residue (c.2917+1G>A and c.2917+1G>C) in 2 unrelated Chinese families. In vitro minigene assays showed that the 2 mutations produced 3 transcripts in H293T cells: one with a 96-bp deletion in exon 33, one with exon 33 skipping, and one with exon 33-34 skipping. However, fragment analysis results showed that the main splicing effects of the 2 mutations were different, the c.2917+1G>A mutation mainly activated a cryptic donor splice site in exon 33 and resulted in the deletion of 96 bp in exon 33, while the c.2917+1G>C mutation mainly caused exon 33 skipping. Our findings indicate that different nucleotide substitutions at the same residue can cause different splicing effects, which may contribute to the variable phenotype of Alport syndrome.


Assuntos
Processamento Alternativo/genética , Grupo com Ancestrais do Continente Asiático/genética , Colágeno Tipo IV/genética , Mutação , Nefrite Hereditária/genética , Sítios de Splice de RNA/genética , Adulto , Linhagem Celular , Criança , Pré-Escolar , Simulação por Computador , Éxons/genética , Feminino , Hematúria/genética , Humanos , Masculino , Linhagem , Proteinúria/genética
13.
RNA ; 26(10): 1464-1480, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32631843

RESUMO

Many eukaryotes use RNA processing, including alternative splicing, to express multiple gene products from the same gene. The budding yeast Saccharomyces cerevisiae has been successfully used to study the mechanism of splicing and the splicing machinery, but alternative splicing in yeast is relatively rare and has not been extensively studied. Alternative splicing of SKI7/HBS1 is widely conserved, but yeast and a few other eukaryotes have replaced this one alternatively spliced gene with a pair of duplicated, unspliced genes as part of a whole genome doubling (WGD). We show that other examples of alternative splicing known to have functional consequences are widely conserved within Saccharomycotina. A common mechanism by which alternative splicing has disappeared is by replacement of an alternatively spliced gene with duplicate unspliced genes. This loss of alternative splicing does not always take place soon after duplication, but can take place after sufficient time has elapsed for speciation. Saccharomycetaceae that diverged before WGD use alternative splicing more frequently than S. cerevisiae, suggesting that WGD is a major reason for infrequent alternative splicing in yeast. We anticipate that WGDs in other lineages may have had the same effect. Having observed that two functionally distinct splice-isoforms are often replaced by duplicated genes allowed us to reverse the reasoning. We thereby identify several splice isoforms that are likely to produce two functionally distinct proteins because we find them replaced by duplicated genes in related species. We also identify some alternative splicing events that are not conserved in closely related species and unlikely to produce functionally distinct proteins.


Assuntos
Processamento Alternativo/genética , Proteoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Evolução Molecular , Duplicação Gênica/genética , Genoma/genética , Isoformas de Proteínas/genética
14.
Nat Commun ; 11(1): 3501, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647108

RESUMO

While most monogenic diseases are caused by loss or reduction of protein function, the need for technologies that can selectively increase levels of protein in native tissues remains. Here we demonstrate that antisense-mediated modulation of pre-mRNA splicing can increase endogenous expression of full-length protein by preventing naturally occurring non-productive alternative splicing and promoting generation of productive mRNA. Bioinformatics analysis of RNA sequencing data identifies non-productive splicing events in 7,757 protein-coding human genes, of which 1,246 are disease-associated. Antisense oligonucleotides targeting multiple types of non-productive splicing events lead to increases in productive mRNA and protein in a dose-dependent manner in vitro. Moreover, intracerebroventricular injection of two antisense oligonucleotides in wild-type mice leads to a dose-dependent increase in productive mRNA and protein in the brain. The targeting of natural non-productive alternative splicing to upregulate expression from wild-type or hypomorphic alleles provides a unique approach to treating genetic diseases.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Oligonucleotídeos Antissenso/farmacologia , Alelos , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Biologia Computacional , Éxons , Feminino , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Íntrons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima
15.
Gene ; 758: 144961, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32693148

RESUMO

Ginkgo biloba L. is regarded as the most ancient living tree, and its kernel has been used as a traditional Chinese medicine for more than 2,000 years. The leaf extracts of this tree have been among the bestselling herbal remedies in Western countries since the last century. To understand the biosynthesis of the pharmacologically active ingredients in G. biloba, flavonoids and terpenoid trilactones (TTLs), we sequenced the transcriptomes of G. biloba leaves, kernels and testae with Iso-Seq and RNA-Seq technologies and obtained 152,524 clean consensus reads. When these reads were used to improve the annotation of the G. biloba genome, 4,856 novel genes, 25,583 new isoforms of previously annotated genes and 4,363 lncRNAs were discovered. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that genes involved in growth, regulation and response to stress were more likely to be regulated by alternative splicing (AS) or alternative polyadenylation (APA), which represent the two most important posttranscriptional regulation mechanisms. It was found that some of the characterized genes involved in the biosynthesis of flavonoids and TTLs were also possibly regulated by AS and APA. Using phylogenetic and gene expression pattern analyses, some candidate genes for the biosynthesis of flavonoids and TTLs were screened. After qRT-PCR validation, the final candidate genes for flavonoid biosynthesis included three UDP-glycosyltransferases and one MYB transcription factor, while the candidate genes for TTL biosynthesis included two cytochrome P450 and one WRKY transcription factor. Our study suggested that Iso-Seq may play an important role in improving genome annotation, elucidating AS and APA mechanisms and discovering candidate genes involved in the biosynthesis of some secondary metabolites.


Assuntos
Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Lactonas/metabolismo , Terpenos/metabolismo , Processamento Alternativo/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Genoma de Planta/genética , Extratos Vegetais , Transcriptoma , Sequenciamento Completo do Genoma
16.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(3): 289-296, 2020 Jun 30.
Artigo em Chinês | MEDLINE | ID: mdl-32616122

RESUMO

Objective To analyze the expression of splicing factors in gastric cancer using bioinformatics methods and investigate the effect of aberrantly expressed serine/arginine-rich splicing factor(SRSF10)on the phenotype of gastric cancer cells. Methods The RNA-seq data of gastric cancer and paracancerous tissues were downloaded from The Cancer Genome Atlas(TCGA)cancer database,and bioinformatics analysis was performed to obtain the splicing factors differentially expressed in gastric cancer.The splicing factor SRSF10 was selected to investigate its effect on the development of gastric cancer.RNA interference technology was used to construct SRSF10 knockdown gastric cancer cells.MTS,Transwell,and cell scratches were used to study the effect of SRSF10 knockdown on gastric cancer cell phenotype. Results A total of 48 splicing factors were identified in gastric cancer by a series of bioinformatics techniques,of which 35 were up-regulated and 13 were down-regulated.The splicing factor SRSF10,which was up-regulated,was selected for further study.It was found that the gastric cancer cells after SRSF10 knockdown proliferated more slowly and had lower migration ability than normal gastric cancer cells. Conclusions Multiple splicing factors are found in gastric cancer and may play an important role in the development of gastric cancer.The splicing factor SRSF10 may contribute to the pathogenesis of gastric cancer.


Assuntos
Biologia Computacional , Neoplasias Gástricas , Processamento Alternativo , Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Processamento de RNA , Proteínas Repressoras , Fatores de Processamento de Serina-Arginina
17.
Proc Natl Acad Sci U S A ; 117(27): 15694-15701, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571922

RESUMO

The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73ß. These mice (Trp73 Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73ß results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73 Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development.


Assuntos
Processamento Alternativo/genética , Desenvolvimento Embrionário/genética , Hipocampo/crescimento & desenvolvimento , Proteína Tumoral p73/genética , Animais , Apoptose/genética , Hipocampo/metabolismo , Humanos , Células Intersticiais de Cajal/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Neurônios/metabolismo , Regiões Promotoras Genéticas
18.
PLoS One ; 15(6): e0232946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484809

RESUMO

High throughput sequencing of RNA (RNA-Seq) has become a staple in modern molecular biology, with applications not only in quantifying gene expression but also in isoform-level analysis of the RNA transcripts. To enable such an isoform-level analysis, a transcriptome assembly algorithm is utilized to stitch together the observed short reads into the corresponding transcripts. This task is complicated due to the complexity of alternative splicing - a mechanism by which the same gene may generate multiple distinct RNA transcripts. We develop a novel genome-guided transcriptome assembler, RefShannon, that exploits the varying abundances of the different transcripts, in enabling an accurate reconstruction of the transcripts. Our evaluation shows RefShannon is able to improve sensitivity effectively (up to 22%) at a given specificity in comparison with other state-of-the-art assemblers. RefShannon is written in Python and is available from Github (https://github.com/shunfumao/RefShannon).


Assuntos
Biologia Computacional/métodos , Transcriptoma , Processamento Alternativo , Simulação por Computador , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Rim/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Software
19.
BMC Evol Biol ; 20(1): 66, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503430

RESUMO

BACKGROUND: Alternative splicing (AS) generates various transcripts from a single gene and thus plays a significant role in transcriptomic diversity and proteomic complexity. Alu elements are primate-specific transposable elements (TEs) and can provide a donor or acceptor site for AS. In a study on TE-mediated AS, we recently identified a novel AluSz6-exonized ACTR8 transcript of the crab-eating monkey (Macaca fascicularis). In the present study, we sought to determine the molecular mechanism of AluSz6 exonization of the ACTR8 gene and investigate its evolutionary and functional consequences in the crab-eating monkey. RESULTS: We performed RT-PCR and genomic PCR to analyze AluSz6 exonization in the ACTR8 gene and the expression of the AluSz6-exonized transcript in nine primate samples, including prosimians, New world monkeys, Old world monkeys, and hominoids. AluSz6 integration was estimated to have occurred before the divergence of simians and prosimians. The Alu-exonized transcript obtained by AS was lineage-specific and expressed only in Old world monkeys and apes, and humans. This lineage-specific expression was caused by a single G duplication in AluSz6, which provides a new canonical 5' splicing site. We further identified other alternative transcripts that were unaffected by the AluSz6 insertion. Finally, we observed that the alternative transcripts were transcribed into new isoforms with C-terminus deletion, and in silico analysis showed that these isoforms do not have a destructive function. CONCLUSIONS: The single G duplication in the TE sequence is the source of TE exonization and AS, and this mutation may suffer a different fate of ACTR8 gene expression during primate evolution.


Assuntos
Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , Mutação , Primatas/genética , Processamento Alternativo , Elementos Alu/genética , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Éxons/genética , Humanos
20.
RNA ; 26(10): 1389-1399, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522889

RESUMO

Alternative splicing is responsible for much of the transcriptomic and proteomic diversity observed in eukaryotes and involves combinatorial regulation by many cis-acting elements and trans-acting factors. SR and hnRNP splicing regulatory proteins often have opposing effects on splicing efficiency depending on where they bind the pre-mRNA relative to the splice site. Position-dependent splicing repression occurs at spliceosomal E-complex, suggesting that U1 snRNP binds but cannot facilitate higher order spliceosomal assembly. To test the hypothesis that the structure of U1 snRNA changes during activation or repression, we developed a method to structure-probe native U1 snRNP in enriched conformations that mimic activated or repressed spliceosomal E-complexes. While the core of U1 snRNA is highly structured, the 5' end of U1 snRNA shows different SHAPE reactivities and psoralen crosslinking efficiencies depending on where splicing regulatory elements are located relative to the 5' splice site. A motif within the 5' splice site binding region of U1 snRNA is more reactive toward SHAPE electrophiles when repressors are bound, suggesting U1 snRNA is bound, but less base-paired. These observations demonstrate that splicing regulators modulate splice site selection allosterically.


Assuntos
Regulação Alostérica/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteômica/métodos , Precursores de RNA/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA