Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.741
Filtrar
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2357-2360, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018480

RESUMO

In the past decades an extensive mathematical literature was developed to model and analyze gene networks under both deterministic and stochastic formalisms. However, such literature is predominantly focused to deal with the modeling of transcriptional and translational regulation, but results related to post-transcriptional regulation and its connection with transcriptional regulation are poorly investigated. However, it is becoming of paramount importance the need for modeling post-transcriptional regulation via splicing especially for minor organisms or viruses.The aim of this study is to propose a first general basic modeling scheme for modeling gene expression via alternative splicing and investigating the basic deterministic and stochastic features of the pre-mRNA, mRNAs and proteins under different biological conditions.This first study showed the dynamical properties of alternative splicing, the faster kinetics of the pre-mRNA compared to the mRNA and the importance to stochastically model gene networks when considering the post-transcriptional regulation.


Assuntos
Precursores de RNA , Processamento de RNA , Processamento Alternativo , Redes Reguladoras de Genes , Precursores de RNA/metabolismo , Processamento de RNA/genética , RNA Mensageiro/genética
2.
Nat Commun ; 11(1): 4744, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958768

RESUMO

The accurate exclusion of introns by RNA splicing is critical for the production of mature mRNA. U2AF1 binds specifically to the 3´ splice site, which includes an essential AG dinucleotide. Even a single amino acid mutation of U2AF1 can cause serious disease such as certain cancers or myelodysplastic syndromes. Here, we describe the first crystal structures of wild-type and pathogenic mutant U2AF1 complexed with target RNA, revealing the mechanism of 3´ splice site selection, and how aberrant splicing results from clinically important mutations. Unexpected features of this mechanism may assist the future development of new treatments against diseases caused by splicing errors.


Assuntos
Sítios de Splice de RNA/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Sequência de Bases , Cristalografia por Raios X , Éxons/genética , Humanos , Mutação , Neoplasias/química , Neoplasias/genética , Nucleotídeos , Motivo de Reconhecimento de RNA , Processamento de RNA/genética , Fator de Processamento U2AF/química , Dedos de Zinco
3.
Int J Oral Sci ; 12(1): 22, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737282

RESUMO

A splicing mutation in VPS4B can cause dentin dysplasia type I (DD-I), a hereditary autosomal-dominant disorder characterized by rootless teeth, the etiology of which is genetically heterogeneous. In our study, dental follicle cells (DFCs) were isolated and cultured from a patient with DD-I and compared with those from an age-matched, healthy control. In a previous study, this DD-I patient was confirmed to have a loss-of-function splicing mutation in VPS4B (IVS7 + 46C > G). The results from this study showed that the isolated DFCs were vimentin-positive and CK14-negative, indicating that the isolated cells were derived from the mesenchyme. DFCs harboring the VPS4B mutation had a significantly higher proliferation rate from day 3 to day 8 than control DFCs, indicating that VPS4B is involved in cell proliferation. The cells were then replenished with osteogenic medium to investigate how the VPS4B mutation affected osteogenic differentiation. Induction of osteogenesis, detected by alizarin red and alkaline phosphatase staining in vitro, was decreased in the DFCs from the DD-I patient compared to the control DFCs. Furthermore, we also found that the VPS4B mutation in the DD-I patient downregulated the expression of osteoblast-related genes, such as ALP, BSP, OCN, RUNX2, and their encoded proteins. These outcomes confirmed that the DD-I-associated VPS4B mutation could decrease the capacity of DFCs to differentiate during the mineralization process and may also impair physiological root formation and bone remodeling. This might provide valuable insights and implications for exploring the pathological mechanisms underlying DD-I root development.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Saco Dentário/citologia , Displasia da Dentina/genética , Displasia da Dentina/fisiopatologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Osteogênese/genética , Processamento de RNA/genética , Estudos de Casos e Controles , Diferenciação Celular/genética , Células Cultivadas , Displasia da Dentina/patologia , Humanos , Mutação/genética
4.
Proc Natl Acad Sci U S A ; 117(33): 20159-20170, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747553

RESUMO

Although immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, many patients do not respond or develop resistance to ICB. N6 -methylation of adenosine (m6A) in RNA regulates many pathophysiological processes. Here, we show that deletion of the m6A demethylase Alkbh5 sensitized tumors to cancer immunotherapy. Alkbh5 has effects on m6A density and splicing events in tumors during ICB. Alkbh5 modulates Mct4/Slc16a3 expression and lactate content of the tumor microenvironment and the composition of tumor-infiltrating Treg and myeloid-derived suppressor cells. Importantly, a small-molecule Alkbh5 inhibitor enhanced the efficacy of cancer immunotherapy. Notably, the ALKBH5 gene mutation and expression status of melanoma patients correlate with their response to immunotherapy. Our results suggest that m6A demethylases in tumor cells contribute to the efficacy of immunotherapy and identify ALKBH5 as a potential therapeutic target to enhance immunotherapy outcome in melanoma, colorectal, and potentially other cancers.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Vacinas Anticâncer/imunologia , Lactatos/metabolismo , Melanoma/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/fisiologia , Homólogo AlkB 5 da RNA Desmetilase/genética , Anticorpos , Citocinas/genética , Citocinas/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/terapia , Metiltransferases/genética , Metiltransferases/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células Supressoras Mieloides/fisiologia , Sítios de Splice de RNA , Processamento de RNA , Simportadores/genética , Simportadores/metabolismo , Transcriptoma , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Science ; 369(6503): 524-530, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732418

RESUMO

RNA molecules are frequently modified with a terminal 2',3'-cyclic phosphate group as a result of endonuclease cleavage, exonuclease trimming, or de novo synthesis. During pre-transfer RNA (tRNA) and unconventional messenger RNA (mRNA) splicing, 2',3'-cyclic phosphates are substrates of the tRNA ligase complex, and their removal is critical for recycling of tRNAs upon ribosome stalling. We identified the predicted deadenylase angel homolog 2 (ANGEL2) as a human phosphatase that converts 2',3'-cyclic phosphates into 2',3'-OH nucleotides. We analyzed ANGEL2's substrate preference, structure, and reaction mechanism. Perturbing ANGEL2 expression affected the efficiency of pre-tRNA processing, X-box-binding protein 1 (XBP1) mRNA splicing during the unfolded protein response, and tRNA nucleotidyltransferase 1 (TRNT1)-mediated CCA addition onto tRNAs. Our results indicate that ANGEL2 is involved in RNA pathways that rely on the ligation or hydrolysis of 2',3'-cyclic phosphates.


Assuntos
Nucleotidases/química , Ribonucleases/química , Cristalografia por Raios X , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Nucleotidases/genética , Estrutura Secundária de Proteína , Precursores de RNA , Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Especificidade por Substrato , Proteína 1 de Ligação a X-Box/genética
6.
Nat Commun ; 11(1): 4140, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811829

RESUMO

Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Processamento de RNA/genética , Alelos , Arabidopsis/metabolismo , Evolução Molecular , Pleiotropia Genética , Variação Genética , Íntrons , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética , Temperatura
7.
Wiley Interdiscip Rev RNA ; 11(5): e1614, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32638509

RESUMO

Coronaviruses, including SARS-Cov-2, are RNA-based pathogens that interface with a large variety of RNA-related cellular processes during infection. These processes include capping, polyadenylation, localization, RNA stability, translation, and regulation by RNA binding proteins or noncoding RNA effectors. The goal of this article is to provide an in-depth perspective on the current state of knowledge of how various coronaviruses interact with, usurp, and/or avoid aspects of these cellular RNA biology machineries. A thorough understanding of how coronaviruses interact with RNA-related posttranscriptional processes in the cell should allow for new insights into aspects of viral pathogenesis as well as identify new potential avenues for the development of anti-coronaviral therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Betacoronavirus/genética , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Viral/genética , Animais , Betacoronavirus/metabolismo , Humanos , MicroRNAs/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Poliadenilação , Biossíntese de Proteínas , Edição de RNA , Processamento de RNA , Estabilidade de RNA , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Vírus da SARS/genética , Vírus da SARS/metabolismo
8.
Nat Commun ; 11(1): 3698, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703943

RESUMO

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3' alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Retardo Mental Ligado ao Cromossomo X/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Spliceossomos/metabolismo , Proteínas de Peixe-Zebra/genética , Adulto , Animais , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Família , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Células NIH 3T3 , Linhagem , Fenótipo , Transporte Proteico , Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Síndrome , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
PLoS Genet ; 16(7): e1008944, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730252

RESUMO

Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression.


Assuntos
Chlamydomonas reinhardtii/genética , Íntrons/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de RNA/genética , Regulação da Expressão Gênica de Plantas/genética , Microalgas/genética , Regiões Promotoras Genéticas , Transcriptoma/genética
10.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645951

RESUMO

The SARS-CoV-2 virus is a recently-emerged zoonotic pathogen already well adapted to transmission and replication in humans. Although the mutation rate is limited, recently introduced mutations in SARS-CoV-2 have the potential to alter viral fitness. In addition to amino acid changes, mutations could affect RNA secondary structure critical to viral life cycle, or interfere with sequences targeted by host miRNAs. We have analysed subsets of genomes from SARS-CoV-2 isolates from around the globe and show that several mutations introduce changes in Watson-Crick pairing, with resultant changes in predicted secondary structure. Filtering to targets matching miRNAs expressed in SARS-CoV-2-permissive host cells, we identified ten separate target sequences in the SARS-CoV-2 genome; three of these targets have been lost through conserved mutations. A genomic site targeted by the highly abundant miR-197-5p, overexpressed in patients with cardiovascular disease, is lost by a conserved mutation. Our results are compatible with a model that SARS-CoV-2 replication within the human host is constrained by host miRNA defences. The impact of these and further mutations on secondary structures, miRNA targets or potential splice sites offers a new context in which to view future SARS-CoV-2 evolution, and a potential platform for engineering conditional attenuation to vaccine development, as well as providing a better understanding of viral tropism and pathogenesis.


Assuntos
Betacoronavirus/genética , Genoma Viral , MicroRNAs/metabolismo , RNA Viral/química , Regiões 3' não Traduzidas , Sequência de Bases , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Bases de Dados Genéticas , Humanos , MicroRNAs/química , MicroRNAs/genética , Mutação , Conformação de Ácido Nucleico , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Sítios de Splice de RNA , Processamento de RNA , Alinhamento de Sequência , Proteínas não Estruturais Virais/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Gene ; 757: 144938, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640305

RESUMO

Myb-like SWIRM and MPN domains (MYSM1) is a chromatin-binding transcriptional regulator that mediates histone 2A deubiquitination, which plays a vital role in hematopoiesis and lymphocyte differentiation. Biallelic variants in MYSM1 cause a rare bone marrow failure syndrome (OMIM #618116). To date, only three pathogenic variants (E390*, R478*, and H656R) of MYSM1 have been reported in nine patients, and all variants are homozygous. Here, we describe a Chinese female patient who mainly presented with leukopenia, granulocytopenia, thrombocytopenia, severe anemia, and B-cell and natural killer cell deficiency in the peripheral blood, and was diagnosed with bone marrow failure. Trio whole-exome sequencing revealed a novel compound heterozygous variant in MYSM1 (c.399G > A, p.L133L, and c.1467C > G, p.Y489*). The c.399G > A synonymous variant is located at the 3'-end of exon 6, which is predicted to affect MYSM1 mRNA splicing. Analysis of the products obtained from the reverse transcription-polymerase chain reaction revealed that the c.399G > A variant leads to exon 6 skipping, resulting in a premature termination codon (c.321_399 del, p.V108Lfs*13). cDNA sequencing suggested that the c.1467C > G variant triggered nonsense-mediated mRNA degradation. Moreover, we identified a novel transcript of MYSM1 mRNA (missing exons 5 and 6) in human blood cells. Our results expand the mutation spectrum of MYSM1; additionally, this is the first report of a synonymous splicing variant that induces post-transcriptional skipping of exon 6 leading to a bone marrow failure syndrome phenotype.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Mutação , Transativadores/genética , Proteases Específicas de Ubiquitina/genética , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Feminino , Células HEK293 , Heterozigoto , Humanos , Lactente , Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
12.
PLoS Biol ; 18(7): e3000782, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692742

RESUMO

Tight regulation of gene transcription and mRNA splicing is essential for plant growth and development. Here we demonstrate that a plant-specific protein, EMBRYO DEFECTIVE 1579 (EMB1579), controls multiple growth and developmental processes in Arabidopsis. We demonstrate that EMB1579 forms liquid-like condensates both in vitro and in vivo, and the formation of normal-sized EMB1579 condensates is crucial for its cellular functions. We found that some chromosomal and RNA-related proteins interact with EMB1579 compartments, and loss of function of EMB1579 affects global gene transcription and mRNA splicing. Using floral transition as a physiological process, we demonstrate that EMB1579 is involved in FLOWERING LOCUS C (FLC)-mediated repression of flowering. Interestingly, we found that EMB1579 physically interacts with a homologue of Drosophila nucleosome remodeling factor 55-kDa (p55) called MULTIPLE SUPPRESSOR OF IRA 4 (MSI4), which has been implicated in repressing the expression of FLC by forming a complex with DNA Damage Binding Protein 1 (DDB1) and Cullin 4 (CUL4). This complex, named CUL4-DDB1MSI4, physically associates with a CURLY LEAF (CLF)-containing Polycomb Repressive Complex 2 (CLF-PRC2). We further demonstrate that EMB1579 interacts with CUL4 and DDB1, and EMB1579 condensates can recruit and condense MSI4 and DDB1. Furthermore, emb1579 phenocopies msi4 in terms of the level of H3K27 trimethylation on FLC. This allows us to propose that EMB1579 condensates recruit and condense CUL4-DDB1MSI4 complex, which facilitates the interaction of CUL4-DDB1MSI4 with CLF-PRC2 and promotes the role of CLF-PRC2 in establishing and/or maintaining the level of H3K27 trimethylation on FLC. Thus, we report a new mechanism for regulating plant gene transcription, mRNA splicing, and growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Desenvolvimento Vegetal/genética , Processamento de RNA/genética , Transcrição Genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Núcleo Celular/metabolismo , Flores/fisiologia , Histonas/metabolismo , Mutação com Perda de Função , Lisina/metabolismo , Metilação , Proteínas Nucleares/metabolismo , Fenótipo , Raízes de Plantas/citologia , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos
13.
PLoS One ; 15(7): e0235655, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628740

RESUMO

Biallelic variants in RNU4ATAC, a non-coding gene transcribed into the minor spliceosome component U4atac snRNA, are responsible for three rare recessive developmental diseases, namely Taybi-Linder/MOPD1, Roifman and Lowry-Wood syndromes. Next-generation sequencing of clinically heterogeneous cohorts (children with either a suspected genetic disorder or a congenital microcephaly) recently identified mutations in this gene, illustrating how profoundly these technologies are modifying genetic testing and assessment. As RNU4ATAC has a single non-coding exon, the bioinformatic prediction algorithms assessing the effect of sequence variants on splicing or protein function are irrelevant, which makes variant interpretation challenging to molecular diagnostic laboratories. In order to facilitate and improve clinical diagnostic assessment and genetic counseling, we present i) an update of the previously reported RNU4ATAC mutations and an analysis of the genetic variations affecting this gene using the Genome Aggregation Database (gnomAD) resource; ii) the pathogenicity prediction performances of scores computed based on an RNA structure prediction tool and of those produced by the Combined Annotation Dependent Depletion tool for the 285 RNU4ATAC variants identified in patients or in large-scale sequencing projects; iii) a method, based on a cellular assay, that allows to measure the effect of RNU4ATAC variants on splicing efficiency of a minor (U12-type) reporter intron. Lastly, the concordance of bioinformatic predictions and cellular assay results was investigated.


Assuntos
RNA Nuclear Pequeno/metabolismo , Spliceossomos/metabolismo , Criança , Bases de Dados Genéticas , Nanismo/genética , Nanismo/patologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Variação Genética , Humanos , Microcefalia/genética , Microcefalia/patologia , Conformação de Ácido Nucleico , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Processamento de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética
14.
Rinsho Ketsueki ; 61(6): 634-642, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32624537

RESUMO

Dysregulation of pre-mRNA splicing and transcription is a key step in gene expression control in patients with leukemia. Herein, we discuss the occurrence of frequent overlap of mutations affecting epigenetic regulation and pre-mRNA splicing in patients with leukemia, which together promote leukemogenesis through coordinated effects on the epigenome and pre-mRNA splicing. In particular, we have determined an important pathogenic role of cross-talk between altered epigenetic state and pre-mRNA splicing, provided functional evidence that mutations in pre-mRNA splicing factors drive leukemia development, and uncovered spliceosomal changes as a novel mediator of IDH2 mutant leukemogenesis. By isolating specific pre-mRNA splicing events that functionally contribute to IDH2/SRSF2 double-mutant leukemogenesis, we found that loss of the Integrator complex plays an important role in leukemia development. Our studies provided new evidence that defects in the Integrator complex remarkably affect several gene expression programs associated with hematopoietic differentiation and signaling pathways via transcriptional pause-release dysregulation, blockade of myeloid differentiation, and promotion of leukemogenesis in the Idh2 mutant background in vivo. Moreover, our results revealed important translational implications, given the substantial efforts to pharmacologically inhibit mutant IDH1/2 and splicing factors.


Assuntos
Neoplasias Hematológicas , Processamento de RNA , Epigênese Genética , Humanos , Mutação , Fatores de Processamento de Serina-Arginina
15.
Rinsho Ketsueki ; 61(6): 643-650, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32624538

RESUMO

Splicing factor 3b subunit 1 (SF3B1) is the most commonly mutated RNA splicing factor identified in myelodysplastic syndrome (MDS), chronic lymphocytic leukemia, and uveal melanoma. The mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here, we integrated pan-cancer RNA sequencing to identify mutant SF3B1-dependent aberrant splicing events with a positive CRISPR screen to prioritize alterations that functionally promote oncogenesis. Our results indicated that diverse, recurrent SF3B1 mutations converge on the repression of bromodomain containing 9 (BRD9), a core component of the recently described non-canonical barrier-to-autointegration factor complex (ncBAF). Mutant SF3B1 recognizes intronic sequences within BRD9 as exons, thereby permitting inclusion of aberrant sequence (i.e., poison exon) that will result in the degradation of BRD9 mRNA. BRD9 depletion results in significant loss of ncBAF at CCCTC-binding factor (CTCF)-binding loci but has no impact on the localization of canonical BAF. These actions resulted in disturbed myeloid/erythroid differentiation and promoted the development of MDS and melanoma. Of note, correcting BRD9 mis-splicing in SF3B1-mutant cells with antisense oligonucleotides (ASOs), by targeting the poison exon with CRISPR-directed mutagenesis, or via the use of spliceosomal inhibitors are all potential therapeutic options. Our results implicate disruption of ncBAF as a critical factor promoting the development of the diverse array of cancers that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.


Assuntos
Processamento de RNA , Carcinogênese , Humanos , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , RNA Mensageiro , Fatores de Transcrição
16.
Nucleic Acids Res ; 48(15): 8626-8644, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32621609

RESUMO

The exon junction complex (EJC) is an essential constituent and regulator of spliced messenger ribonucleoprotein particles (mRNPs) in metazoans. As a core component of the EJC, CASC3 was described to be pivotal for EJC-dependent nuclear and cytoplasmic processes. However, recent evidence suggests that CASC3 functions differently from other EJC core proteins. Here, we have established human CASC3 knockout cell lines to elucidate the cellular role of CASC3. In the knockout cells, overall EJC composition and EJC-dependent splicing are unchanged. A transcriptome-wide analysis reveals that hundreds of mRNA isoforms targeted by nonsense-mediated decay (NMD) are upregulated. Mechanistically, recruiting CASC3 to reporter mRNAs by direct tethering or via binding to the EJC stimulates mRNA decay and endonucleolytic cleavage at the termination codon. Building on existing EJC-NMD models, we propose that CASC3 equips the EJC with the persisting ability to communicate with the NMD machinery in the cytoplasm. Collectively, our results characterize CASC3 as a peripheral EJC protein that tailors the transcriptome by promoting the degradation of EJC-dependent NMD substrates.


Assuntos
Proteínas de Neoplasias/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Éxons/genética , Técnicas de Inativação de Genes , Humanos , RNA Mensageiro/genética , Ribonucleoproteínas/genética
17.
Nat Cell Biol ; 22(8): 916-918, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719552
18.
Proc Natl Acad Sci U S A ; 117(28): 16391-16400, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601196

RESUMO

Master splicing regulator MBNL1 shapes large transcriptomic changes that drive cellular differentiation during development. Here we demonstrate that MBNL1 is a suppressor of tumor dedifferentiation. We surveyed MBNL1 expression in matched tumor/normal pairs across The Cancer Genome Atlas and found that MBNL1 was down-regulated in several common cancers. Down-regulation of MBNL1 predicted poor overall survival in breast, lung, and stomach adenocarcinomas and increased relapse and distant metastasis in triple-negative breast cancer. Down-regulation of MBNL1 led to increased tumorigenic and stem/progenitor-like properties in vitro and in vivo. A discrete set of alternative splicing events (ASEs) are shared between MBNL1-low cancers and embryonic stem cells including a MAP2K7∆exon2 splice variant that leads to increased stem/progenitor-like properties via JNK activation. Accordingly, JNK inhibition is capable of reversing MAP2K7∆exon2-driven tumor dedifferentiation in MBNL1-low cancer cells. Our work elucidates an alternative-splicing mechanism that drives tumor dedifferentiation and identifies biomarkers that predict enhanced susceptibility to JNK inhibition.


Assuntos
MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular , Humanos , MAP Quinase Quinase 4/genética , Neoplasias/genética , Neoplasias/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de RNA , Proteínas de Ligação a RNA/genética
19.
Nat Cell Biol ; 22(8): 960-972, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719551

RESUMO

It remains unknown if biophysical or material properties of biomolecular condensates regulate cancer. Here we show that AKAP95, a nuclear protein that regulates transcription and RNA splicing, plays an important role in tumorigenesis by supporting cancer cell growth and suppressing oncogene-induced senescence. AKAP95 forms phase-separated and liquid-like condensates in vitro and in nucleus. Mutations of key residues to different amino acids perturb AKAP95 condensation in opposite directions. Importantly, the activity of AKAP95 in splice regulation is abolished by disruption of condensation, significantly impaired by hardening of condensates, and regained by substituting its condensation-mediating region with other condensation-mediating regions from irrelevant proteins. Moreover, the abilities of AKAP95 in regulating gene expression and supporting tumorigenesis require AKAP95 to form condensates with proper liquidity and dynamicity. These results link phase separation to tumorigenesis and uncover an important role of appropriate biophysical properties of protein condensates in gene regulation and cancer.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas Nucleares/fisiologia , Processamento de RNA , Proteínas de Ancoragem à Quinase A/química , Animais , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Senescência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas Nucleares/química , Transição de Fase , Processamento de RNA/fisiologia , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 117(27): 15799-15808, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571908

RESUMO

The transcriptome of eukaryotic cells is constantly monitored for errors to avoid the production of undesired protein variants. The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway degrades aberrant mRNAs, but also functions in the regulation of transcript abundance in response to changed physiological states. Here, we describe a zebrafish mutant of upf1, encoding the central component of the NMD machinery. Fish homozygous for the upf1 t20450 allele (Y163X) survive until day 10 after fertilization, presenting with impaired T cell development as one of the most conspicuous features of the mutant phenotype. Analysis of differentially expressed genes identified dysregulation of the pre-mRNA splicing pathway, accompanied by perturbed autoregulation of canonical splicing activators (SRSF) and repressors (HNRNP). In upf1-deficient mutants, NMD-susceptible transcripts of ribosomal proteins that are known for their role as noncanonical splicing regulators were greatly increased, most notably, rpl10a When the levels of NMD-susceptible rpl10a transcripts were artificially increased in zebrafish larvae, T cell development was significantly impaired, suggesting that perturbed autoregulation of rpl10a splicing contributes to failing T cell development in upf1 deficiency. Our results identify an extraribosomal tissue-specific function to rpl10a in the immune system, and thus exemplify the advantages of the zebrafish model to study the effects of upf1-deficiency in the context of a vertebrate organism.


Assuntos
Glutationa/análogos & derivados , Degradação do RNAm Mediada por Códon sem Sentido/genética , Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Linfócitos T/imunologia , Proteínas de Peixe-Zebra/genética , Animais , Códon sem Sentido/genética , Fertilização/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutationa/genética , Homozigoto , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/imunologia , RNA Mensageiro/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA