Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
PLoS One ; 15(7): e0233161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645049

RESUMO

The beta blockers carvedilol, bisoprolol, and sustained-release metoprolol succinate reduce readmissions and mortality among patients with heart failure with reduced ejection fraction (HFrEF), based upon clinical trial and registry studies. Results from these studies may not generalize to the typical patient with HFrEF. We conducted a retrospective cohort study of beneficiaries in the Medicare 5% sample hospitalized for HFrEF between 2007 and 2013 and were discharged alive. We compared the 30-day and 365-day heart failure (HF) readmission, all-cause readmission, and mortality rates between beneficiaries who filled a prescription for an evidence-based beta blocker and those who did not after being hospitalized for HFrEF. Out of 12,127 beneficiaries hospitalized for HFrEF, 20% were readmitted for HF, 62% were readmitted for any cause, and 27% died within 365 days. In competing risk models adjusted for demographics, healthcare utilization, and comorbidities, beta blocker use was associated with a lower risk of HF readmission between 8-365 days post discharge (hazard ratio 0.79 [95% confidence interval 0.76, 0.82]), but was not significantly associated with all-cause readmission (1.02 [0.97-1.07]). In Cox models adjusted for the same covariates, beta blocker use was associated with lower mortality 8-365 days post discharge (0.65 [0.60-0.71]). Results were similar when follow up was truncated at 30 days post discharge. Increasing the use of beta blockers following HFrEF hospitalization may not decrease all-cause readmissions among Medicare beneficiaries, but may reduce HF-specific readmissions and mortality.


Assuntos
Astrócitos/virologia , Proteína Rica em Cisteína 61/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Astrócitos/metabolismo , Astrocitoma/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Rica em Cisteína 61/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Serina Endopeptidases/metabolismo , Regulação para Cima , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Infecção por Zika virus/metabolismo
2.
Oncogene ; 39(27): 5015-5030, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32523092

RESUMO

Triple-negative breast cancer (TNBC) is extremely aggressive and lacks effective therapy. SAM and SH3 domain containing1 (SASH1) has been implicated in TNBC as a candidate tumor suppressor; however, the mechanisms of action of SASH1 in TNBC remain underexplored. Here, we show that SASH1 was significantly downregulated in TNBC patients samples compared with other subtypes of breast cancer. Ectopic SASH1 expression inhibited, while depletion of SASH1 enhanced, the invasive phenotype of TNBC cells, accompanied by deregulated expression of MMP2 and MMP9. The functional effects of SASH1 depletion were confirmed in the chicken chorioallantoic membrane and mouse xenograft models. Mechanistically, SASH1 knockdown downregulated the phosphorylation levels of the Hippo kinase LATS1 and its effector YAP (Yes associated protein), thereby upregulating YAP accumulation together with its downstream target CYR61. Consistently, forced SASH1 expression exhibited opposite effects. Pharmacological inhibition of YAP or knockdown of YAP reversed the enhanced cell invasion of TNBC cells following SASH1 depletion. Furthermore, SASH1-induced YAP signaling was LATS1-dependent, which in reverse enhanced phosphorylation of SASH1. The SASH1 S407A mutant (phosphorylation deficient) failed to rescue the altered YAP signaling by SASH1 knockdown. Notably, SASH1 depletion upregulated ARHGAP42 levels via YAP-TEAD and the YAP-ARHGAP42-actin axis contributed to SASH1-regulated TNBC cell invasion. Therefore, our findings uncover a new mechanism for the tumor-suppressive activity of SASH1 in TNBC, which may serve as a novel target for therapeutic intervention.


Assuntos
Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Embrião de Galinha , Proteína Rica em Cisteína 61/metabolismo , Humanos , Camundongos , Invasividade Neoplásica/genética , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Commun ; 11(1): 2810, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499572

RESUMO

The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica , Pericitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Aorta Torácica/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Adesão Celular , Proliferação de Células , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Linfocinas/metabolismo , Masculino , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/patologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Nat Commun ; 11(1): 1242, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144270

RESUMO

Expression of the matricellular protein CCN1 (CYR61) is associated with inflammation and is required for successful wound repair. Here, we show that CCN1 binds bacterial pathogen-associated molecular patterns including peptidoglycans of Gram-positive bacteria and lipopolysaccharides of Gram-negative bacteria. CCN1 opsonizes methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa and accelerates their removal by phagocytosis and increased production of bactericidal reactive oxygen species in macrophages through the engagement of integrin αvß3. Mice with myeloid-specific Ccn1 deletion and knock-in mice expressing CCN1 unable to bind αvß3 are more susceptible to infection by S. aureus or P. aeruginosa, resulting in increased mortality and organ colonization. Furthermore, CCN1 binds directly to TLR2 and TLR4 to activate MyD88-dependent signaling, cytokine expression and neutrophil mobilization. CCN1 is therefore a pattern recognition receptor that opsonizes bacteria for clearance and functions as a damage-associated molecular pattern to activate inflammatory responses, activities that contribute to wound healing and tissue repair.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Proteínas Opsonizantes/metabolismo , Infecções por Pseudomonas/imunologia , Infecções Estafilocócicas/imunologia , Receptores Toll-Like/metabolismo , Animais , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Integrina alfaVbeta3/imunologia , Integrina alfaVbeta3/metabolismo , Masculino , Staphylococcus aureus Resistente à Meticilina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Opsonizantes/genética , Padrões Moleculares Associados a Patógenos/metabolismo , Fagocitose/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Células Sf9 , Transdução de Sinais/imunologia , Infecções Estafilocócicas/microbiologia , Receptores Toll-Like/imunologia
5.
EMBO J ; 39(5): e101679, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32009252

RESUMO

Adult neural stem cells (NSCs) reside in specialized niches, which hold a balanced number of NSCs, their progeny, and other cells. How niche capacity is regulated to contain a specific number of NSCs remains unclear. Here, we show that ependyma-derived matricellular protein CCN1 (cellular communication network factor 1) negatively regulates niche capacity and NSC number in the adult ventricular-subventricular zone (V-SVZ). Adult ependyma-specific deletion of Ccn1 transiently enhanced NSC proliferation and reduced neuronal differentiation in mice, increasing the numbers of NSCs and NSC units. Although proliferation of NSCs and neurogenesis seen in Ccn1 knockout mice eventually returned to normal, the expanded NSC pool was maintained in the V-SVZ until old age. Inhibition of EGFR signaling prevented expansion of the NSC population observed in CCN1 deficient mice. Thus, ependyma-derived CCN1 restricts NSC expansion in the adult brain to maintain the proper niche capacity of the V-SVZ.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Neurogênese/fisiologia , Transdução de Sinais , Células-Tronco Adultas/fisiologia , Animais , Encéfalo , Proteína Rica em Cisteína 61/genética , Epêndima/citologia , Epêndima/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
6.
Oxid Med Cell Longev ; 2020: 4910280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104533

RESUMO

Reactive species play a pivotal role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signalling pathways that are involved in the homeostatic, inflammatory, proliferative, and remodelling phases of wound healing. The application of Cold Atmospheric Plasma (CAP) to the wound site produces a profusion of short- and long-lived reactive species that have been demonstrated to be effective in promoting wound healing; however, knowledge of the mechanisms underlying CAP-mediated wound healing remains scarce. To address this, an in vitro coculture model was used to study the effects of CAP on wound healing and on paracrine crosstalk between dermal keratinocytes and fibroblasts. Using this coculture model, we observed a stimulatory effect on the migration ability of HaCaT cells that were cocultured with dermal fibroblasts. Additionally, CAP treatment resulted in an upregulation of the HIPPO transcription factor YAP in HaCaTs and fibroblasts. Downstream effectors of the HIPPO signalling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts, and the administration of antioxidants could inhibit CAP-mediated wound healing and abrogate the gene expression of the HIPPO downstream effectors. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. An induction of CTGF and Cyr61 secretion was also observed upon CAP treatment in the fibroblast-conditioned media. Finally, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration. In summary, our results validated that CAP activates a regenerative signalling pathway at the onset of wound healing. Additionally, CAP also stimulated a reciprocal communication between dermal fibroblasts and keratinocytes, resulting in improved keratinocyte wound healing in coculture.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Comunicação Parácrina , Gases em Plasma/farmacologia , Fatores de Transcrição/metabolismo , Cicatrização/efeitos dos fármacos , Acetilcisteína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Queratinócitos/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes , Fatores de Transcrição/genética
7.
Elife ; 92020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31913124

RESUMO

The Hippo pathway regulates organ size, regeneration, and cell growth by controlling the stability of the transcription factor, YAP (Yorkie in Drosophila). When there is tissue damage, YAP is activated allowing the restoration of homeostatic tissue size. The exact signals by which YAP is activated are still not fully understood, but its activation is known to affect both cell size and cell number. Here we used cultured cells to examine the coordinated regulation of cell size and number under the control of YAP. Our experiments in isogenic HEK293 cells reveal that YAP can affect cell size and number by independent circuits. Some of these effects are cell autonomous, such as proliferation, while others are mediated by secreted signals. In particular CYR61, a known secreted YAP target, is a non-cell autonomous mediator of cell survival, while another unidentified secreted factor controls cell size.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tamanho Celular , Fatores de Transcrição/metabolismo , Apoptose , Contagem de Células , Divisão Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Mol Cell Biochem ; 464(1-2): 51-63, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754973

RESUMO

RASSF1A is a tumor suppressor gene, and its hypermethylation has been observed in cancers. RASSF1A acts as an upstream regulator of Hippo pathway and modulates its function. The aim of this study was to analyze expression of RASSF1A, Hippo pathway molecules (YAP, MST) and downstream targets (CTGF, Cyr61 and AREG) in bladder cancer patients. Later, the link between RASSF1A and Hippo pathway and a potential therapeutic scope of this link in UBC were also studied. MSPCR was performed to study methylation of RASSF1A promoter. Expression of molecules was studied using qPCR, Western blot and IHC. The link between RASSF1A and Hippo pathway was studied using Spearman's correlation in patients and validated by overexpressing RASSF1A in HT1376 cells and its effect on Hippo pathway was observed using qPCR and Western blot. Further therapeutic potential of this link was studied using MTT and PI assays. The expression of RASSF1A was lower, whereas the expression of YAP, CTGF and CYR61 was higher. The expression of RASSF1A protein gradually decreased, while the expression of YAP, CTGF and CYR61 increased with severity of disease. Based on Spearman's correlation, RASSF1A showed a negative correlation with YAP, CTGF and CYR61. YAP showed a positive correlation with CTGF and CYR61. To validate this link, RASSF1A was overexpressed in HT1376 cells. Overexpressed RASSF1A activated Hippo pathway, followed by a decrease in CTGF and CYR61 at mRNA, and enhanced cytotoxicity to chemotherapeutic drugs. This study finds a previously unrecognized role of RASSF1A in the regulation of CTGF and CYR61 through mediation of Hippo pathway in UBC and supports the significance of this link as a potential therapeutic target for UBC.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
9.
Oxid Med Cell Longev ; 2019: 3829342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885785

RESUMO

Little information has been available about the influence of dietary genistein (GEN) on hepatic transcriptome of laying broiler breeder (LBB) hens. The study is aimed at broadening the understanding of RNA expression profiles and alternative splicing (AS) signatures of GEN-treated breeder hens and thereby improving laying performance and immune function of hens during the late egg-laying period. 720 LBB hens were randomly allocated into three groups with supplemental dietary GEN doses (0, 40 mg/kg, and 400 mg/kg). Each treatment has 8 replicates of 30 birds. Dietary GEN enhanced the antioxidative capability of livers, along with the increased activities of glutathione peroxidase and catalase. Furthermore, it improved lipid metabolic status and apoptotic process in the liver of hens. 40 mg/kg dietary GEN had the better effects on improving immune function and laying performance. However, transcriptome data indicated that 400 mg/kg dietary GEN did negative regulation of hormone biosynthetic process. Also, it upregulated the expressions of EDA2R and CYR61 by the Cis regulation of neighbouring genes (lncRNA_XLOC_018890 and XLOC_024242), which might activate NF-κB and immune-related signaling pathway. Furthermore, dietary GEN induced AS events in the liver, which also enriched into immune and metabolic process. Therefore, the application of 40 mg/kg GEN in the diet of breeder hens during the late egg-laying period can improve lipid metabolism and immune function. We need to pay attention to the side-effects of high-dose GEN on the immune function.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Genisteína/farmacologia , Fígado/efeitos dos fármacos , RNA/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Galinhas , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , RNA Longo não Codificante/metabolismo , Triglicerídeos/sangue , Receptor Xedar/genética , Receptor Xedar/metabolismo
10.
Cells ; 8(11)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731760

RESUMO

CCN1 and CCN2 are members of the CCN family and play essential roles in the regulation of multiple female reproductive functions, including ovulation. Cyclooxygenase-2 (COX2) is a critical mediator of ovulation and can be induced by sphingosine-1-phosphate (S1P) through the S1P1/3-mediated Yes-associated protein (YAP) signaling. However, it is unclear whether CCN1 or CCN2 can mediate S1P-induced upregulation of COX2 expression and increase in prostaglandin E2 (PGE2) production in human granulosa-lutein (hGL) cells. In the present study, we investigated the effects of S1P on the expressions of CCN1 and CCN2 in hGL cells. Additionally, we used a dual inhibition approach (siRNA-mediated silencing and small molecular inhibitors) to investigate the molecular mechanisms of S1P effects. Our results showed that S1P treatment significantly upregulated the expression of CCN1 and CCN2 in a concentration-dependent manner in hGL cells. Additionally, inhibition or silencing of S1P1, but not S1P3, completely abolished the S1P-induced upregulation of CCN2 expression. Furthermore, we demonstrated that S1P-induced nuclear translocation of YAP and inhibition or silencing of YAP completely abolished the S1P-induced upregulation of CCN1 and CCN2 expression. Notably, silencing of CCN2, but not CCN1, completely reversed the S1P-induced upregulation of COX2 expression and the increase in PGE2 production. Thus, CCN2 mediates the S1P-induced upregulation of COX2 expression through the S1P1-mediated signaling pathway in hGL cells. Our findings expand our understanding of the molecular mechanism underlying the S1P-mediated cellular activities in the human ovary.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Células Lúteas/citologia , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína Rica em Cisteína 61/genética , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/metabolismo , Regulação para Cima
11.
BMC Cancer ; 19(1): 1140, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31766991

RESUMO

BACKGROUND: Recent studies have found that inflammatory response is involved in the pathogenesis of ovarian cancer. Advanced ovarian cancer is often presented with ascites that is rich in cytokines, inflammatory factors or cancer cells. Therefore, it is important to study the microenvironment of ascites in order to further clarify the occurrence and progression of ovarian cancer. As a pro-inflammatory factor, the Cyr61 expression patterns are inconsistent in human tumors. Although it has been reported that Cyr61 is related to the progression of ovarian cancer, its specific mechanism is not yet clear. This study sought to evaluate the Cyr61 levels of ascites, serum and different tissues of ovarian cancer to explore the potential association of Cyr61with the tumor-associated inflammatory microenvironment of EOC. METHODS: Tumor specimens were procured from patients with ovarian serous cystadenocarcinoma and ovarian serous cystadenoma. Cyr61 and IL-6 levels of serum or ascites were determined by ELISA (Enzyme-Linked ImmunoSorbent Assay), while Cyr61 expressions of different ovarian tumor tissues were evaluated by IHC (Immunohistochemistry). Then the correlation of Cyr61 level in ascites with clinicopathologic features was analyzed. And other laboratory data were obtained from medical records. RESULTS: Both in ascites and serum, significantly higher Cyr61 levels were found in ovarian serous cystadenocarcinoma. In malignant ascites, higher Cyr61 level of ovarian serous cystadenocarcinoma was more closely associated with FIGO stage, initial tumor size > 10 cm and the residual tumor size. And the increased IL-6 level was linearly related to Cyr61 level. Moreover, the serum levels of Cyr61, IL-6 and CRP in advanced stage of ovarian cancer were much higher than those in early stage. Lastly, the IHC data demonstrate that Cyr61 expression of ovarian serous adenocarcinoma was higher than that of ovarian serous cystadenoma, but it was lower than the paired metastatic lesions. CONCLUSIONS: As a pro-inflammatory factor, increased ascites Cyr61 level is associated with FIGO stage, initial tumor size > 10 cm and the residual tumor size. Moreover, serum Cyr61 may be used as a potential marker for EOC inflammatory response. Finally, Cyr61 may be involved in the process of tumor metastasis and progression by producing IL-6 and CRP in the EOC inflammatory microenvironment.


Assuntos
Biomarcadores Tumorais , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Proteína Rica em Cisteína 61/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Adulto , Idoso , Linhagem Celular Tumoral , Citocinas/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias
12.
Biochem Biophys Res Commun ; 520(2): 385-391, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31606201

RESUMO

Previous studies have shown that sarcopenic obesity is highly prevalent in patients with chronic kidney disease (CKD). Here, the association between CKD and sarcopenic obesity were investigated. The 5/6 nephrectomy was performed to establish CKD in mice. Fluorescence-activated cell sorting (FACS), quantitative real-time PCR, ELISA kits assay, immunohistochemistry, and cell proliferation assay were carried out to investigate the condition of muscle loss and fatty infiltration were in CKD mice and the origin of adipocytes. Muscle atrophy occurred and adipogenic gene expression, Perilipin and FABP4 were markedly increased in the hind limb muscle of CKD mice. Results indicated that fibro/adipogenic progenitors (FAPs) are the precursor of adipocytes in the muscle of CKD mice. Meanwhile, the content of extracellular matrix protein CCN1 was notably increased in serum of CKD patients with sarcopenic obesity which was also found in muscle and serum of CKD mice. CCN1 induced the differentiation of FAPs into adipocytes. These results suggest that CKD mice are susceptible to sarcopenic obesity. CCN1 may be a novel activator of the differentiation of FAPs in CKD muscle.


Assuntos
Adipócitos/patologia , Proteína Rica em Cisteína 61/sangue , Proteína Rica em Cisteína 61/metabolismo , Músculo Esquelético/patologia , Insuficiência Renal Crônica/patologia , Adipogenia , Idoso , Animais , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Nefrectomia , Insuficiência Renal Crônica/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
13.
Biomed Pharmacother ; 120: 109269, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542614

RESUMO

BACKGROUND: Long noncoding RNA LINC00511 has been identified to be aberrant expression and may as a tumor oncogene in various carcinomas. However, the potential role of LINC00511 in the onset of Preeclampsia (PE) pathogenesis remains unexplored. METHODS: Placental tissues from patients with PE were collected to detect expression levels of LINC00511 by qRT-PCR. Human HTR-8/SVneo trophoblast cell line was cultured, CCK-8 assay, wound healing assay and transwell assay were performed to determine the regulation of trophoblast biological function by LINC00511. Bioinformatics analysis, chromatin immunoprecipitation (ChIP), luciferases reporter assay were performed to verify the regulatory mechanism of LINC00511. RESULTS: LINC00511 was aberrantly down-regulated in placental tissues of PE patients. Overexpression of LINC00511 promoted trophoblast cell proliferation, migration and invasion. The transcription factor AP2γ directly binds to the promoter region of LINC00511 to activate transcription. In addition, LINC00511 was enriched in cytoplasm and functioned as a molecular spong for miR-29b-3p, antagonizing its ability to repress Cyr61 protein translation. CONCLUSION: This study demonstrated that AP2γ mediated downregulation of LINC00511 suppresses trophoblast invasion by regulating miR-29b-3p/ Cyr61 axis.


Assuntos
Movimento Celular , Proteína Rica em Cisteína 61/metabolismo , MicroRNAs/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição AP-2/metabolismo , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Feminino , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , RNA Longo não Codificante/genética , Transdução de Sinais , Fator de Transcrição AP-2/genética , Trofoblastos/patologia
14.
Nat Commun ; 10(1): 4198, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519929

RESUMO

Maintenance of high-turnover tissues such as the epidermis requires a balance between stem cell proliferation and differentiation. The molecular mechanisms governing this process are an area of investigation. Here we show that HNRNPK, a multifunctional protein, is necessary to prevent premature differentiation and sustains the proliferative capacity of epidermal stem and progenitor cells. To prevent premature differentiation of progenitor cells, HNRNPK is necessary for DDX6 to bind a subset of mRNAs that code for transcription factors that promote differentiation. Upon binding, these mRNAs such as GRHL3, KLF4, and ZNF750 are degraded through the mRNA degradation pathway, which prevents premature differentiation. To sustain the proliferative capacity of the epidermis, HNRNPK is necessary for RNA Polymerase II binding to proliferation/self-renewal genes such as MYC, CYR61, FGFBP1, EGFR, and cyclins to promote their expression. Our study establishes a prominent role for HNRNPK in maintaining adult tissue self-renewal through both transcriptional and post-transcriptional mechanisms.


Assuntos
Diferenciação Celular/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , RNA Mensageiro/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epiderme/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Elife ; 82019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429823

RESUMO

CCN1 (CYR61) stimulates active angiogenesis in various tumours, although the mechanism is largely unknown. Here, we report that CCN1 is a key regulator of endothelial tip cell activity in angiogenesis. Microvessel networks and directional vascular cell migration patterns were deformed in ccn1-knockdown zebrafish embryos. CCN1 activated VEGFR2 and downstream MAPK/PI3K signalling pathways, YAP/TAZ, as well as Rho effector mDia1 to enhance tip cell activity and CCN1 itself. VEGFR2 interacted with integrin αvß3 through CCN1. Integrin αvß3 inhibitor repressed tip cell number and sprouting in postnatal retinas from endothelial cell-specific Ccn1 transgenic mice, and allograft tumours in Ccn1 transgenic mice showed hyperactive vascular sprouting. Cancer patients with high CCN1 expression have poor survival outcomes and positive correlation with ITGAV and ITGB3 and high YAP/WWTR1. Thus, our data underscore the positive feedback regulation of tip cells by CCN1 through integrin αvß3/VEGFR2 and increased YAP/TAZ activity, suggesting a promising therapeutic intervention for pathological angiogenesis.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Células Endoteliais/fisiologia , Integrina alfaVbeta3/metabolismo , Neovascularização Patológica , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteína Rica em Cisteína 61/genética , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Transgênicos , Mapas de Interação de Proteínas , Peixe-Zebra
16.
Mol Cell Biol ; 39(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31262999

RESUMO

Cellular communication network factor 1 (CCN1) is a dynamically expressed, matricellular protein required for vascular development and tissue repair. The CCN1 gene is a presumed target of Yes-associated protein (YAP), a transcriptional coactivator that regulates cell growth and organ size. Herein, we demonstrate that the CCN1 promoter is indeed a direct genomic target of YAP in endothelial cells (ECs) of new blood vessel sprouts and that YAP deficiency in mice downregulates CCN1 and alters cytoskeletal and mitogenic gene expression. Interestingly, CCN1 overexpression in cultured ECs inactivates YAP in a negative feedback and causes its nuclear exclusion. Accordingly, EC-specific deletion of the CCN1 gene in mice mimics a YAP gain-of-function phenotype, characterized by EC hyperproliferation and blood vessel enlargement. CCN1 brings about its effect by providing cells with a soft compliant matrix that creates YAP-repressive cytoskeletal states. Concordantly, pharmacological inhibition of cell stiffness recapitulates the CCN1 deletion vascular phenotype. Furthermore, adeno-associated virus-mediated expression of CCN1 reversed the pathology of YAP hyperactivation and the subsequent aberrant growth of blood vessels in mice with ischemic retinopathy. Our studies unravel a new paradigm of functional interaction between CCN1 and YAP and underscore the significance of their interplay in the pathogenesis of neovascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Rica em Cisteína 61/genética , Doenças Retinianas/metabolismo , Vasos Retinianos/patologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Proliferação de Células , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Doenças Retinianas/genética , Doenças Retinianas/patologia , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Fatores de Transcrição/genética
17.
Theranostics ; 9(13): 3853-3865, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281518

RESUMO

N6-Methyladenosine (m6A) is the most prevalent internal modification in mammalian mRNAs. Although m6A is important in many biological processes, its roles in the placenta are unclear. Methods: Levels of global mRNA m6A methylation and ALKBH5 expression in recurrent miscarriage (RM) patients were determined using quantitative reverse transcription-PCR (qRT-PCR), m6A RNA methylation quantification, and immunohistochemical methods. Using ALKBH5 overexpression and knockdown methods, we determined the role of ALKBH5 in trophoblast invasion at the maternal interface through trophoblasts and an extravillous explant culture experiments. Furthermore, the regulation of CYR61 by ALKBH5 was explored by RNA-sequencing coupled with methylated RNA immunoprecipitation. Results: We found that the level of global mRNA m6A methylation was significantly decreased in placental villous tissue from RM patients, while ALKBH5 expression was specifically unregulated. Furthermore, we demonstrated that ALKBH5 knockdown in human trophoblast promoted trophoblast invasion. Conversely, overexpression of ALKBH5 inhibited cell invasion. ALKBH5 knockdown promoted trophoblast invasion in villous explant culture experiments, while overexpression of ALKBH5 repressed these effects. Furthermore, we clarified that ALKBH5 inhibited trophoblast invasion by regulating CYR61 mRNA stability, and this RNA regulation is m6A dependent. Mechanistic analyses showed that decreased ALKBH5 in trophoblast increased the half-life of CYR61 mRNA and promoted steady-state CYR61 mRNA expression levels. Conclusions: We elucidated the functional roles of ALKBH5 and mRNA m6A methylation in trophoblast and identified a novel RNA regulatory mechanism, providing a basis for further exploration of broad RNA epigenetic regulatory patterns in RM diseases.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteína Rica em Cisteína 61/genética , Troca Materno-Fetal/genética , Estabilidade de RNA/genética , Trofoblastos/citologia , Trofoblastos/enzimologia , Aborto Habitual/genética , Adenosina/metabolismo , Adulto , Movimento Celular/genética , Proteína Rica em Cisteína 61/metabolismo , Feminino , Humanos , Metilação , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Adulto Jovem
18.
Mediators Inflamm ; 2019: 8697257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148949

RESUMO

Background: The transcriptional networks of Cyr61 and its function in cell injury are poorly understood. The present study depicted the lncRNA and mRNA profiles and the involvement in angiotensin II-induced injury after Cyr61 knockdown mediated by CRISPR/Cas9 in HEK293T cells. Methods: HEK293T cells were cultured, and Cyr61 knockdown was achieved by transfection of the CRISPR/Cas9 KO plasmid. lncRNA and mRNA microarrays were used to identify differentially expressed genes (DEGs). Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to determine biofunctions and signaling pathways. RT-PCR was used to validate the microarray results. Cells were divided into four groups: control, Cyr61 knockdown, angiotensin II (Ang II) without Cyr61 knockdown, and Ang II with Cyr61 knockdown. CCK8, western blotting, and flow cytometry analysis were carried out to dissect cellular function. Results: A total of 23184 lncRNAs and 28264 mRNAs were normalized. 26 lncRNAs and 212 mRNAs were upregulated, and 74 lncRNAs and 233 mRNAs were downregulated after Cyr61 knockdown. Analysis of cellular components, molecular functions, biological processes, and regulatory pathways associated with the differentially expressed mRNAs revealed downstream mechanisms of the Cyr61 gene. The differentially expressed genes were affected for small cell lung cancer, axon guidance, Fc gamma R-mediated phagocytosis, MAPK signaling pathway, focal adhesion, insulin resistance, and metabolic pathways. In addition, Cyr61 expression was increased in accordance with induction of cell cycle arrest and apoptosis and inhibition of cell proliferation induced by Ang II. Knockdown of Cyr61 in HEK293T cells promoted cell cycle procession, decreased apoptosis, and promoted cell proliferation. Conclusions: The Cyr61 gene is involved in Ang II-induced injury in HEK293T cells. Functional mechanisms of the differentially expressed lncRNAs and mRNAs as well as identification of metabolic pathways will provide new therapeutic targets for Cyr61-realated diseases.


Assuntos
Angiotensina II/farmacologia , Sistemas CRISPR-Cas/efeitos dos fármacos , Proteína Rica em Cisteína 61/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Rica em Cisteína 61/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Células HEK293 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
19.
Cancer Lett ; 460: 42-53, 2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31233838

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a refractory disease. Programmed cell death protein-1 (PD-1) monotherapy has shown strong performance in targeting several malignancies. However, the effect and mechanism of intrinsic PD-1 in pancreatic cancer cells is still unknown. In this study, associations between clinicopathological characteristics and stained tissue microarrays of PDAC specimens were analyzed along with profiling and functional analyses. The results showed that cell-intrinsic PD-1 was significantly correlated with overall survival (OS). Independently of adaptive immunity, intrinsic PD-1 promoted tumor growth in PDAC. Concomitantly, the overexpression of intrinsic PD-1 enhanced cancer proliferation and inhibited cell apoptosis in vitro and in vivo. Mechanistically, PD-1 binds to the downstream MOB1, thereby inhibiting its phosphorylation. Moreover, greater synergistic tumor suppression in vitro resulted from combining Hippo inhibitors with anti-PD-1 treatment compared with the suppression achieved by either single agent alone. Additionally, Hippo downstream targets, CYR61 (CCN1) and CTGF (CCN2), were directly affected by PD-1 mediated Hippo signaling activation in concert with survival outcomes. Finally, the formulated nomogram showed superior predictive accuracy for OS in comparison with the TNM stage alone. Therefore, PD-1 immunotherapy in combination with Hippo pathway inhibitors may optimize the anti-tumor efficacy in PDAC patients via targeting cell-intrinsic PD-1.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biol Reprod ; 101(2): 445-456, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31210269

RESUMO

Connective tissue growth factor (also known as CTGF or CCN2) is a secreted matricellular protein that belongs to the CCN family. With wide-ranging biological activities and tissue expression patterns, CTGF plays a critical role in regulating various cellular functions. In the female reproductive system, CTGF is highly expressed in granulosa cells in growing ovarian follicles and is involved in the regulation of follicular development, ovulation, and luteal function. In the mammalian ovary, bone morphogenetic protein 6 (BMP6) is an important intraovarian modulator of follicular development. In this study, we demonstrated that BMP6 treatment significantly increased the expression of CTGF in both primary and immortalized human granulosa cells. Using both pharmacological inhibitors and Small interfering RNA-mediated knockdown approaches, we showed that ALK2 and ALK3 type I receptors are required for BMP6-induced cellular activities. Furthermore, this effect is most likely mediated by a Sma- and Mad-related protein (SMAD)-dependent pathway. Our studies provide novel insight into the molecular mechanisms by which an intraovarian growth factor affects the production of another factor via a paracrine effect in human granulosa cells.


Assuntos
Proteína Morfogenética Óssea 6/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células da Granulosa/metabolismo , Proteínas Smad/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células da Granulosa/efeitos dos fármacos , Humanos , Luteinização , Hormônio Luteinizante , Transdução de Sinais , Proteínas Smad/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA