Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.219
Filtrar
1.
Medicine (Baltimore) ; 99(24): e20253, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32541451

RESUMO

This study is to explore the molecular mechanism of benign bile duct hypertrophic scar formation.Differential proteins between the normal fibroblast (NFB) and scar fibroblast (SCFB) were screened by protein chip assay, and analyzed by pathway-enrichment analysis and function-enrichment analysis. The differential proteins were further tested by ELISA. SiRNA-Act B was transfected to SCFB to down-regulate the expression of Act B. NFB was incubated with rh-Act B. The cell apoptosis and cell cycle were determined by flow cytometry. The expression of Act B, Smad2/3, transforming growth factor-ß1 (TGF-ß1), endothelin-1 (ET-1), thrombospondin-1 (Tsp-1), and Oncostatin M (OSM) were detected by Western blot.A total of 37 differential proteins were identified in SCFBs by microarray (P < .05), including 27 up-regulated proteins and 10 down-regulated proteins (P < .05). Their function were associated with Activin signaling, synthesis and degradation of extracellular matrix, formation and activation of cytokine, inflammatory reaction, immunoreaction, tissue damage reaction, cell cycle, migration, apoptosis, and secretion, etc. ELISA results showed that the expression of Act B, TGF-ß1, ET-1 were higher in SCFBs, while the expression of Tsp-1 and OSM were lower in SCFBs (P < .05). After interfered by siRNA-Act B, the expression of Act B mRNA decreased (P < .05). The percentage of early apoptosis increased (P < .05). The expression of Act B, Smad2/3, TGF-ß1 were decreased and Tsp-1, OSM were increased (P < .05). After treatment with rh-Act B, the percentage of G0/G1 phase of NFBs was decreased and that of S phase was increased without significance (P > .05). The expression of Act B, Smad2/3, TGF-ß1 were increased (P < .05) and Tsp-1, OSM were decreased (P < .01).There are differentially expressed proteins between SCFBs and NFBs. Activin B signal plays an important role in the process of NFB transforming to SCFB, and TGF-ß1, Smad2/3, Tsp-1, and OSM are important participants.


Assuntos
Ativinas/metabolismo , Ductos Biliares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais/fisiologia , Adulto , Apoptose/fisiologia , Ciclo Celular/fisiologia , Cicatriz Hipertrófica , Endotelina-1/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oncostatina M/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Smad2/metabolismo , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Clin Sci (Lond) ; 134(12): 1357-1376, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32490513

RESUMO

Non-specific inhibition of Rho-associated kinases (ROCKs) alleviated renal fibrosis in the unilateral ureteral obstruction (UUO) model, while genetic deletion of ROCK1 did not affect renal pathology in mice. Thus, whether ROCK2 plays a role in renal tubulointerstitial fibrosis needs to be clarified. In the present study, a selective inhibitor against ROCK2 or genetic approach was used to investigate the role of ROCK2 in renal tubulointerstitial fibrosis. In the fibrotic kidneys of chronic kidney diseases (CKDs) patients, we observed an enhanced expression of ROCK2 with a positive correlation with interstitial fibrosis. In mice, the ROCK2 protein level was time-dependently increased in the UUO model. By treating CKD animals with KD025 at the dosage of 50 mg/kg/day via intraperitoneal injection, the renal fibrosis shown by Masson's trichrome staining was significantly alleviated along with the reduced expression of fibrotic genes. In vitro, inhibiting ROCK2 by KD025 or ROCK2 knockdown/knockout significantly blunted the pro-fibrotic response in transforming growth factor-ß1 (TGF-ß1)-stimulated mouse renal proximal tubular epithelial cells (mPTCs). Moreover, impaired cellular metabolism was reported as a crucial pathogenic factor in CKD. By metabolomics analysis, we found that KD025 restored the metabolic disturbance, including the impaired glutathione metabolism in TGF-ß1-stimulated tubular epithelial cells. Consistently, KD025 increased antioxidative stress enzymes and nuclear erythroid 2-related factor 2 (Nrf2) in fibrotic models. In addition, KD025 decreased the infiltration of macrophages and inflammatory response in fibrotic kidneys and blunted the activation of macrophages in vitro. In conclusion, inhibition of ROCK2 may serve as a potential novel therapy for renal tubulointerstitial fibrosis in CKD.


Assuntos
Células Epiteliais/enzimologia , Túbulos Renais Proximais/patologia , Doenças Metabólicas/enzimologia , Quinases Associadas a rho/antagonistas & inibidores , Adolescente , Animais , Anti-Inflamatórios/farmacologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Feminino , Fibrose , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Lactente , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Doenças Metabólicas/patologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Células RAW 264.7 , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/enzimologia , Obstrução Ureteral/patologia , Quinases Associadas a rho/metabolismo
3.
PLoS One ; 15(6): e0234706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574191

RESUMO

PURPOSE: We assessed whether mitomycin-C (MMC) has different antifibrotic mechanisms in trabeculectomy wound healing. METHODS: We identified 2 concentrations of MMC as "low-dose" by using WST-1 assay, Lactic dehydrogenase assay, and fluorescence-activated cell sorting flow cytometry. Senescence-associated ß-galactosidase (SA-ß-gal) and fibrotic gene expression was examined through immunocytochemistry, flow cytometry, real-time quantitative reverse transcription polymerase chain reaction, Western blotting, zymography, and modified scratch assay in vitro. In vivo, 0.1 mL of MMC or normal saline was injected to Tenon's capsule before trabeculectomy in a rabbit model. SA-ß-gal expression, apoptotic cell death, and collagen deposition in sites treated and not treated with MMC were evaluated using terminal dUTP nick end labeling assay and histochemical staining. Bleb function and intraocular pressure (IOP) levels were examined 3, 7, 14, 21, 28, and 35 days after trabeculectomy. RESULTS: In vitro, human Tenon's fibroblast (HTF) senescence was confirmed by observing cell morphologic change, SA-ß-gal accumulation, formation of senescence-associated heterochromatin, increased p16INK4a and p21CIP1/WAF1 expression, lower percentage of Ki-67-positive cells, and decreased COL1A1 release. Increased expression of α-SMA, COL1A1, and Smad2 signaling in TGF-ß1-induced stress fibers were passivated in senescent HTFs. In addition, cellular migration enhanced by TGF-ß1was inactivated. In vivo, histological examination indicated increased SA-ß-gal accumulation, lower apoptosis ratios, and looser collagen deposition in sites treated with 0.2 µM MMC. Low-dose MMC-induced cellular senescence prolonged trabeculectomy bleb survival and reduced IOP levels in a rabbit model. CONCLUSION: Low-dose MMC-induced cellular senescence is involved in the antifibrotic mechanism of trabeculectomy wound healing.


Assuntos
Senescência Celular/efeitos dos fármacos , Mitomicina/farmacologia , Trabeculectomia , Animais , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibrose , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Coelhos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Cicatrização/efeitos dos fármacos
4.
Cancer Sci ; 111(7): 2385-2399, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32385953

RESUMO

The tumor microenvironment (TME) consists of various components including cancer cells, tumor vessels, cancer-associated fibroblasts (CAFs), and inflammatory cells. These components interact with each other via various cytokines, which often induce tumor progression. Thus, a greater understanding of TME networks is crucial for the development of novel cancer therapies. Many cancer types express high levels of TGF-ß, which induces endothelial-to-mesenchymal transition (EndMT), leading to formation of CAFs. Although we previously reported that CAFs derived from EndMT promoted tumor formation, the molecular mechanisms underlying these interactions remain to be elucidated. Furthermore, tumor-infiltrating inflammatory cells secrete various cytokines, including TNF-α. However, the role of TNF-α in TGF-ß-induced EndMT has not been fully elucidated. Therefore, this study examined the effect of TNF-α on TGF-ß-induced EndMT in human endothelial cells (ECs). Various types of human ECs underwent EndMT in response to TGF-ß and TNF-α, which was accompanied by increased and decreased expression of mesenchymal cell and EC markers, respectively. In addition, treatment of ECs with TGF-ß and TNF-α exhibited sustained activation of Smad2/3 signals, which was presumably induced by elevated expression of TGF-ß type I receptor, TGF-ß2, activin A, and integrin αv, suggesting that TNF-α enhanced TGF-ß-induced EndMT by augmenting TGF-ß family signals. Furthermore, oral squamous cell carcinoma-derived cells underwent epithelial-to-mesenchymal transition (EMT) in response to humoral factors produced by TGF-ß and TNF-α-cultured ECs. This EndMT-driven EMT was blocked by inhibiting the action of TGF-ßs. Collectively, our findings suggest that TNF-α enhances TGF-ß-dependent EndMT, which contributes to tumor progression.


Assuntos
Transição Epitelial-Mesenquimal , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Biomarcadores , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , NF-kappa B/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/farmacologia
5.
Respir Investig ; 58(4): 275-284, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32359980

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disorder. Recent studies have suggested that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells influences development of pulmonary fibrosis, which is mediated by transforming growth factor ß (TGF-ß). Tumor necrosis factor α (TNF-α), an important proinflammatory cytokine in IPF, has been shown to enhance TGF-ß-induced EMT. Nintedanib, a multiple tyrosine kinase inhibitor that is currently used to treat IPF, has been shown to suppress EMT in various cancer cell lines. However, the mechanism of EMT inhibition by nintedanib and its effect on TGF-ß and TNF-α signaling pathways in alveolar epithelial cells have not been fully elucidated. METHODS: A549 alveolar epithelial cells were stimulated with TGF-ß2 and TNF-α, and the effects of nintedanib on global gene expression were evaluated using microarray analysis. Furthermore, Smad2/3 phosphorylation was assessed using western blotting. RESULTS: We found that in A549 cells, TGF-ß2 and TNF-α treatment induces EMT, which was inhibited by nintedanib. Gene ontology analysis showed that nintedanib significantly attenuates the gene expression of EMT-related cellular pathways and the TGF-ß signaling pathway, but not in the TNF-α-mediated signaling pathway. Furthermore, hierarchical cluster analysis revealed that EMT-related genes were attenuated in nintedanib-treated cells. Additionally, nintedanib was found to markedly suppress phosphorylation of Smad2/3. CONCLUSION: Nintedanib inhibits EMT by mediating EMT-related gene expression and the TGF-ß/Smad pathway in A549 alveolar epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Indóis/farmacologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Células A549 , Expressão Gênica/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
6.
Mol Cell ; 78(6): 1133-1151.e14, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32402252

RESUMO

Precise control of the RNA polymerase II (RNA Pol II) cycle, including pausing and pause release, maintains transcriptional homeostasis and organismal functions. Despite previous work to understand individual transcription steps, we reveal a mechanism that integrates RNA Pol II cycle transitions. Surprisingly, KAP1/TRIM28 uses a previously uncharacterized chromatin reader cassette to bind hypo-acetylated histone 4 tails at promoters, guaranteeing continuous progression of RNA Pol II entry to and exit from the pause state. Upon chromatin docking, KAP1 first associates with RNA Pol II and then recruits a pathway-specific transcription factor (SMAD2) in response to cognate ligands, enabling gene-selective CDK9-dependent pause release. This coupling mechanism is exploited by tumor cells to aberrantly sustain transcriptional programs commonly dysregulated in cancer patients. The discovery of a factor integrating transcription steps expands the functional repertoire by which chromatin readers operate and provides mechanistic understanding of transcription regulation, offering alternative therapeutic opportunities to target transcriptional dysregulation.


Assuntos
RNA Polimerase II/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Acetilação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Oncogenes/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética , RNA Polimerase II/genética , Proteína Smad2/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética , Proteína 28 com Motivo Tripartido/genética
7.
Arterioscler Thromb Vasc Biol ; 40(7): 1651-1663, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32404006

RESUMO

OBJECTIVE: SMAD3 pathogenic variants are associated with the development of thoracic aortic aneurysms. We sought to determine the role of SMAD3 in lineage-specific vascular smooth muscle cells (VSMCs) differentiation and function. Approach and Results: SMAD3 c.652delA, a frameshift mutation and nonsense-mediated decay, was introduced in human-induced pluripotent stem cells using CRISPR-Cas9. The wild-type and SMAD3-/- (c.652delA) human-induced pluripotent stem cells were differentiated into cardiovascular progenitor cells or neural crest stem cells and then to lineage-specific VSMCs. Differentiation, contractility, extracellular matrix synthesis, and TGF-ß (transforming growth factor-ß) signaling of the differentiated VSMCs were analyzed. The homozygous frameshift mutation resulted in SMAD3 deficiency and was confirmed in human-induced pluripotent stem cells by Sanger sequencing and immunoblot analysis. In cardiovascular progenitor cell-VSMCs, SMAD3 deletion significantly disrupted canonical TGF-ß signaling and decreased gene expression of VSMC markers, including SM α-actin, myosin heavy chain 11, calponin-1, SM22α, and key controlling factors, SRF and myocardin, but increased collagen expression. The loss of SMAD3 significantly decreased VSMC contractility. In neural crest stem cells-VSMCs, SMAD3 deficiency did not significantly affect the VSMC differentiation but decreased ELN (elastin) expression and increased phosphorylated SMAD2. Expression of mir-29 was increased in SMAD3-/- VSMCs, and inhibition of mir-29 partially rescued ELN expression. CONCLUSIONS: SMAD3-dependent TGF-ß signaling was essential for the differentiation of cardiovascular progenitor cell-VSMCs but not for the differentiation of neural crest stem cell-VSMCs. The lineage-specific TGF-ß responses in human VSMCs may potentially contribute to the development of aortic root aneurysms in patients with SMAD3 mutations.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Smad3/deficiência , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/fisiopatologia , Células Cultivadas , Elastina/genética , Elastina/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Mutação da Fase de Leitura , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular , Vasoconstrição
8.
Nat Commun ; 11(1): 1749, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273499

RESUMO

Transforming growth factor beta (TGFß) is a multipotent immunosuppressive cytokine. TGFß excludes immune cells from tumors, and TGFß inhibition improves the efficacy of cytotoxic and immune therapies. Using preclinical colorectal cancer models in cell type-conditional TGFß receptor I (ALK5) knockout mice, we interrogate this mechanism. Tumor growth delay and radiation response are unchanged in animals with Treg or macrophage-specific ALK5 deletion. However, CD8αCre-ALK5flox/flox (ALK5ΔCD8) mice reject tumors in high proportions, dependent on CD8+ T cells. ALK5ΔCD8 mice have more tumor-infiltrating effector CD8+ T cells, with more cytotoxic capacity. ALK5-deficient CD8+ T cells exhibit increased CXCR3 expression and enhanced migration towards CXCL10. TGFß reduces CXCR3 expression, and increases binding of Smad2 to the CXCR3 promoter. In vivo CXCR3 blockade partially abrogates the survival advantage of an ALK5ΔCD8 host. These data demonstrate a mechanism of TGFß immunosuppression through inhibition of CXCR3 in CD8+ T cells, thereby limiting their trafficking into tumors.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Receptores CXCR3/genética , Fator de Crescimento Transformador beta/farmacologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Receptores CXCR3/metabolismo , Proteína Smad2/metabolismo
9.
J Nat Med ; 74(3): 513-524, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193805

RESUMO

Liver fibrosis is a pathological manifestation induced by chronic liver injury and may cause cirrhosis and liver cancer with the chronic progression of fibrosis. During the onset and progression of liver fibrosis, the activation of hepatic stellate cells (HSCs) is the core mechanism for the secretion of many extracellular matrices to induce fibrosis. Lignans are reportedly the main effective components of Schisandra chinensis with good anti-fibrosis effects. In this study, we compared the inhibiting effects of the seven lignan components from S. chinensis on HSC activation. We found that the seven lignans inhibited the activation of human HSCs (LX-2) in various degrees. Among all lignans, schisanhenol showed the best effect in inhibiting the activation of LX-2 with a dose-effect relationship. Sal also inhibited the phosphorylations of Smad1, Smad2, Smad3, extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and nuclear transcription factor-κB (NF-κB), as well as downregulated Smad4. All these findings suggested that schisanhenol may ameliorate liver fibrosis by inhibiting the transforming growth factor ß (TGF-ß)/Smad and mitogen-activated protein kinase (MAPK) signaling pathways. Remarkably, schisanhenol may be a potential anti-liver fibrosis drug and warrants further research.


Assuntos
Ciclo-Octanos/farmacologia , Células Estreladas do Fígado/metabolismo , Lignanas/farmacologia , Cirrose Hepática/prevenção & controle , Compostos Policíclicos/farmacologia , Schisandra/química , Linhagem Celular , Frutas/química , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cirrose Hepática/patologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Ecotoxicol Environ Saf ; 195: 110464, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171946

RESUMO

Nickel compounds are known to be common environmental and occupational carcinogens which also promote the migration of lung cancer cells. However, the molecular mechanism yet remains to be clarified. Hydrogen sulfide (H2S) is involved in cancer biological processes. However, the exact effect and functionality of H2S on nickel, towards the promotion of the migration ability of lung cancer cells, remains to be unknown. In this study, we have found that the nickel chloride (NiCl2) treatment significantly downregulates the protein levels of endogenous H2S enzyme cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE) and 3-Mercaptopyruvate sulfurtransferase (3-MST). A correlation between NiCl2-induced epithelial-mesenchymal transition (EMT) and the migration ability of lung cancer A549 cells has been observed. Exogenous H2S donor, sodium hydrogen sulfide (NaHS) (100 µmol/L), can reverse NiCl2-induced EMT as well as the migration ability of A549 cells. NiCl2 treatment is able to upregulate the protein level of transforming growth factor-ß1 (TGF-ß1), p-Smad2, p-Smad3, p-JNK, p-ERK and p-P38 in a time-dependent fashion, indicating that both TGF-ß1/Smad2/Smad3 and mitogen-activated protein kinase (MAPK) signaling cascades (a non-Smad pathway) may play essential roles in NiCl2-dependent EMT as well as cell migration of human lung cancer cells. Furthermore, exogenous NaHS alleviates the NiCl2-induced EMT and the migration ability of A549 cells only by regulating TGF-ß1/Smad2/Smad3, rather than the MAPK, signaling pathway. These results indicate that the exogenous administration of NaHS might be a potential therapeutic strategy against nickel-induced lung cancer progression.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Níquel/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia , Células A549 , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/química , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Sulfurtransferases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Curr Pharm Biotechnol ; 21(11): 1107-1118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32196447

RESUMO

OBJECTIVE: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. MATERIALS AND METHODS: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-ß1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 µM), followed by the stimulation of TGF-ß1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-ß1. RESULTS: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-ß1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. CONCLUSION: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apigenina/farmacologia , Fibroblastos/efeitos dos fármacos , Rim/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Apigenina/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Rim/metabolismo , Rim/patologia , Nefropatias/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/genética , Fosforilação , Ratos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
12.
Cancer Res ; 80(9): 1819-1832, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32127355

RESUMO

RING-finger E3 ligases are instrumental in the regulation of inflammatory cascades, apoptosis, and cancer. However, their roles are relatively unknown in TGFß/SMAD signaling. SMAD3 and its adaptors, such as ß2SP, are important mediators of TGFß signaling and regulate gene expression to suppress stem cell-like phenotypes in diverse cancers, including hepatocellular carcinoma (HCC). Here, PJA1, an E3 ligase, promoted ubiquitination and degradation of phosphorylated SMAD3 and impaired a SMAD3/ß2SP-dependent tumor-suppressing pathway in multiple HCC cell lines. In mice deficient for SMAD3 (Smad3 +/-), PJA1 overexpression promoted the transformation of liver stem cells. Analysis of genes regulated by PJA1 knockdown and TGFß1 signaling revealed 1,584 co-upregulated genes and 1,280 co-downregulated genes, including many implicated in cancer. The E3 ligase inhibitor RTA405 enhanced SMAD3-regulated gene expression and reduced growth of HCC cells in culture and xenografts of HCC tumors, suggesting that inhibition of PJA1 may be beneficial in treating HCC or preventing HCC development in at-risk patients.Significance: These findings provide a novel mechanism regulating the tumor suppressor function of TGFß in liver carcinogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Deleção de Genes , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fosforilação , RNA Interferente Pequeno , Proteínas Smad/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/deficiência , Proteína Smad3/genética , Espectrina/genética , Espectrina/metabolismo , Células-Tronco/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima , Sequenciamento Completo do Exoma
13.
PLoS One ; 15(2): e0228195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053631

RESUMO

Tissue fibrosis is a pathological condition characterized by uncontrolled fibroblast activation that ultimately leads to organ failure. The TGFß1 pathway, one of the major players in establishment of the disease phenotype, is dependent on the transcriptional co-activators YAP/TAZ. We were interested whether fibroblasts can be sensitized to TGFß1 by activation of the GPCR/YAP/TAZ axis and whether this mechanism explains the profibrotic properties of diverse GPCR ligands. We found that LPA, S1P and thrombin cooperate in human dermal fibroblasts with TGFß1 to induce extracellular matrix synthesis, myofibroblast marker expression and cytokine secretion. Whole genome expression profiling identified a YAP/TAZ signature behind the synergistic profibrotic effects of LPA and TGFß1. LPA, S1P and thrombin stimulation led to activation of the Rho-YAP axis, an increase of nuclear YAP-Smad2 complexes and enhanced expression of profibrotic YAP/Smad2-target genes. More generally, dermal, cardiac and lung fibroblast responses to TGFß1 could be enhanced by increasing YAP nuclear levels (with GPCR ligands LPA, S1P, thrombin or Rho activator) and inhibited by decreasing nuclear YAP (with Rho inhibitor, forskolin, latrunculin B or 2-deoxy-glucose). Thus, we present here a conceptually interesting finding that fibroblast responses to TGFß1 can be predicted based on the nuclear levels of YAP and modulated by stimuli/treatments that change YAP nuclear levels. Our study contributes to better understanding of fibrosis as a complex interplay of signalling pathways and proposes YAP/TAZ as promising targets in the treatment of fibrosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Receptores Acoplados a Proteínas-G/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Ativação Enzimática , Fibroblastos/metabolismo , Fibrose , Humanos , Ligantes , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Trombina/metabolismo , Quinases Associadas a rho/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32083975

RESUMO

A variant in the PRDM16 locus has been correlated with QRS duration in an electrocardiogram genome-wide association study, and the deletion of PRDM16 has been implicated as a causal factor of the dilated cardiomyopathy that is linked to 1p36 deletion syndrome. We aimed to determine how a null mutation of Prdm16 affects cardiac function and study the underlying mechanism of the resulting phenotype in an appropriate mouse model. We used cardiac-specific Prdm16 conditional knockout mice to examine cardiac function by electrocardiography. QRS duration and QTc interval increased significantly in cardiac-specific Prdm16 knockout animals compared with wild-type mice. Further, we assessed cardiomyopathy-associated features by trichrome staining, densitometry, and hydroxyproline assay. Prdm16-null hearts showed greater fibrosis and cardiomyocyte hypertrophy. By quantitative real-time PCR, Prdm16-null hearts upregulated extracellular matrix-related genes (Ctgf, Timp1) and α-smooth muscle actin (Acta2), a myofibroblast marker. Moreover, TGF-ß signaling was activated in Prdm16-null hearts, as evidenced by increased Tgfb1-3 transcript levels and phosphorylated Smad2. However, the inhibition of TGF-ß receptor did not reverse the aberrations in conduction in cardiac-specific Prdm16 knockout mice. To determine the underlying mechanisms, we performed RNA-seq using mouse left ventricular tissue. By functional analysis, Prdm16-null hearts experienced dysregulated expression of ion channel genes, including Kcne1, Scn5a, Cacna1h, and Cacna2d2. Mice with Prdm16-null hearts develop abnormalities in cardiac conduction and cardiomyopathy-associated phenotypes, including fibrosis and cellular hypertrophy. Further, the RNA-seq findings suggest that impairments in ion homeostasis (Ca2+, K+, and Na+) may at least partially underlie the abnormal conduction in cardiac-specific Prdm16 knockout mice.NEW & NOTEWORTHY This is the first study that describes aberrant cardiac function and cardiomyopathy-associated phenotypes in an appropriate murine genetic model with cardiomyocyte-specific Prdm16-null mutation. It is noteworthy that the correlation of PRDM16 with QRS duration is replicated in a murine animal model and the potential underlying mechanism may be the impairment of ion homeostasis.


Assuntos
Cardiomiopatias/genética , Proteínas de Ligação a DNA/genética , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Fenótipo , Fatores de Transcrição/genética , Actinas/genética , Actinas/metabolismo , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroencefalografia , Fibrose , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Proteína Smad2/genética , Proteína Smad2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Arthritis Rheumatol ; 72(7): 1123-1133, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32067417

RESUMO

OBJECTIVE: To investigate the effects of a young systemic environment and growth differentiation factor 11 (GDF-11) on aging cartilage. METHODS: A heterochronic parabiosis model (2-month-old mouse and 12-month-old mouse [Y/O]), an isochronic parabiosis model (12-month-old mouse and 12-month-old mouse [O/O]), and 12-month-old mice alone (O) were evaluated. Knee joints and chondrocytes from old mice were examined by radiography, histology, cell proliferation assays, immunohistochemistry, Western blotting, and quantitative reverse transcriptase-polymerase chain reaction 16 weeks after parabiosis surgery. GDF-11 was injected into 12-month-old mouse joints daily for 16 weeks. Cartilage degeneration, cell proliferation, and osteoarthritis-related gene expression were evaluated. RESULTS: Osteoarthritis Research Society International scores in old mice were significantly lower in the Y/O group than in the O/O and O groups (both P < 0.05). The percentage of 5-ethynyl-2'-deoxyuridine-positive chondrocytes in old mice was significantly higher in the Y/O group than in the other groups (P < 0.05). Type II collagen (CII) and SOX9 messenger RNA levels differed in cartilage from old mice in the Y/O group compared to the O/O and O groups (both P < 0.05). RUNX-2, CX, and matrix metalloproteinase 13 levels were significantly lower in cartilage from old mice in the Y/O group compared to the O/O and O groups (both P < 0.05). Similar results were obtained for protein expression levels and after GDF-11 treatment in vitro and in vivo. Phosphorylated Smad2/3 (pSmad2/3) levels were higher in the recombinant GDF-11-treated group than in the control group. CONCLUSION: A young systemic environment promotes chondrocyte proliferation and cartilage matrix synthesis in old mice. GDF-11, a "young factor," contributes to these effects through the up-regulation of pSmad2/3.


Assuntos
Envelhecimento/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Cartilagem Articular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Fatores de Diferenciação de Crescimento/farmacologia , Osteoartrite do Joelho/genética , Parabiose , Adolescente , Idoso , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Artroplastia do Joelho , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Colágeno Tipo II/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo X/efeitos dos fármacos , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Técnicas In Vitro , Articulação do Joelho , Masculino , Metaloproteinase 13 da Matriz/efeitos dos fármacos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Osteoartrite do Joelho/metabolismo , Fosforilação , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína Smad2/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/efeitos dos fármacos , Proteína Smad3/metabolismo , Joelho de Quadrúpedes , Adulto Jovem
16.
Mol Med Rep ; 21(3): 1581-1589, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016481

RESUMO

The relationship between osteoblasts and angiogenesis is vital for bone regeneration, especially mandibular and maxillary bones. Transforming growth factor ß1 (TGF­ß1) and vascular endothelial growth factor (VEGF) are closely related to angiogenesis; however, the regulatory mechanism between them remains unknown. The present study aimed to reveal this mechanism to provide novel insight for development of potential therapeutic opportunities. Western blotting and reverse transcription­quantitative PCR was used to assess the protein and mRNA expression levels in MC3T3­E1 preosteoblast cells and HUVECs, ELISAs were used to detect the expression levels of secreted VEGF, MTT assays were used to assess the viability of the cells, migratory ability was assessed using Transwell assays, angiogenesis assays were used to analyze the formation of blood vessels, and TGF­ß1 regulation was confirmed using a dual­luciferase reporter assay. The overexpression of specificity protein 1 (SP1) or TGF­ß1 increased VEGF expression levels and secretion, and promoted angiogenesis of co­cultured HUVECs. SP1 also promoted SMAD2 phosphorylation. These effects of SP1 were all reversed by the TGF­ß1 inhibitor. The VEGF inhibitor bevacizumab also reduced the SP1/TGF­ß1/SMAD2 pathway­induced angiogenesis of preosteoblasts. In conclusion, it was demonstrated that SP1 promoted TGF­ß1 expression, activated the SMAD2 pathway and induced VEGF secretion, which may enhance angiogenic processes in preosteoblasts.


Assuntos
Neovascularização Fisiológica , Osteogênese , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores , Expressão Gênica , Humanos , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Fosforilação , Proteína Smad2/genética , Fator de Transcrição Sp1/genética , Fator de Crescimento Transformador beta1/genética
17.
Gene ; 738: 144483, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070750

RESUMO

TGFß signaling pathway is critical for the cell division, differentiation and apoptosis, the aberrant regulation of which will result in severe diseases including cancer. N6-methyl-adenosine (m6A) is one of the most abundant modifications on mRNA, it is unclear yet how m6A epitranscriptome response to stimulation of TGFß. Here, we found that cellular m6A level of RNA was elevated after TGFß treatment, which might be regulated by upregulation of WTAP and METTL3. MeRIP-Seq of mRNAs of MCF7 with or without treated by TGFß showed that mRNA with upregulated m6A modification level after TGFß treatment were enriched in TGFß signaling pathway. Phosphorylated level of SMAD2 or SMAD3 induced by TGFß was impaired when WTAP was silenced. Moreover, the m6A modification and mRNA level of JunB, which is known as a cell cycle inhibitor, both were increased after induction of TGFß and decreased after knockdown of WTAP. Intriguingly, growth inhibition caused by TGFß was rescued in WTAP-knockdown cells. Collectively, these results reveal the key role that m6A pathway playing in the cell cycle arrest induced by TGFß signaling, providing new mechanisms explanation for growth inhibition mediated by TGFß.


Assuntos
Adenosina/análogos & derivados , Ciclo Celular/genética , Fator de Crescimento Transformador beta/metabolismo , Adenosina/metabolismo , Adenosina/fisiologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Divisão Celular , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/genética , Fosforilação , RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
18.
PLoS One ; 15(1): e0228160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995604

RESUMO

Recent studies have demonstrated the implication of long noncoding RNAs (lncRNAs) in a variety of physiological and pathological processes. However, the majority of lncRNAs are functionally unknown. The current study describes that the lncRNA MALAT1 regulates TGF-ß/Smad signaling pathway through formation of a lncRNA-protein complex containing Smads, SETD2 and PPM1A. Our data show that this lncRNA-proteins complex facilitates the dephosphorylation of pSmad2/3 by providing the interaction niche for pSmad2/3 and their specific phosphatase PPM1A, thus terminating TGF-ß/Smad signaling in hepatic cells. Based on these mechanistic studies, we performed further experiments to determine whether depletion of MALAT1 would augment cellular TGF-ß/Smad signaling. We observed that MALAT1 depletion enhanced TGF-ß/Smad signaling response, as reflect by amplification of Smad-mediated differentiation of induced pluripotent stem (iPS) cells to hepatocytes. Our experimental results demonstrate an important role of MALAT1 for regulation of TGF-ß/Smad signaling in hepatic cells. Given the diverse functions of TGF-ß/Smad pathway in various physiological and pathogenic processes, our results described in the current study will have broad implications for further understanding the role of MALAT1 in TGF-ß/Smad pathway in human biology and disease.


Assuntos
Hepatócitos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteína Fosfatase 2C/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Imunoprecipitação , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
19.
Am J Physiol Renal Physiol ; 318(3): F549-F556, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904287

RESUMO

Partial bladder outlet obstruction (pBOO) results in bladder fibrosis that is initiated by an inflammatory cascade and the decompensation after smooth muscle hypertrophy. We have been using an animal model to develop the hypothesis that mesenchymal stem cells (MSCs) are able to mitigate this cytokine cascade and prevent bladder deterioration. We hypothesized that intraperitoneal administration of MSCs can produce the same effects as intravenously administered cells but may require higher dosing. Intraperitoneal treatment will provide insights into the mechanisms of action and may offer advantages over intravenous administration, as it will permit allow higher doses and potentially reduce systemic exposure. Rats underwent a surgical induction of pBOO and instillation of either 1 × 106 or 5 × 106 commercially acquired MSCs into the peritoneum. RT-PCR, immunohistochemistry, and urodynamics were used to compare treatment groups with controls. pBOO resulted in a marked, statistically significant, upregulation of inflammatory markers in the bladder, including transforming growth factor-ß, hypoxia-inducible factor-1α, hypoxia-inducible factor-3α, mammalian target of rapamycin, and collagen types I and III. Moderate but inconsistent levels of downregulation were seen with 1 × 106 MSCs, but excellent and reliable downregulation was seen with 5 × 106 MSCs (P < 0.05). Immunohistochemistry confirmed that protein levels were affected in accordance with mRNA upregulation. Urodynamics demonstrated MSC treatment resulted in whole organ physiological benefits, as they prevented elevations in detrusor pressure. In conclusion, intraperitoneal administration of MSCs resulted in a similar effect as intravenous administration; however, this required a higher dose. This has significant implications for determining the mechanism of action and potential clinical application for human therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Obstrução do Colo da Bexiga Urinária/terapia , Animais , Feminino , Fibrose/patologia , Regulação da Expressão Gênica/fisiologia , Hipertrofia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Injeções Intraperitoneais , Músculo Liso/patologia , Doenças Musculares/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Urodinâmica
20.
Toxicol Appl Pharmacol ; 389: 114882, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31953203

RESUMO

Pulmonary fibrosis is a prototypic chronic progressive lung disease with high morbidity and mortality worldwide. Novel effective therapeutic agents are urgently needed owing to the limited treatment options in clinic. Herein, nagilactone D (NLD), a natural dinorditerpenoid obtained from Podocarpus nagi, was found to suppress transforming growth factor-ß1 (TGF-ß1)-mediated fibrotic process in vitro and bleomycin (BLM)-induced pulmonary fibrosis in vivo. NLD attenuated TGF-ß1-induced expression of fibrotic markers including type I and III collagen, fibronectin, α-SMA, and CTGF in human pulmonary fibroblasts (WI-38 VA-13 and HLF-1 cells). Mechanism study indicated that NLD suppressed TGF-ß1-induced up-regulation of TßR I, and Smad2 phosphorylation, nuclear translocation, and transcriptional activation. Moreover, NLD ameliorated BLM-induced histopathological abnormalities in the lungs of experimental fibrotic mice, suppressed synthesis of relative fibrotic markers and fibroblast-to-myofibroblast transition, as well as BLM-induced up-regulation of TßR I expression and Smad signaling in mouse lungs. These data collectively support NLD to be a potential therapeutic agent for pulmonary fibrosis.


Assuntos
Diterpenos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Proteína Smad2/metabolismo , Terpenos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores/metabolismo , Bleomicina/farmacologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA