Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 166(6): 517-527, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778188

RESUMO

Dysregulation of microRNAs (miRNAs) plays a key role during the pathogenesis of chemoresistance in lung cancer (LCa). Previous study suggests that miR-324-5p may serve as a unique miRNA signature for LCa, but its role and the corresponding molecular basis remain largely explored. Herein, we report that miR-324-5p expression was significantly increased in cisplatin (CDDP)-resistant LCa tissues and cells, and this upregulation predicted a poor post-chemotherapy prognosis in LCa patients. miR-324-5p was further shown to impact CDDP response: Ectopic miR-324-5p expression in drug-naïve LCa cells was sufficient to attenuate sensitivity to CDDP and to confer more robust tumour growth in CDDP-challenged nude mice. Conversely, ablation of miR-324-5p expression in resistant cells effectively potentiated CDDP-suppressed cell growth in vitro and in vivo. Using multiple approaches, we further identified the tumour suppressor FBXO11 as the direct down-stream target of miR-324-5p. Stable expression of FBXO11 could abrogate the pro-survival effects of miR-324-5p in CDDP-challenged LCa cells. Together, these findings suggest that miR-324-5p upregulation mediates, at least partially, the CDDP resistance by directly targeting FBXO11 signalling in LCa cells. In-depth elucidation of the molecular basis underpinning miR-324-5p action bears potential implications for mechanism-based strategies to improve CDDP responses in LCa.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas F-Box/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390828

RESUMO

Protein arginine methyltransferase 1 (PRMT1) can catalyze protein arginine methylation by transferring the methyl group from S-adenosyl-L-methionine (SAM) to the guanidyl nitrogen atom of protein arginine, which influences a variety of biological processes. The dysregulation of PRMT1 is involved in a diverse range of diseases, including cancer. Therefore, there is an urgent need to develop novel and potent PRMT1 inhibitors. In the current manuscript, a series of 1-substituted 1H-tetrazole derivatives were designed and synthesized by targeting at the substrate arginine-binding site on PRMT1, and five compounds demonstrated significant inhibitory effects against PRMT1. The most potent PRMT1 inhibitor, compound 9a, displayed non-competitive pattern with respect to either SAM or substrate arginine, and showed the strong selectivity to PRMT1 compared to PRMT5, which belongs to the type II PRMT family. It was observed that the compound 9a inhibited the functions of PRMT1 and relative factors within this pathway, and down-regulated the canonical Wnt/ß-catenin signaling pathway. The binding of compound 9a to PRMT1 was carefully analyzed by using molecular dynamic simulations and binding free energy calculations. These studies demonstrate that 9a was a potent PRMT1 inhibitor, which could be used as lead compound for further drug discovery.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Tetrazóis/química , Tetrazóis/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Humanos , Metilação , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
4.
Blood ; 134(6): 548-560, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31217189

RESUMO

The presence of FMS-like receptor tyrosine kinase-3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukemia (AML) is associated with poor clinical outcome. FLT3 tyrosine kinase inhibitors (TKIs), although effective in kinase ablation, do not eliminate primitive FLT3-ITD+ leukemia cells, which are potential sources of relapse. Thus, understanding the mechanisms underlying FLT3-ITD+ AML cell persistence is essential to devise future AML therapies. Here, we show that expression of protein arginine methyltransferase 1 (PRMT1), the primary type I arginine methyltransferase, is increased significantly in AML cells relative to normal hematopoietic cells. Genome-wide analysis, coimmunoprecipitation assay, and PRMT1-knockout mouse studies indicate that PRMT1 preferentially cooperates with FLT3-ITD, contributing to AML maintenance. Genetic or pharmacological inhibition of PRMT1 markedly blocked FLT3-ITD+ AML cell maintenance. Mechanistically, PRMT1 catalyzed FLT3-ITD protein methylation at arginine 972/973, and PRMT1 promoted leukemia cell growth in an FLT3 methylation-dependent manner. Moreover, the effects of FLT3-ITD methylation in AML cells were partially due to cross talk with FLT3-ITD phosphorylation at tyrosine 969. Importantly, FLT3 methylation persisted in FLT3-ITD+ AML cells following kinase inhibition, indicating that methylation occurs independently of kinase activity. Finally, in patient-derived xenograft and murine AML models, combined administration of AC220 with a type I PRMT inhibitor (MS023) enhanced elimination of FLT3-ITD+ AML cells relative to AC220 treatment alone. Our study demonstrates that PRMT1-mediated FLT3 methylation promotes AML maintenance and suggests that combining PRMT1 inhibition with FLT3 TKI treatment could be a promising approach to eliminate FLT3-ITD+ AML cells.


Assuntos
Arginina/metabolismo , Duplicação Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Biomarcadores Tumorais , Catálise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Metilação , Camundongos , Camundongos Knockout , Modelos Moleculares , Prognóstico , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química
5.
Cell Mol Life Sci ; 76(15): 2917-2932, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31123777

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Arginina/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Metilação , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Especificidade por Substrato
6.
Cell Mol Life Sci ; 76(15): 2967-2985, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31104094

RESUMO

The methylation of proteins is integral to the execution of many important biological functions, including cell signalling and transcriptional regulation. Protein methyltransferases (PMTs) are a large class of enzymes that carry out the addition of methyl marks to a broad range of substrates. PMTs are critical for normal cellular physiology and their dysregulation is frequently observed in human disease. As such, PMTs have emerged as promising therapeutic targets with several inhibitors now in clinical trials for oncology indications. The discovery of chemical inhibitors and antagonists of protein methylation signalling has also profoundly impacted our general understanding of PMT biology and pharmacology. In this review, we present general principles for drugging protein methyltransferases or their downstream effectors containing methyl-binding modules, as well as best-in-class examples of the compounds discovered and their impact both at the bench and in the clinic.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Medicina de Precisão , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/classificação , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/classificação , Proteína-Arginina N-Metiltransferases/metabolismo
7.
EBioMedicine ; 44: 98-111, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31101597

RESUMO

BACKGROUND: Triple negative breast cancers (TNBCs) have a poor prognosis and are not amenable to endocrine- or HER2-targeted therapies. The malignant and invasive feature of TNBCs is correlated with its high cancer stem cell population. Recent results from us and others have unveiled an oncogenic role for the PRMT5-KLF4 axis in regulating tumor progression by orchestrating the stemness in mammary tumor cell as well as genome stability. Methylation of KLF4 by PRMT5 leads to KLF4 stabilization, resulting in promoting mitogenesis. METHODS: We have developed a small molecule inhibitor, WX2-43, that specifically intercepts the interaction between PRMT5 and KLF4, thereby enhancing KLF4 degradation. FINDINGS: Results from our characterization demonstrate that WX2-43 binds to the region between amino acids L400-M500 on PRMT5. Degradation of KLF4 down-regulates KLF4-mediated genes transcription. We have characterized the potent effect for WX2-43 in inhibiting PRMT5-KLF4 binding that, in turns, suppresses tumor progression and induces tumor cell death in both TNBC cultured-cell and animal models. INTERPRETATION: WX2-43-mediated inhibition of KLF4 methylation by PRMT5 could be a potential strategy for anti-TNBC treatment. FUND: This work was supported, in whole or in part, by National Institutes of Health grants CA202963 and CA202948 (Wan), R21HL109654 (Xie), P30DA035778 (Xie and Bahar) and P41GM103712 (Bahar).


Assuntos
Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade , Especificidade por Substrato , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Chem Pharm Bull (Tokyo) ; 67(4): 382-388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930442

RESUMO

As an important epigenetics related enzyme, protein arginine methyltransferase 5 (PRMT5) has been confirmed as an anticancer therapeutic target in recent years. Among all the reported PRMT5 inhibitors, two small molecules (GSK-3326595 and JNJ-64619178) are currently being assessed in clinical trial. In this study, 40 PRMT5 inhibitor candidates were purchased from SPECS database supplier according to the pharmacophore and molecular docking based virtual screening results. Alpha linked immunosorbent assay (LISA) methylation assay was performed to test their inhibitory activity against PRMT5. The in vitro enzymatic assay results indicated that four compounds (2, 4, 10 and 37) showed PRMT5 inhibitory activity, while 4 and 10 displayed the most potent activity with IC50 values of 8.1 ± 1.1 and 6.5 ± 0.6 µM, respectively. The inhibitory activity results of 20 extra analogs of 4 further confirmed the potency of this scaffold. As expected, compounds 4 and 10 exhibited moderate anti-proliferative activity against mantle cell lymphoma Jeko-1 and leukemia cell MV4-11. Besides, Western blot assay results showed that 4 could reduce the H4R3me2s level in a dose-dependent manner, indicating that it could inhibit the activity of PRMT5 in cellular context. Detailed interactions between 4 and PRMT5 were characterized by binding mode analysis through molecular docking. The compounds discovered in this study will inspire medicinal chemists to further explore this series of PRMT5 inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirimidinas/química , Pirróis/química , Quinolinas/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Quinolinas/metabolismo , Quinolinas/farmacologia , Relação Estrutura-Atividade
9.
Nucleic Acids Res ; 47(10): 5038-5048, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30916320

RESUMO

PRMT5 is an arginine methyltransferase that accounts for the vast majority of the symmetric methylation in cells. PRMT5 exerts its function when complexed with MEP50/WDR77. This activity is often elevated in cancer cells and correlates with poor prognosis, making PRMT5 a therapeutic target. To investigate the PRMT5 signaling pathway and to identify genes whose loss-of-function sensitizes cancer cells to PRMT5 inhibition, we performed a CRISPR/Cas9 genetic screen in the presence of a PRMT5 inhibitor. We identified known components of the PRMT5 writer/reader pathway including PRMT5 itself, MEP50/WDR77, PPP4C, SMNDC1 and SRSF3. Interestingly, loss of PRMT1, the major asymmetric arginine methyltransferase, also sensitizes cells to PRMT5 inhibition. We investigated the interplay between PRMT5 and PRMT1, and found that combinatorial inhibitor treatment of small cell lung cancer and pancreatic cancer cell models have a synergistic effect. Furthermore, MTAP-deleted cells, which harbor an attenuated PRMT5-MEP50 signaling pathway, are generally more sensitive to PRMT1 inhibition. Together, these findings demonstrate that there is a degree of redundancy between the PRMT5 and PRMT1 pathways, even though these two enzymes deposit different types of arginine methylation marks. Targeting this redundancy provides a vulnerability for tumors carrying a co-deletion of MTAP and the adjacent CDKN2A tumor suppressor gene.


Assuntos
Deleção de Genes , Neoplasias/enzimologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Etilenodiaminas/farmacologia , Humanos , Isoquinolinas/farmacologia , Células MCF-7 , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Pirimidinas/farmacologia , Pirróis/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Eur J Med Chem ; 164: 317-333, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30605830

RESUMO

Protein arginine methyltransferases 5 (PRMT5) represents an attractive drug target in epigenetic field for the treatment of leukemia and lymphoma. Here, a series of N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)amide derivatives targeting PRMT5 were designed with structure-based approach and synthesized. Among them, compound 46 showed potent and selective PRMT5 inhibition activity with an IC50 of 8.5 nM, which was approximately equivalent with the phase I clinical trial PRMT5 inhibitor GSK-3326595 (IC50 = 5.5 nM). Compound 46 also displayed pronounced anti-proliferative activity in MV4-11 cells (GI50 = 18 nM) and antitumor activity in MV4-11 mouse xenografts model. This molecule can serve as an excellent tool compound for probing the biological function of PRMT5.


Assuntos
Descoberta de Drogas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Camundongos , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/química
11.
Expert Opin Ther Pat ; 29(2): 97-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30640571

RESUMO

INTRODUCTION: Protein arginine methyltransferases (PRMTs) are fundamental enzymes that specifically modify the arginine residues of versatile substrates in cells. The aberrant expression and abnormal enzymatic activity of PRMTs are associated with many human diseases, especially cancer. PRMTs are emerging as promising drug targets in both academia and industry. AREAS COVERED: This review summarizes the updated patented inhibitors targeting PRMTs from 2010 to 2018. The authors illustrate the chemical structures, molecular mechanism of action, pharmacological activities as well as the potential clinical application including combination therapy and biomarker-guided therapy. PRMT inhibitors in clinical trials are also highlighted. The authors provide a future perspective for further development of potent and selective PRMT inhibitors. EXPERT OPINION: Although a number of small molecule inhibitors of PRMTs with sufficient potency have been developed, the selectivity of most PRMT inhibitors remains to be improved. Hence, novel approaches such as allosteric regulation need to be further studied to identify PRMT inhibitors. So far, three PRMT inhibitors have entered clinical trials, including PRMT5 inhibitor GSK3326595 and JNJ-64619178 as well as PRMT1 inhibitor GSK3368715. PRMT inhibitors with novel mechanism of action and good drug-like properties may shed new light on drug research and development progress.


Assuntos
Desenho de Drogas , Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Patentes como Assunto , Proteína-Arginina N-Metiltransferases/metabolismo
12.
J Chem Inf Model ; 59(1): 522-534, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30607947

RESUMO

CARM1 (coactivator-associated arginine methyltransferase 1), also known as PRMT4 (protein arginine N-methyltransferase 4), belongs to the protein arginine methyltransferase (PRMT) family, which has emerged as a potential anticancer drug target. To discover new CARM1 inhibitors, we performed virtual screening against the substrate-binding site in CARM1. Structure-based pharmacophore models, which were generated according to three druggable subpockets embedding critical residues for ligand binding, were applied for virtual screening. The importance of the solvent-exposed substrate-binding cavity was highlighted due to significant hydrophobicity. Aided by molecular docking, 15 compounds structurally distinct from known CARM1 inhibitors were selected to evaluate their inhibitory effects on CARM1 methyltransferase activity, which resulted in seven compounds exhibiting micromolar inhibition, with selectivity over other members in the PRMT protein family. Moreover, three of them exhibited potent antiproliferation activities in breast cancer cells. Particularly, compound NO.2 exhibited potent activity both in vitro and in cultured cells, which will serve as a leading hit for developing CARM1 inhibitors with improved efficacy. The virtual screening strategy in this study will be applicable for the discovery of substrate-competitive inhibitors targeting other members in the PRMT protein family.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Humanos , Ligantes , Células MCF-7 , Conformação Proteica , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Interface Usuário-Computador
13.
J Immunol ; 202(1): 37-47, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530593

RESUMO

Tissue remodeling of subepithelial mesenchymal cells is a major pathologic condition of chronic obstructive pulmonary disease and asthma. Fibroblasts contribute to fibrotic events and inflammation in both airway diseases. Recent mechanistic studies established a link between mitochondrial dysfunction or aberrant biogenesis leading to tissue remodeling of the airway wall in asthma. Protein arginine methyltransferase-1 (PRMT1) participated in airway wall remodeling in pulmonary inflammation. This study investigated the mechanism by which PRMT1 regulates mitochondrial mass in primary human airway wall fibroblasts. Fibroblasts from control or asthma patients were stimulated with TGF-ß for up to 48 h, and the signaling pathways controlling PRMT1 expression and mitochondrial mass were analyzed. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI-1. The SMAD2/3 pathway was blocked by SB203580 and C/EBPß by small interference RNA treatment. The data obtained from unstimulated cells showed a significantly higher basal expression of PRMT1 and mitochondrial markers in asthmatic compared with control fibroblasts. In all cells, TGF-ß significantly increased the expression of PRMT1 through SMAD2/3 and C/EBPß. Subsequently, PRMT1 upregulated the expression of the mitochondria regulators PGC-1α and heat shock protein 60. Both the inhibition of the SAMD2/3 pathway or PRMT1 attenuated TGF-ß-induced mitochondrial mass and C/EBPß and α-SMA expression. These findings suggest that the signaling sequence controlling mitochondria in primary human lung fibroblasts is as follows: TGF-ß→SMAD2/3→C/EBPß→PRMT1→PGC-1α. Therefore, PRMT1 and C/EBPß present a novel therapeutic and diagnostic target for airway wall remodeling in chronic lung diseases.


Assuntos
Asma/imunologia , Fibroblastos/fisiologia , Mitocôndrias/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Esteroide Isomerases/metabolismo , Remodelação das Vias Aéreas , Células Cultivadas , Chaperonina 60/metabolismo , Humanos , Imidazóis/farmacologia , Mitocôndrias/metabolismo , Naftalenossulfonatos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Proteínas Repressoras/antagonistas & inibidores , Transdução de Sinais , Proteína Smad2/antagonistas & inibidores , Proteína Smad3/antagonistas & inibidores , Esteroide Isomerases/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Ureia/análogos & derivados , Ureia/farmacologia
14.
Bioorg Med Chem Lett ; 28(23-24): 3693-3699, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366617

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is an epigenetics related enzyme that has been validated as a promising therapeutic target for human cancer. Up to now, two small molecule PRMT5 inhibitors has been put into phase I clinical trial. In the present study, a series of candidate molecules were designed by combining key pharmacophores of formerly reported PRMT5 inhibitors. The in vitro PRMT5 inhibitory testing of compound 4b14 revealed an IC50 of 2.71 µM, exhibiting high selectivity over PRMT1 and PRMT4 (>70-fold selective). As expected, 4b14 exhibited potent anti-proliferative activity against a panel of leukemia and lymphoma cells, including MV4-11, Pfeiffer, SU-DHL-4 and KARPAS-422. Besides, 4b14 showed significant cell cycle arrest and apoptosis-inducing effects, as well as reduced the cellular symmetric arginine dimethylation level of SmD3 protein. Finally, affinity profiling analysis indicated that hydrophobic interactions, π-π stacking and cation-π actions made the major contributions to the overall binding affinity. This scaffold provides a new chemical template for further development of better lead compounds targeting PRMT5.


Assuntos
Desenho de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linfoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína-Arginina N-Metiltransferases/metabolismo , Relação Estrutura-Atividade
15.
Bone ; 117: 37-46, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30189247

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze symmetric and asymmetric methylation on arginine residues of multiple protein targets including histones and have essential roles in organismal development and disease. PRMT5 mediates symmetric di-methylation (sDMA) of arginine 2 (H3R2me2s) and arginine 8 on histone 3 (H3R8me2s), arginine 3 on histones 2A and 4 (H2A/H4R3me2s) as well as several non-histone substrates like Sm proteins. Here, we found that selective inhibition of PRMT5 in mesenchymal stromal cells (MSCs) led to a reduction in colony forming units (CFUs) and increased osteoblast differentiation. PRMT5 inhibition blocked global symmetric dimethylation of H3R8 and H4R3 but not on H3R2. Genome-wide expression analysis by total RNA sequencing of mesenchymal stromal cells undergoing osteogenic differentiation revealed significant reduction in the intrinsic expression of several interferon-stimulated genes (ISGs) upon PRMT5 inhibition. Effects of PRMT5 inhibition on basal ISG expression and osteogenic differentiation was effectively blocked by exogenous activation of type I IFN signaling. Together, these results indicate important functions for PRMT5 in the regulation of basal interferon gene expression in MSCs and in the control of differentiation potential of MSCs during osteogenic differentiation.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Interferons/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Modelos Biológicos , Osteogênese/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/metabolismo , Fator de Transcrição STAT1/metabolismo
16.
Chem Rec ; 18(12): 1792-1807, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30230223

RESUMO

Histone methylation plays an important regulatory role in chromatin restructuring and RNA transcription. Arginine methylation that is enzymatically catalyzed by the family of protein arginine methyltransferases (PRMTs) can either activate or repress gene expression depending on cellular contexts. Given the strong correlation of PRMTs with pathophysiology, great interest is seen in understanding molecular mechanisms of PRMTs in diseases and in developing potent PRMT inhibitors. Herein, we reviewed key research advances in the study of biochemical mechanisms of PRMT catalysis and their relevance to cell biology. We highlighted how a random binary, ordered ternary kinetic model for PRMT1 catalysis reconciles the literature reports and endorses a distributive mechanism that the enzyme active site utilizes for multiple turnovers of arginine methylation. We discussed the impacts of histone arginine methylation and its biochemical interplays with other key epigenetic marks. Challenges in developing small-molecule PRMT inhibitors were also discussed.


Assuntos
Arginina/metabolismo , Histonas/metabolismo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Histonas/antagonistas & inibidores , Humanos , Metilação , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
17.
Bioorg Chem ; 81: 289-298, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30172110

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is an epigenetics related enzyme that has been validated as an important therapeutic target for glioblastoma and mantel cell lymphoma. In the present study, 11 novel PRMT5 inhibitors with 5-benzylidene-2-phenylthiazolone scaffold were identified by molecular docking-based virtual screening and structural optimization. Their IC50 values against PRMT5 at enzymatic level were ranging from 0.77 to 23 µM. As expected, the top two active hits (5 and 19) showed potent anti-proliferative activity against MV4-11 cells with EC50 values lower than 10 µM and reduced the cellular symmetric arginine dimethylation levels of SmD3 protein. Besides, 5 and 19 demonstrated the mechanism of cell killing in cell cycle arrest and apoptotic effect. The probable binding modes of the two compounds were explored and further verified by molecular dynamics simulation. The structure-activity relationship (SAR) of this class of structures was also discussed and further demonstrated by molecular docking simulation.


Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Bases de Dados de Compostos Químicos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Tiazóis/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/química , Sítios de Ligação , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteína-Arginina N-Metiltransferases/química , Relação Estrutura-Atividade , Tiazóis/química
19.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30054395

RESUMO

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Assuntos
Dano ao DNA/fisiologia , Neurônios Motores/enzimologia , Proteína-Arginina N-Metiltransferases/fisiologia , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Contração Isométrica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Musculares/enzimologia , Células Musculares/fisiologia , Junção Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/deficiência , Proteína-Arginina N-Metiltransferases/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Reflexo Anormal , Teste de Desempenho do Rota-Rod , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento
20.
J Med Chem ; 61(21): 9429-9441, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29870258

RESUMO

PRMT5 is a major enzyme responsible for symmetric dimethylation of arginine residues on both histone and non-histone proteins, regulating many biological pathways in mammalian cells. PRMT5 has been suggested as a therapeutic target in a variety of diseases including infectious disease, heart disease, and cancer. Many PRMT5 inhibitors have been discovered in the past 5 years, and one entered clinical trial in 2015 for the treatment of solid tumor and mantle cell lymphoma (MCL). The aim of this review is to summarize the current understanding of the roles of PRMT5 in cancer and the discovery of PRMT5 enzymatic inhibitors. By reviewing the structure-activity relationship (SAR) of known inhibitors of PRMT5, we hope to provide guidance for future drug designs and inhibitor optimization. Opportunities and limitations of PRMT5 inhibitors for the treatment of cancer are also discussed.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular/métodos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Humanos , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA