Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.837
Filtrar
1.
Science ; 367(6482)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32054698

RESUMO

Sex determination of germ cells is vital to creating the sexual dichotomy of germ cell development, thereby ensuring sexual reproduction. However, the underlying mechanisms remain unclear. Here, we show that ZGLP1, a conserved transcriptional regulator with GATA-like zinc fingers, determines the oogenic fate in mice. ZGLP1 acts downstream of bone morphogenetic protein, but not retinoic acid (RA), and is essential for the oogenic program and meiotic entry. ZGLP1 overexpression induces differentiation of in vitro primordial germ cell-like cells (PGCLCs) into fetal oocytes by activating the oogenic programs repressed by Polycomb activities, whereas RA signaling contributes to oogenic program maturation and PGC program repression. Our findings elucidate the mechanism for mammalian oogenic fate determination, providing a foundation for promoting in vitro gametogenesis and reproductive medicine.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/fisiologia , Oogênese/genética , Proteínas Repressoras/fisiologia , Diferenciação Sexual/genética , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Feminino , Feto/citologia , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , Oócitos/citologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Processos de Determinação Sexual , Transdução de Sinais , Fatores de Transcrição/genética , Transcriptoma , Tretinoína/fisiologia
2.
PLoS Biol ; 18(1): e3000591, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929526

RESUMO

A major challenge for cancer immunotherapy is sustaining T-cell activation and recruitment in immunosuppressive solid tumors. Here, we report that the levels of the Hippo pathway effector Yes-associated protein (Yap) are sharply induced upon the activation of cluster of differentiation 4 (CD4)-positive and cluster of differentiation 8 (CD8)-positive T cells and that Yap functions as an immunosuppressive factor and inhibitor of effector differentiation. Loss of Yap in T cells results in enhanced T-cell activation, differentiation, and function, which translates in vivo to an improved ability for T cells to infiltrate and repress tumors. Gene expression analyses of tumor-infiltrating T cells following Yap deletion implicates Yap as a mediator of global T-cell responses in the tumor microenvironment and as a negative regulator of T-cell tumor infiltration and patient survival in diverse human cancers. Collectively, our results indicate that Yap plays critical roles in T-cell biology and suggest that Yap inhibition improves T-cell responses in cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Quimiotaxia de Leucócito/genética , Linfócitos T/fisiologia , Microambiente Tumoral/imunologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Imunoterapia Adotiva , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Microambiente Tumoral/genética
4.
Biochim Biophys Acta Biomembr ; 1862(1): 183034, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400305

RESUMO

Hematopoietic-substrate-1 associated protein X-1 (HAX-1) is a 279 amino acid protein expressed ubiquitously. In cardiac muscle, HAX-1 was found to modulate the sarcoendoplasmic reticulum calcium ATPase (SERCA) by shifting its apparent Ca2+ affinity (pCa). It has been hypothesized that HAX-1 binds phospholamban (PLN), enhancing its inhibitory function on SERCA. HAX-1 effects are reversed by cAMP-dependent protein kinase A that phosphorylates PLN at Ser16. To date, the molecular mechanisms for HAX-1 regulation of the SERCA/PLN complex are still unknown. Using enzymatic, in cell assays, circular dichroism, and NMR spectroscopy, we found that in the absence of a binding partner HAX-1 is essentially disordered and adopts a partial secondary structure upon interaction with lipid membranes. Also, HAX-1 interacts with the cytoplasmic region of monomeric and pentameric PLN as detected by NMR and in cell FRET assays, respectively. We propose that the regulation of the SERCA/PLN complex by HAX-1 is mediated by its interactions with lipid membranes, adding another layer of control in Ca2+ homeostatic balance in the heart muscle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Citoplasma/metabolismo , Lipídeos de Membrana/metabolismo , Miocárdio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Ligação ao Cálcio/ultraestrutura , Humanos , Proteínas Intrinsicamente Desordenadas , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
Reprod Biol Endocrinol ; 17(1): 113, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883523

RESUMO

BACKGROUND: The Hippo pathway plays critical roles in regulating cell proliferation, differentiation and survival among species. Hippo pathway proteins are expressed in the ovary and are involved in ovarian function. Deletion of Lats1 causes germ cell loss, ovarian stromal tumors and reduced fertility. Ovarian fragmentation induces nuclear YAP1 accumulation and increased follicular development. At ovulation, follicular cells stop proliferating and terminally differentiate, but the mechanisms controlling this transition are not completely known. Here we explore the role of Hippo signaling in mouse granulosa cells before and during ovulation. METHODS: To assess the effect of oocytes on Hippo transcripts in cumulus cells, cumulus granulosa cells were cultured with oocytes and cumulus oocyte complexes (COCs) were cultured with a pSMAD2/3 inhibitor. Secondly, to evaluate the criticality of YAP1 on granulosa cell proliferation, mural granulosa cells were cultured with oocytes, YAP1-TEAD inhibitor verteporfin or both, followed by cell viability assay. Next, COCs were cultured with verteporfin to reveal its role during cumulus expansion. Media progesterone levels were measured using ELISA assay and Hippo transcripts and expansion signatures from COCs were assessed. Lastly, the effects of ovulatory signals (EGF in vitro and hCG in vivo) on Hippo protein levels and phosphorylation were examined. Throughout, transcripts were quantified by qRT-PCR and proteins were quantified by immunoblotting. Data were analyzed by student's t-test or one-way ANOVA followed by Tukey's post-hoc test or Dunnett's post-hoc test. RESULTS: Our data show that before ovulation oocytes inhibit expression of Hippo transcripts and promote granulosa cell survival likely through YAP1. Moreover, the YAP1 inhibitor verteporfin, triggers premature differentiation as indicated by upregulation of expansion transcripts and increased progesterone production from COCs in vitro. In vivo, ovulatory signals cause an increase in abundance of Hippo transcripts and stimulate Hippo pathway activity as indicated by increased phosphorylation of the Hippo targets YAP1 and WWTR1 in the ovary. In vitro, EGF causes a transient increase in YAP1 phosphorylation followed by decreased YAP1 protein with only modest effects on WWTR1 in COCs. CONCLUSIONS: Our results support a YAP1-mediated mechanism that controls cell survival and differentiation of granulosa cells during ovulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Células da Granulosa/fisiologia , Ovulação/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados/química , Células do Cúmulo/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Camundongos , Oócitos/fisiologia , Progesterona/análise , RNA Mensageiro/análise , Transdução de Sinais/genética , Verteporfina
6.
Exp Hematol ; 80: 42-54.e4, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31756359

RESUMO

In contrast to steady-state erythropoiesis, which generates new erythrocytes at a constant rate, stress erythropoiesis rapidly produces a large bolus of new erythrocytes in response to anemic stress. In this study, we illustrate that Yes-associated protein (Yap1) promotes the rapid expansion of a transit-amplifying population of stress erythroid progenitors in vivo and in vitro. Yap1-mutated erythroid progenitors failed to proliferate in the spleen after transplantation into lethally irradiated recipient mice. Additionally, loss of Yap1 impaired the growth of actively proliferating erythroid progenitors in vitro. This role in proliferation is supported by gene expression profiles showing that transiently amplifying stress erythroid progenitors express high levels of genes associated with Yap1 activity and genes induced by Yap1. Furthermore, Yap1 promotes the proliferation of stress erythroid progenitors in part by regulating the expression of key glutamine-metabolizing enzymes. Thus, Yap1 acts as an erythroid regulator that coordinates the metabolic status with the proliferation of erythroid progenitors to promote stress erythropoiesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Células Precursoras Eritroides/fisiologia , Eritropoese/fisiologia , Regeneração/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Divisão Celular , Células Cultivadas , Indução Enzimática , Células Precursoras Eritroides/citologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Quimera por Radiação , Tolerância a Radiação , Proteínas Recombinantes/metabolismo , Baço/citologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética
7.
PLoS Biol ; 17(9): e3000396, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532761

RESUMO

The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression.


Assuntos
Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/fisiologia , Ribossomos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
8.
Metabolism ; 100: 153955, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390528

RESUMO

OBJECTIVES: The activation of brown adipose tissue (BAT) is considered as a promising therapeutic target for obesity. APPL1 (Adaptor protein containing the Pleckstrin homology domain, Phosphotyrosine binding domain and Leucine zipper motif) is an intracellular adaptor protein and its genetic variation is correlated with BMI and body fat distribution in diabetic patients. However, little is known about the roles of APPL1 in BAT thermogenesis. MATERIALS/METHODS: In this study, adipose tissue specific knockout (ASKO) mice were generated to evaluate APPL1's role in BAT thermogenesis in vivo, and possible signaling pathways were further explored in cultured brown adipocytes. RESULTS: After high fat diet challenge, APPL1 ASKO mice developed more severe obesity, glucose intolerance and insulin resistance compared with control mice. Metabolic cage study showed that APPL1 deficiency impaired energy expenditure and adaptive thermogenesis in ASKO mice. PET-CT analysis showed decreased standardized uptake value (SUV) in the inter-scapular region which indicated impaired BAT activity in ASKO mice. Further study showed deletion of APPL1 attenuated brown fat specific gene expression, such as UCP1 and PGC1α in both BAT and brown adipocytes. In cultured brown adipocytes, upon cAMP stimulation, APPL1 shuttled from cytosol to nuclei. Co-IP and ChIP study showed that APPL1 could directly interact with histone deacetylase 3 (HDAC3) to mediate chromatin remodeling and UCP1 gene expression. CONCLUSIONS: Our data demonstrated the essential role of APPL1 in regulating brown adipocytes thermogenesis via interaction with HDAC3, which may have potential therapeutic implications for treatment of obesity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Tecido Adiposo Marrom/fisiologia , Histona Desacetilases/fisiologia , Termogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Dieta Hiperlipídica , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Intolerância à Glucose , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/prevenção & controle , Termogênese/genética
9.
Int Urol Nephrol ; 51(10): 1823-1829, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31368056

RESUMO

PURPOSE: The recent observation that urinary calcium excretion (UCE) drops considerably with CKD and that this effect may occur beyond compensation for reduced intestinal calcium absorption suggests that CKD per se is a state of sustained positive calcium balance, a mechanism likely to contribute to vascular calcification and CVD in CKD. However, the determinants of UCE reduction in CKD are not well understood and there is a lack of clinical studies, particularly in the CKD population. Therefore, in this study, we aimed to evaluate variables associated with UCE in a CKD cohort. METHODS: Baseline data on 356 participants of the Progredir Study, Sao Paulo, Brazil, essentially composed of CKD G3a-G4, were analyzed according to UCE (24 h urine collection). RESULTS: Median 24 h UCE was 38 mg/day (IQR 21-68 mg/day) and 0.48 mg/kg/day (IQR 0.28-0.82 mg/kg/day). In univariate analysis, UCE was inversely related to age, phosphorus, 1-84 PTH, FGF-23 and sclerostin, and positively associated with eGFR, DBP, 1,25(OH)2-vitamin D, calcium, bicarbonate, total calorie intake and spironolactone use. After adjustments for age, sex and eGFR, only 1,25(OH)2-vitamin D, calcium, FGF-23, bicarbonate and total calorie intake remained associated with it, but not PTH nor sclerostin. Lastly, in a multivariable model, eGFR, serum 1,25(OH)2-vitamin D, calcium, and FGF-23 remained associated with UCE. Similar results were observed when calcium fractional excretion was used instead of UCE, with eGFR, 1-25-vitamin D and FGF-23 remaining as independent associations. CONCLUSION: Our results showed that CKD is associated with very low levels of UCE and that 1,25(OH)2-vitamin D, serum calcium and FGF-23 were independently associated with UCE in this population, raising the question whether these factors are modulators of the tubular handling of calcium in CKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Calcitriol/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Hipercalciúria/etiologia , Hormônio Paratireóideo/fisiologia , Insuficiência Renal Crônica/complicações , Idoso , Estudos Transversais , Feminino , Humanos , Masculino
10.
J Orthop Res ; 37(12): 2550-2560, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373395

RESUMO

Osteoarthritis (OA) is a degenerative joint disease associated with chronic pain and disability in humans and companion animals. The canine species can be subdivided into non-chondrodystrophic (NCD) and chondrodystrophic (CD) dogs, the latter having disproportionally short limbs due to disturbance in endochondral ossification of long bones. This phenotype is associated with retrogene insertions of the fibroblast growth factor 4 (FGF4) gene, resulting in enhanced fibroblast growth factor receptor 3 (FGFR3) signaling. The effect on cartilage is unknown and in experimental studies with dogs, breeds are seemingly employed randomly. The aim of this study was to determine whether CD- and NCD-derived cartilage differs on a structural and biochemical level, and to explore the relationship between FGF4 associated chondrodystrophy and OA. Cartilage explants from CD and NCD dogs were cultured for 21 days. Activation of canonical Wnt signaling was assessed in primary canine chondrocytes. OA and synovitis severity from an experimental OA model were compared between healthy and OA samples from CD and NCD dogs. Release of glycosaminoglycans, DNA content, and cyclooxygenase 2 (COX-2) expression were higher in NCD cartilage explants. Healthy cartilage from NCD dogs displayed higher cartilage degeneration and synovitis scores, which was aggravated by the induction of OA. Dikkopf-3 gene expression was higher in NCD cartilage. No differences in other Wnt pathway read outs were found. To conclude, chondrodystrophy associated with the FGF4 retrogene seems to render CD dogs less susceptible to the development of OA when compared with NCD dogs. These differences should be considered when choosing a canine model to study the pathobiology and new treatment strategies of OA. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 37:2550-2560, 2019.


Assuntos
Modelos Animais de Doenças , Fator 4 de Crescimento de Fibroblastos/genética , Osteoartrite/etiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Cartilagem Articular/patologia , Ciclo-Oxigenase 2/análise , Cães , Glicosaminoglicanos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Via de Sinalização Wnt
11.
PLoS Pathog ; 15(8): e1007949, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31374104

RESUMO

Host encounters with viruses lead to an innate immune response that must be rapid and broadly targeted but also tightly regulated to avoid the detrimental effects of unregulated interferon expression. Viral stimulation of host negative regulatory mechanisms is an alternate method of suppressing the host innate immune response. We examined three key mediators of the innate immune response: NF-KB, STAT1 and STAT2 during HCV infection in order to investigate the paradoxical induction of an innate immune response by HCV despite a multitude of mechanisms combating the host response. During infection, we find that all three are repressed only in HCV infected cells but not in uninfected bystander cells, both in vivo in chimeric mouse livers and in cultured Huh7.5 cells after IFNα treatment. We show here that HCV and Flaviviruses suppress the innate immune response by upregulation of PDLIM2, independent of the host interferon response. We show PDLIM2 is an E3 ubiquitin ligase that also acts to stimulate nuclear degradation of STAT2. Interferon dependent relocalization of STAT1/2 to the nucleus leads to PDLIM2 ubiquitination of STAT2 but not STAT1 and the proteasome-dependent degradation of STAT2, predominantly within the nucleus. CRISPR/Cas9 knockout of PDLIM2 results in increased levels of STAT2 following IFNα treatment, retention of STAT2 within the nucleus of HCV infected cells after IFNα stimulation, increased interferon response, and increased resistance to infection by several flaviviruses, indicating that PDLIM2 is a global regulator of the interferon response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Infecções por Flavivirus/imunologia , Flavivirus/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Imunidade Inata/imunologia , Proteínas com Domínio LIM/fisiologia , Fator de Transcrição STAT2/metabolismo , Animais , Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/virologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon-alfa/farmacologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , NF-kappa B , Fator de Transcrição STAT2/genética , Transdução de Sinais
12.
PLoS Pathog ; 15(8): e1008004, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412082

RESUMO

Fas-associated factor 1 is a death-promoting protein that induces apoptosis by interacting with the Fas receptor. Until now, FAF1 was reported to interact potentially with diverse proteins and to function as a negative and/or positive regulator of several cellular possesses. However, the role of FAF1 in defense against bacterial infection remains unclear. Here, we show that FAF1 plays a pivotal role in activating NADPH oxidase in macrophages during Listeria monocytogenes infection. Upon infection by L. monocytogenes, FAF1 interacts with p67phox (an activator of the NADPH oxidase complex), thereby facilitating its stabilization and increasing the activity of NADPH oxidase. Consequently, knockdown or ectopic expression of FAF1 had a marked effect on production of ROS, proinflammatory cytokines, and antibacterial activity, in macrophages upon stimulation of TLR2 or after infection with L. monocytogenes. Consistent with this, FAF1gt/gt mice, which are knocked down in FAF1, showed weaker inflammatory responses than wild-type mice; these weaker responses led to increased replication of L. monocytogenes. Collectively, these findings suggest that FAF1 positively regulates NADPH oxidase-mediated ROS production and antibacterial defenses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Imunidade Inata/imunologia , Inflamação/imunologia , Listeriose/imunologia , Macrófagos/imunologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Listeria monocytogenes/imunologia , Listeriose/metabolismo , Listeriose/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais
13.
Nat Rev Cancer ; 19(8): 454-464, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31270418

RESUMO

YAP and TAZ are transcriptional activators pervasively induced in several human solid tumours and their functions in cancer cells are the focus of intense investigation. These studies established that YAP and TAZ are essential to trigger numerous cell-autonomous responses, such as sustained proliferation, cell plasticity, therapy resistance and metastasis. Yet tumours are complex entities, wherein cancer cells are just one of the components of a composite "tumour tissue". The other component, the tumour stroma, is composed of an extracellular matrix with aberrant mechanical properties and other cell types, including cancer-associated fibroblasts and immune cells. The stroma entertains multiple and bidirectional interactions with tumour cells, establishing dependencies essential to unleash tumorigenesis. The molecular players of such interplay remain partially understood. Here, we review the emerging role of YAP and TAZ in choreographing tumour-stromal interactions. YAP and TAZ act within tumour cells to orchestrate responses in stromal cells. Vice versa, YAP and TAZ in stromal cells trigger effects that positively feed back on the growth of tumour cells. Recognizing YAP and TAZ as a hub of the network of signals exchanged within the tumour microenvironment provides a fresh perspective on the molecular principles of tumour self-organization, promising to unveil numerous new vulnerabilities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias/genética , Fatores de Transcrição/fisiologia , Microambiente Tumoral , Animais , Carcinogênese , Adesão Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Humanos , Camundongos , Metástase Neoplásica , Neoplasias/metabolismo , Fenótipo , Transdução de Sinais , Células Estromais/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-31162488

RESUMO

The aim of this paper was to summarise knowledge of IL-22 involvement in multiple sclerosis (MS) and the possible link between IL-22 and two transcription factors - AHR and c-Maf. The conclusion is that despite numerous studies, the exact role of IL-22 in the pathogenesis of MS is still unknown. The expression and function of c-Maf in MS have not been studied. It seems that the functions of c-Maf and AHR are at least partly connected with IL-22, as both directly or indirectly influence the regulation of IL-22 expression. This possible connection has never been studied in MS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Interleucinas/fisiologia , Esclerose Múltipla/etiologia , Receptores de Hidrocarboneto Arílico/fisiologia , Humanos , Fatores de Transcrição/fisiologia
15.
Arterioscler Thromb Vasc Biol ; 39(7): 1419-1431, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092012

RESUMO

Objective- Inhibition of SIRT (sirtuin)-1, a nicotinamide adenine dinucleotide-dependent protein deacetylase, is linked to cigarette smoking-induced arterial stiffness, but the underlying mechanisms remain largely unknown. The aim of the present study was to determine the effects and mechanisms of nicotine, a major component of cigarette smoke, on SIRT1 activity and arterial stiffness. Approach and Results- Arterial stiffness, peroxynitrite (ONOO-) formation, SIRT1 expression and activity were monitored in mouse aortas of 8-week-old C57BL/6 mice (wild-type) or Sirt1-overexpressing ( Sirt1 Super) mice with or without nicotine for 4 weeks. In aortas of wild-type mice, nicotine reduced SIRT1 protein and activity by ≈50% without affecting its mRNA levels. In those from Sirt1 Super mice, nicotine also markedly reduced SIRT1 protein and activity to the levels that were comparable to those in wild-type mice. Nicotine infusion significantly induced collagen I, fibronectin, and arterial stiffness in wild-type but not Sirt1 Super mice. Nicotine increased the levels of iNOS (inducible nitric oxide synthase) and the co-staining of SIRT1 and 3-nitrotyrosine, a footprint of ONOO- in aortas. Tempol, which ablated ONOO- by scavenging superoxide anion, reduced the effects of nicotine on SIRT1 and collagen. Mutation of zinc-binding cysteine 395 or 398 in SIRT1 into serine (C395S) or (C398S) abolished SIRT1 activity. Furthermore, ONOO- dose-dependently inhibited the enzyme and increased zinc release in recombinant SIRT1. Finally, we found SIRT1 inactivation by ONOO- activated the YAP (Yes-associated protein) resulting in abnormal ECM (extracellular matrix) remodeling. Conclusions- Nicotine induces ONOO-, which selectively inhibits SIRT1 resulting in a YAP-mediated ECM remodeling. Visual Overview- An online visual overview is available for this article.


Assuntos
Nicotina/farmacologia , Ácido Peroxinitroso/fisiologia , Sirtuína 1/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Nitrogênio/metabolismo , Sirtuína 1/fisiologia
16.
Arterioscler Thromb Vasc Biol ; 39(7): 1330-1342, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092014

RESUMO

Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases. Visual Overview- An online visual overview is available for this article.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Aterosclerose/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Apolipoproteínas E/fisiologia , Aterosclerose/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Calcificação Vascular/etiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
17.
Cells ; 8(5)2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035633

RESUMO

Fluid shear stress stimulates endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production through multiple kinases, including protein kinase A (PKA), AMP-activated protein kinase (AMPK), AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an adaptor protein that stabilizes epithelial and endothelial cell-cell contacts. The aim of this study was to assess the unknown role of endothelial cell MAGI1 in response to fluid shear stress. We show constitutive expression and co-localization of MAGI1 with vascular endothelial cadherin (VE-cadherin) in endothelial cells at cellular junctions under static and laminar flow conditions. Fluid shear stress increases MAGI1 expression. MAGI1 silencing perturbed flow-dependent responses, specifically, Krüppel-like factor 4 (KLF4) expression, endothelial cell alignment, eNOS phosphorylation and NO production. MAGI1 overexpression had opposite effects and induced phosphorylation of PKA, AMPK, and CAMKII. Pharmacological inhibition of PKA and AMPK prevented MAGI1-mediated eNOS phosphorylation. Consistently, MAGI1 silencing and PKA inhibition suppressed the flow-induced NO production. Endothelial cell-specific transgenic expression of MAGI1 induced PKA and eNOS phosphorylation in vivo and increased NO production ex vivo in isolated endothelial cells. In conclusion, we have identified endothelial cell MAGI1 as a previously unrecognized mediator of fluid shear stress-induced and PKA/AMPK dependent eNOS activation and NO production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Moléculas de Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Guanilato Quinases/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/citologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Transgênicos , Transdução de Sinais
18.
PLoS One ; 14(5): e0216982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095623

RESUMO

White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase.


Assuntos
Octopodiformes/fisiologia , Reprodução/fisiologia , Transdução de Sinais , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas Argonauta/fisiologia , Diferenciação Celular , RNA Helicases DEAD-box/fisiologia , Estradiol Desidrogenases/fisiologia , Feminino , Perfilação da Expressão Gênica , Hidrocortisona/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/fisiologia , Octopodiformes/genética , Filogenia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Receptores Estrogênicos/fisiologia , Fatores Sexuais
19.
Shanghai Kou Qiang Yi Xue ; 28(1): 13-19, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-31080993

RESUMO

PURPOSE: This study was designed to investigate the effects of LASP1 on proliferation, metastasis, invasion, and cycle of oral squamous cell carcinoma cells and analyze the changes of IC50 in three antitumor drugs: cisplatin, apatinib and docetaxel. METHODS: The correlation between LASP1 and survival rate and prognosis of patients with head and neck cancer were analyzed on the human protein atlas data. RT-PCR and Western blot were used to detect mRNA and protein expression of LASP1 in oral squamous cell carcinoma cell lines. LASP1 silenced HN30 stable transfectant cell line was constructed by lentivirus. CCK-8 assay was used to detect cell proliferation. Plate colony assay was used to detect cell clone formation ability. Transwell assay was used to detect cell migration and invasion ability. Flow cytometry was used to detect cell cycle changes. Oral squamous cell carcinoma metastases were established in nude mouse, the number of metastatic lung nodules was counted and stained with H-E. CCK-8 method was used to analyze the changes of IC50 in three antitumor drugs: cisplatin, apatinib and docetaxel. Statistical analysis was performed using SPSS 11.0 software package. RESULTS: LASP1 was closely related to the survival rate and prognosis of head and neck cancer. LASP1 promoted proliferation, colony formation, metastasis and invasion of oral squamous cell carcinoma cell line HN30, promoted G2/M phase transition of cell cycle, and significantly reduced the formation of lung metastasis in nude mice after silencing. There was significant correlation with docetaxel IC50 but no significant impact on cisplatin IC50 and aptatinib IC50. CONCLUSIONS: LASP1 enhances cell proliferation, plate cloning, metastasis and invasion, G2/M phase transition of cell cycle, promotes lung metastasis in nude mice and docetaxel resistance of oral squamous cell carcinoma cell line HN30.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos , Carcinoma de Células Escamosas , Proteínas do Citoesqueleto , Proteínas com Domínio LIM , Neoplasias Bucais , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas do Citoesqueleto/fisiologia , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração Inibidora 50 , Proteínas com Domínio LIM/fisiologia , Camundongos , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Invasividade Neoplásica
20.
Nat Commun ; 10(1): 1533, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948710

RESUMO

Autophagy-mediated degradation of mitochondria (mitophagy) is a key process in cellular quality control. Although mitophagy impairment is involved in several patho-physiological conditions, valuable methods to induce mitophagy with low toxicity in vivo are still lacking. Herein, we describe a new optogenetic tool to stimulate mitophagy, based on light-dependent recruitment of pro-autophagy protein AMBRA1 to mitochondrial surface. Upon illumination, AMBRA1-RFP-sspB is efficiently relocated from the cytosol to mitochondria, where it reversibly mediates mito-aggresome formation and reduction of mitochondrial mass. Finally, as a proof of concept of the biomedical relevance of this method, we induced mitophagy in an in vitro model of neurotoxicity, fully preventing cell death, as well as in human T lymphocytes and in zebrafish in vivo. Given the unique features of this tool, we think it may turn out to be very useful for a wide range of both therapeutic and research applications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Optogenética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Linfócitos/citologia , Camundongos , Mitocôndrias/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA